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Abstract. In the present paper, we generalize the Fredholm type integral operator, by
using the fractional rough kernel. We also deal with the Ulam-Hyers stability for rough
fractional integral inclusion and utilize the weakly Picard operator method as well as
the generalized Covitz-Nadler fixed point theorem.
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1. Introduction

The Ulam stability and its generalizations of different functional equations have
been studied by various researchers (for recent studies see [2]-[13]). The generalized
Ulam-Hyers product-sum stability of the Cauchy type additive functional equation
has been investigated by Rassias [14].

Differential equations of arbitrary order were presumed to be models for nonlin-
ear differential equations which played important roles in science, engineering and
economics. The studies described computational processes and systems. Conse-
quently, considerable attention has been viewed in the results of fractional differen-
tial equations, integral equations, fractional diffeo-integral equations, and fractional
partial differential equations of physical phenomena. Most of the studies are con-
cerned with the stability of the solutions [11]-[17].

In this paper, we generalize the Fredholm type integral operator by using the frac-
tional rough kernel and also deal with the Ulam-Hyers stability for rough fractional
integral inclusion. We utilize the weakly Picard operator method as well as the
generalized Covitz-Nadler fixed point theorem.
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2. Preliminaries

Let (E, d) be a metric space and let us define the following classes of E

P(E) := {S | S 6= Ø}, Pb(E) := {S ∈ P(E) | S is bounded},

Pcl(E) := {S ∈ P(E) | S is closed}, Pcp(E) := {S ∈ P(E) | S is compact},

Pcv(E) := {S ∈ P(E)|S is convex}.

Let B(e0, r) := {e ∈ E|d(e0, e) < r, r > 0} be the open ball centered at e0 ∈

E. Moreover, denoted by B(e0, r), the closure of B(e0, r) and B̃(e0, r) := {e ∈
E|d(e0, e) ≤ r} the closed ball. Define the gap functional in P(E) by

Dd : P(E)× P(E) → R+, Dd(X,Y ) = inf{d(x, y)|x ∈ X, y ∈ Y }.

Also let

Hd : P(E)×P(E) → R+, Hd(X,Y ) = max{sup
x∈X

Dd(x, Y ), sup
y∈Y

Dd(y,X)|x ∈ X, y ∈ Y },

where Dd(y,X) := Dd({y}, X) and Dd(x, Y ) := Dd({x}, Y ).

If G : E → P(E) is a multivalued operator, then g ∈ E is called a fixed point for G
iff g ∈ G. The set Fix(G) := {g ∈ E|g ∈ G} is called the fixed point set of G. In
addition, the set SFix(G) := {g ∈ E|{g} ≡ G} is called the strict fixed point set of
G. For the multi-valued operator G : E → P(E), the graph of G is defined by

Gra(G) := {(φ, ψ) ∈ E × S : ψ ∈ G}.

Notice that γ : E → S is a selection for G : E → P(S) if γ(x) ∈ G(x), x ∈ E. We
need the following concepts and out comes in the sequel.

Definition 2.1 Let ϕ : E → E be an operator and (E, d) be a metric space. Then
ϕ is called a weakly Picard operator if the sequence < ϕn >n∈N of approximations
of ϕ converges and its limit is a fixed point of ϕ.

Definition 2.2 Let (E, d) be a metric space and ϕ : E → E be an operator and
κ > 0 be a positive constant. Then ϕ is called a κ− weakly Picard operator if and
only if

d

(
χ, ϕ∞(χ)

)
≤ κd

(
χ, ϕ(χ)

)
, ∀χ ∈ E,

where
ϕ∞ : E → E, ϕ∞(χ) := lim

n→∞
ϕn(χ).

Definition 2.3 Let G : E → Pcl(E) be a multivalued operator on the metric space
(E, d). Then G is called a multivalued weakly Picard operator if for all χ ∈ E and
g ∈ G(χ) there exists a sequence < χn >n∈N such that
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1. χ0 = χ, χ1 = g;

2. χn+1 ∈ G(χn), n ∈ N;

3. < χn >n∈N→ g, g ∈ Fix(G).

Definition 2.4 Let σ : R+ → R+ be an increasing function which is continuous at
0 and σ(0) = 0 and (E, d) be a metric space. Then G : E → P(E) is said to be
σ−weakly Picard operator if it is a multi-valued weakly Picard operator and there
exists a selection ϕ∞ : Gra(G) → Fix(G) such that

d
(
χ, ϕ∞(χ, ι)

)
≤ σ

(
d(χ, ι)

)
, (χ, ι) ∈ Gra(G).

