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Abstract. In the present paper, we generalize the Fredholm type integral operator, by
using the fractional rough kernel. We also deal with the Ulam-Hyers stability for rough
fractional integral inclusion and utilize the weakly Picard operator method as well as
the generalized Covitz-Nadler fixed point theorem.
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1. Introduction

The Ulam stability and its generalizations of different functional equations have
been studied by various researchers (for recent studies see [2]-[13]). The generalized
Ulam-Hyers product-sum stability of the Cauchy type additive functional equation
has been investigated by Rassias [14].

Differential equations of arbitrary order were presumed to be models for nonlin-
ear differential equations which played important roles in science, engineering and
economics. The studies described computational processes and systems. Conse-
quently, considerable attention has been viewed in the results of fractional differen-
tial equations, integral equations, fractional diffeo-integral equations, and fractional
partial differential equations of physical phenomena. Most of the studies are con-
cerned with the stability of the solutions [11]-[17].

In this paper, we generalize the Fredholm type integral operator by using the frac-
tional rough kernel and also deal with the Ulam-Hyers stability for rough fractional
integral inclusion. We utilize the weakly Picard operator method as well as the
generalized Covitz-Nadler fixed point theorem.
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2. Preliminaries

Let (E,d) be a metric space and let us define the following classes of F
P(E):={S|S#0}, Pu(E):={SeP(E)]|S isbounded},

Pa(E) :={S e P(E)| Sisclosed}, Pe(E):={SecP(E)|S is compact},
Pew(E) :={S € P(E)|S is convex}.

Let B(eg,r) := {e € El|d(ep,e) < 7, > 0} be the open ball centered at ey €
E. Moreover, denoted by B(eg,r), the closure of B(eg,r) and B(eg,r) := {e €
E|d(eg,e) < r} the closed ball. Define the gap functional in P(E) by

Dy:P(E) X P(E) =Ry, Dy(X,Y) =inf{d(z,y)|x € X,y € Y}.
Also let

Ha:P(E)XP(E) = Ry, Ha(X,Y) = max{sup Dy(z,Y),sup Dy(y, X)|z € X, y € Y},
reX yey

where Dy(y, X) := Da({y}, X) and Dy(z,Y) := Dy({z},Y).

If G: E — P(E) is a multivalued operator, then g € E is called a fized point for G
iff g € G. The set Fiz(G) := {g € E|g € G} is called the fized point set of G. In
addition, the set SFiz(G) := {g € E|{g} = G} is called the strict fized point set of
G. For the multi-valued operator G : E — P(E), the graph of G is defined by

Gra(G) :={(¢,v) € Ex S: ¢ € G}.

Notice that v : E — S is a selection for G : E — P(S) if y(z) € G(z), v € E. We
need the following concepts and out comes in the sequel.

Definition 2.1 Let ¢ : E — E be an operator and (F,d) be a metric space. Then
@ is called a weakly Picard operator if the sequence < " >,¢cn of approximations
of ¢ converges and its limit is a fixed point of .

Definition 2.2 Let (F,0) be a metric space and ¢ : E — E be an operator and
K > 0 be a positive constant. Then ¢ is called a k— weakly Picard operator if and
only if

D(X,cp“’(x)) < fw(x,so(x)), Vx € E,

where
e E—=E, ¢™(x):= lim ¢"(x).

n—r oo

Definition 2.3 Let G : E — P (E) be a multivalued operator on the metric space
(E,0). Then G is called a multivalued weakly Picard operator if for all x € E and
g € G(x) there exists a sequence < x, >nen such that
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L xo=x x1=g¢;
2. Xn+1 € G(Xn)7 n €N

3. < Xn >nen— ¢, g € Fiz(G).

Definition 2.4 Let 0 : R; — R, be an increasing function which is continuous at
0 and 0(0) = 0 and (F,9) be a metric space. Then G : E — P(FE) is said to be
o—weakly Picard operator if it is a multi-valued weakly Picard operator and there
exists a selection ¢ : Gra(G) — Fiz(G) such that

(970 0) <o), (x.1) € Gra(G).
If there exists a constant £ > 0 such that o(t) := st for each ¢ € Ry, then G is

called a multi-valued k—weakly Picard operator.