If there exists a constant κ > 0 such that σ(t) := κt for each t ∈ R+, then G is
called a multi-valued κ−weakly Picard operator.

Definition 2.5 G : E → Pcl(E) is called a multi-valued λ−contraction if λ ∈ [0, 1)
and

Hd(G(χ), G(ι)) ≤ λd(χ, ι), ∀χ, ι ∈ E,

where (E, d) is a metric space.

Definition 2.6 Let G : E → P(E) be a multivalued operator, where (E, d) is a
metric space. The fixed point inclusion

(2.1) u ∈ G(u), u ∈ E

is called generalized Ulam-Hyers stable if and only if there exists σ : R+ → R+

increasing and continuous at 0 and σ(0) = 0 such that for each ǫ > 0 and for each
solution ι∗ ∈ E of the inequality

(2.2) Dd(ι, G(ι)) ≤ ǫ, ι ∈ E

there exists a solution u∗ of (2.1) such that

d(u∗, ι∗) ≤ σ(ǫ).

If for κ > 0, σ(t) = κt, t ∈ R+ then the fixed point inclusion (2.1) is said to be
κ−Ulam-Hyers stable.

The following theorem (see Rus [15]) deals with the Ulam-Hyers stability of the
fixed point inclusion (2.1).

Theorem 2.1 Let G : E → Pcp(E) be a multivalued σ− weakly Picard operator
and (E, d) be a metric space. Then the fixed point inclusion (2.1) is generalized
Ulam-Hyers stable.
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The following result is a generalization of the Covitz-Nadler fixed point theorem,
which can be found in [12] :

Theorem 2.2 Let (E, d) be a complete metric space and G : E → Pcl(E) be a mul-
tivalued λ− contraction operator Hd(G(u1), G(u2)) ≤ λd(u1, u2), ∀u1, u2 ∈ E.

Then Fix(G) is nonempty and for u0 ∈ E there exists a sequence of approxima-
tions of G starting from u0 which converges to a fixed point of G.

Next Ulam-Hyers stability result, which is very useful for applications, was intro-
duced in [10].

Theorem 2.3 Let (E, d) be a complete metric space and G : E → Pcl(E) be a
multi-valued λ− contraction operator. Then

1. G is a multi-valued weakly Picard operator;

2. If ψ(at) ≤ aψ(t) for every t ∈ R+, a > 1 and the series τ(t) :=
∑∞

n=1 ϕ
n(t)

converges to the point t = 0, then G is a σ−multivalued weakly Picard oper-
ator with σ(t) := t+ τ(t) and t ∈ R+;

3. Let Q : E → Pcl(E) be a multi-valued λ−contraction and b > 0 such that
H(Q(χ), G(χ)) ≤ b, χ ∈ E. Suppose that λ(at) ≤ aλ(t), t ∈ R+, a > 1 and

the series τ(t) converges uniformly to the point t = 0. ThenH
(
Fix(Q), F ix(G)

)
≤

σ(b).

3. Ulam Stability

In this section, we further investigate the Ulam stability by utilizing the above
mentioned concepts and results. Recently, Ibrahim and Jalab [8] established the ex-
istence of solutions for integral inclusion of fractional order in the sense of Riemann-
Liouville integral operator. We consider the following fractional integral inclusion:

(3.1) u(t) ∈

∫ b

a

G(t, ς, u(ς))
Ω(ς)

ςn−α
dς + g(t),

where u ∈ R
n, Ω belongs to the unit sphere of Rn, 0 < α < n and t, ς ∈ J :=

[a, b], a, b > 0.When Ω ≡ 1 and α→ n, inclusion(3.1) reduces to the Fredholm type
integral inclusion. We have the following result:

Theorem 3.1 Let G : J ×J ×R
n → Pcl,cv, Ω : J → R

n and g : J → R
n such that

1. There exists an integrable function ı : J → R
n
+ such that G(t, ς, u) ⊂ ı(ς) ×

B(0, 1), t, ς ∈ J, u ∈ R
n = E;
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2. G(., ., u) : J × J × R
n → Pcl,cv is jointly measurable for all u ∈ R

n;

3. G(., ς, u) : J×J×R
n → Pcl,cv is lower semi-continuous for all (ς, u) ∈ (J,Rn);

4. There exist a continuous function ρ : J ×J → R+ with supt∈J

∫ b

a
ρ(t, ς)dς ≤ 1

and a positive function θ : R+ → R+ satisfying

(3.2) H
(
G(t, ς, u), G(t, ς, v)

)
≤ ρ(t, ς).θ(|u− v|);

5. Ω and g are continuous;

6. ‖Ω‖ := sups∈J |Ω(s)|; with ‖Ω‖
an−α

< 1.

Then the following conclusions hold

1. Inclusion (3.1) has at least one solution u∗ ∈ C(J,Rn);

2. If the series
∑∞

n=1 θ
n converges uniformly to t = 0, where θ(qt) ≤ qθ(t) for

every t ∈ R+, q > 1, then the fractional integral inclusion (3.1) is generalized
Ulam-Hyers with function σ, where σ(t) = t + ς(t) for each t ∈ R+ and
ς(t) :=

∑∞
n=1 θ

n. Equivalently, for each ǫ > 0 and v ∈ C(J,Rn) there exists
u ∈ C(J,Rn) such that

u(t) ∈

∫ b

a

G(t, ς, v(ς))
Ω(ς)

|ς |n−α
dς + g(t),

|u(t)− v(t)| ≤ ǫ, t ∈ J

and

|v(t)− u∗(t)| ≤ σ(ǫ), t ∈ J.

Proof. Define the multivalued operator M : C(J,Rn) → P(C(J,Rn)) by

M(u) :=

{
v ∈ C(J,Rn)|v(t) ∈

∫ b

a

G(t, ς, u(ς))
Ω(ς)

ςn−α
dς + g(t)

}
.

Then (3.1) is equivalent to the fixed point inclusion

(3.3) u ∈M(u), u ∈ C(J,Rn).

The rest of the proof will be given in three steps.

Step 1. M(u) ∈ Pcp(C(J,R
n)).
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By the continuity of Ω and g, we obtain γ(t, ς) ∈ G(t, ς, u), t, ς ∈ J such that

v(t) :=

∫ b

a

γ(t, ς)
Ω(ς)

ςn−α
dς ∈M(u).

In view of [1], Theorem 8.6.3, together with the hypotheses 1 and 2 we conclude
that M(u) is a compact set for all u ∈ C(J,Rn).

Step 2. H
(
M(u1),M(u2)

)
≤ θ(‖u1 − u2‖), u1, u2 ∈ C(J,Rn).

For u1, u2 ∈ C(J,Rn), we let v1 ∈M(u1). Thus

v1(t) ∈

∫ b

a

G(t, ς, u1(ς))
Ω(ς)

ςn−α
dς + g(t).

Therefore there is an integrable function γ1 such that

v1(t) =

∫ b

a

γ1(t, ς)
Ω(ς)

ςn−α
dς + g(t).

In virtue of the assumption 4, we conclude that

H
(
G(t, ς, u1), G(t, ς, u2)

)
< ρ(t, ς)θ(|u1(ς)− u2(ς)|) ≤ ρ(t, ς)θ(‖u1 − u2‖).

So, there exists w ∈ G(t, ς, u2(ς)) such that

|γ1(t, ς)− w| ≤ ρ(t, ς)θ(‖u1 − u2‖), t, ς ∈ J.

Define a set Γ(t, ς) by

Γ(t, ς) := {w||γ1(t, ς)− w| ≤ ρ(t, ς)θ(‖u1 − u2‖)}

and a multivalued operator by

Θ(t, ς) := Γ(t, ς)
⋂
G
(
t, ς, u2(ς)

)
.

Thus according to the assumptions 2 and 3, Θ is jointly measurable and lower semi-
continuous in t. Consequently, there exists γ2(t, ς) a selection for Θ, jointly mea-
surable, integrable in ς and lower semi-continuous in t. Hence γ2(t, ς) ∈ G(t, ς, u2)
and

|γ1(t, ς)− γ2(t, ς)| ≤ ρ(t, ς)θ(‖u1 − u2‖), t, ς ∈ J.

Consider

v2(t) ∈

∫ b

a

G(t, ς, u2(ς))
Ω(ς)

ςn−α
dς + g(t)

with

v2(t) =

∫ b

a

γ2(t, ς)
Ω(ς)

ςn−α
dς + g(t).
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Then, by utilizing assumption 6, we get

|v1(t)− v2(t)| ≤
‖Ω‖

an−α

∫ b

a

ρ(t, ς)θ(‖u1 − u2‖)dς ≤ θ(‖u1 − u2‖).

Similar arguments can be used for u1 and u2. Hence, in view of Theorem 2.2,
inclusion (3.1) has a solution.

Step 3. Generalized Ulam-Hyers stable.

Now, our aim is to show that the fixed point inclusion (3.3) is generalized Ulam-
Hyers stable. Let ǫ > 0 and µ ∈ C(J,Rn) for which there exists u ∈ C(J,Rn) such
that

u(t) ∈

∫ b

a

G(t, ς, µ(ς))
Ω(ς)

|ς |n−α
dς + g(t), t ∈ J

and
‖u− µ‖ ≤ ǫ.

This implies that
D‖.‖ (µ,M(µ)) ≤ ǫ.

Since M is a multivalued θ−contraction and applying Theorem 2.3, we have that
M is a multivalued σ−weakly Picard operator. Then according to Theorem 2.1,
we conclude that the fixed point problem (3.3) is generalized Ulam-Hyers stable.
Therefore, the fractional integral inclusion (3.1) is generalized Ulam-Hyers stable.
For the last assertion, we utilize Theorem 2.3, which completes the proof.

Next, we consider the following fractional integral inclusion

(3.4) u(t) ∈

∫ t

a

K(t, ς, u(ς))
Ω(ς)

ςn−α
dς + h(t),

where u ∈ R
n, Ω belongs to the unit sphere of Rn, 0 < α < n and t, ς ∈ J =

[a, b], a, b > 0. When Ω ≡ 1 and α → n, inclusion (3.4) reduces to the Volterra type
integral inclusion. In the same manner as of Theorem 3.1, we have the following

Theorem 3.2 Let K : J ×J×R
n → Pcl,cv, Ω : J → R

n and h : J → R
n such that

1. There exists an integrable function ı : J → R
n
+ such that K(t, ς, u) ⊂ ı(ς) ×

B(0, 1), t, ς ∈ J, u ∈ R
n = E;

2. K(., ., u) : J × J × R
n → Pcl,cv is jointly measurable for all u ∈ R

n;

3. K(., ς, u) : J×J×R
n → Pcl,cv is lower semi-continuous for all (ς, u) ∈ (J,Rn);

4. There exist a continuous function ρ : J ×J → R+ with supt∈J

∫ t

a
ρ(t, ς)dς ≤ 1

and a positive function θ : R+ → R+ satisfying

(3.5) H
(
K(t, ς, u),K(t, ς, v)

)
≤ ρ(t, ς).θ(|u − v|);
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5. Ω and h are continuous;

6. ‖Ω‖ := sups∈J |Ω(s)|; with ‖Ω‖
an−α

< 1.

Then the following conclusions hold:

1. Inclusion (3.4) has at least one solution u∗ ∈ C(J,Rn);

2. If the series
∑∞

n=1 θ
n converges uniformly to t = 0, where θ(qt) ≤ qθ(t) for

every t ∈ R+, q > 1, then the fractional integral inclusion (3.4) is generalized
Ulam-Hyers with function σ, where σ(t) = t + ς(t) for each t ∈ R+ and
ς(t) :=

∑∞
n=1 θ

n. Equivalently, for each ǫ > 0 and v ∈ C(J,Rn) there exists
u ∈ C(J,Rn) such that

u(t) ∈

∫ b

a

K(t, ς, v(ς))
Ω(ς)

ςn−α
dς + h(t),

|u(t)− v(t)| ≤ ǫ, t ∈ J

and
|v(t)− u∗(t)| ≤ σ(ǫ), t ∈ J.

Proof. Define the multivalued operator V : C(J,Rn) → P(C(J,Rn)) by

V (u) :=

{
v ∈ C(J,Rn)|v(t) ∈

∫ t

a

K(t, ς, u(ς))
Ω(ς)

ςn−α
dς + h(t)

}
.

Then (3.4) is equivalent to the fixed point inclusion

(3.6) u ∈ V (u), u ∈ C(J,Rn).

In a similar method as of Theorem 3.1, we may have V (u) ∈ Pcp(C(J,R
n)). Now

we proceed to show that V is θ−contraction mapping on C(J,Rn).

For u1, u2 ∈ C(J,Rn), we let v1 ∈ V (u1). Thus

v1(t) ∈

∫ t

a

K(t, ς, u1(ς))
Ω(ς)

ςn−α
dς + h(t).

Therefore, there is an integrable function γ1 such that

v1(t) =

∫ t

a

γ1(t, ς)
Ω(ς)

ςn−α
dς + h(t).

In view of the assumption 4, we conclude that

H
(
K(t, ς, u1),K(t, ς, u2)

)
< ρ(t, ς)θ(|u1(ς)− u2(ς)|) ≤ ρ(t, ς)θ(‖u1 − u2‖).
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Thus, there exists w ∈ K(t, ς, u2(ς)) such that

|γ1(t, ς)− w| ≤ ρ(t, ς)θ(‖u1 − u2‖), t, ς ∈ J.

Define a set Λ(t, ς) by

Λ(t, ς) := {w : |γ1(t, ς)− w| ≤ ρ(t, ς)θ(‖u1 − u2‖)}

and a multivalued operator by

Ψ(t, ς) := Λ(t, ς)
⋂
K
(
t, ς, u2(ς)

)
.

Therefore, according to the assumptions 2 and 3, Ψ is jointly measurable and
lower semi-continuous in t. Consequently, there exists γ2(t, ς) a selection for Ψ,
jointly measurable, integrable in ς and lower semi-continuous in t. Hence, γ2(t, ς) ∈
K(t, ς, u2) and

|γ1(t, ς)− γ2(t, ς)| ≤ ρ(t, ς)θ(‖u1 − u2‖), t, ς ∈ J.

Consider

v2(t) ∈

∫ t

a

K(t, ς, u2(ς))
Ω(ς)

ςn−α
dς + h(t)

with

v2(t) =

∫ t

a

γ2(t, ς)
Ω(ς)

ςn−α
dς + h(t).

Define a norm by
‖u‖B := sup

t∈J

(|u(t)e−q(t)|),

where q(t) :=
∫ t

a
ρ(ς)dς. Then by using the assumption 6, we get

|v1(t)− v2(t)| ≤
‖Ω‖

an−α

∫ t

a

|γ1(t, ς)− γ2(t, ς)|)dς

≤
‖Ω‖

an−α

∫ t

a

ρ(t, ς)θ(|u1(ς)− u2(ς)|)dς

≤
‖Ω‖

an−α

∫ t

a

ρ(t, ς)θ(eq(ς)|u1(ς)− u2(ς)|e
−q(ς))dς

≤
‖Ω‖

an−α

∫ t

a

ρ(t, ς)eq(ς)θ(‖u1 − u2‖B)

≤
‖Ω‖

an−α
θ(‖u1 − u2‖B)

(
eq(t) − eq(a)

)

≤ θ(‖u1 − u2‖B)e
q(t).

Thus, we have
‖v1 − v2‖B ≤ θ(‖u1 − u2‖B).
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Hence, in view of Theorem 2.2, inclusion (3.4) has a solution.

It suffices to prove that the fixed point inclusion (3.6) is generalized Ulam-Hyers
stable. Let ǫ > 0 and ν ∈ C(J,Rn) for which there exists u ∈ C(J,Rn) such that

u(t) ∈

∫ t

a

K(t, ς, ν(ς))
Ω(ς)

|ς |n−α
dς + h(t), t ∈ J

and
‖v1 − v2‖B ≤ ‖u− ν‖ ≤ ǫ.

This implies that
D‖.‖B

(ν, V (ν)) ≤ ǫ.

Since V is a multi-valued θ−contraction with respect to the norm ‖.‖B, then V is a
multi-valued weakly operator. Using Theorem 2.3, we have that V is a multi-valued
σ−weakly Picard operator. Then according to Theorem 2.1, we conclude that the
fixed point problem (3.6) is generalized Ulam-Hyers stable. This implies that there
exists a solution u∗ of inclusion (3.4) such that

‖ν − u∗‖B ≤ σ(ǫ), ǫ > 0.

Thus, we have
|ν − u∗| ≤ σ(etq(b)ǫ), t ∈ J = [a, b].

Theorem 2.3 yields the last conclusion and this completes the proof.
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