Definition 2.5 G : E — Py (E) is called a multi-valued A— contraction if A € [0,1)
and
Ha(G(x),G(1)) < X0(x,t), Vx,L€E,

where (F,0) is a metric space.

Definition 2.6 Let G : E — P(FE) be a multivalued operator, where (F,0) is a
metric space. The fixed point inclusion

(2.1) ueGu), weEFE

is called generalized Ulam-Hyers stable if and only if there exists ¢ : Ry — Ry
increasing and continuous at 0 and ¢(0) = 0 such that for each € > 0 and for each
solution ¢* € E of the inequality

(2.2) Do(1,G() <€, LEE

there exists a solution u* of (2.1) such that

If for K > 0, o(t) = kt, t € Ry then the fixed point inclusion (2.1) is said to be
k— Ulam-Hyers stable.

The following theorem (see Rus [15]) deals with the Ulam-Hyers stability of the
fixed point inclusion (2.1).

Theorem 2.1 Let G : E — P.p(E) be a multivalued o— weakly Picard operator
and (E,?) be a metric space. Then the fixed point inclusion (2.1) is generalized
Ulam-Hyers stable.
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The following result is a generalization of the Covitz-Nadler fixed point theorem,
which can be found in [12] :

Theorem 2.2 Let (E, d) be a complete metric space and G : E — Pg(F) be a mul-

tivalued A— contraction operator Hq(G(u1),G(uz2)) < Ad(ui,us), Vui,uz € E.
Then Fiz(G) is nonempty and for ug € E there exists a sequence of approxima-
tions of G starting from ug which converges to a fixed point of G.

Next Ulam-Hyers stability result, which is very useful for applications, was intro-
duced in [10].

Theorem 2.3 Let (E,?) be a complete metric space and G : E — Py (E) be a
multi-valued A— contraction operator. Then

1. G is a multi-valued weakly Picard operator;

2. If ¢(at) < ap(t) for every t € Ry, a > 1 and the series 7(t) := Y07, ¢"(t)
converges to the point ¢ = 0, then G is a o—multivalued weakly Picard oper-
ator with o(t) :=t + 7(t) and ¢t € Ry;

3. Let Q : E — Py(F) be a multi-valued A—contraction and b > 0 such that
H(Q(x),G(x)) < b, x € E. Suppose that A(at) < aA(t),t € Ry, a > 1 and
the series 7(t) converges uniformly to the point ¢ = 0. Then H (Fia:(Q), Fi:z:(G)) <
o(b).

3. Ulam Stability

In this section, we further investigate the Ulam stability by utilizing the above
mentioned concepts and results. Recently, Ibrahim and Jalab [8] established the ex-
istence of solutions for integral inclusion of fractional order in the sense of Riemann-
Liouville integral operator. We consider the following fractional integral inclusion:

b
(3.1) ut) € [ Gl.c.u(o) 2+ g0,

where u € R™, Q belongs to the unit sphere of R", 0 < a < n and t,¢ € J :=
[a,b], a,b > 0. When Q =1 and o — n, inclusion(3.1) reduces to the Fredholm type
integral inclusion. We have the following result:

Theorem 3.1 Let G : J X J X R" = Py ¢y, 2:J = R"™ and g : J — R” such that

1. There exists an integrable function » : J — R’ such that G(t,¢,u) C 2(<) x
B(0,1), t,c e J,u e R" = E;
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2. G(.,.,u): J x JxR™ = Py ey is jointly measurable for all u € R™;
3. G(,6,u) : I X I XR™ = Py oy is lower semi-continuous for all (¢, u) € (J,R™);

4. There exist a continuous function p : J x J — R4 with sup,¢; f: p(t,¢)ds <1
and a positive function 6 : R; — R satisfying

(3.2) H(G(t, ¢, ), G(t,g,v)) < p(t,<)0(|u—v|):

5.  and ¢ are continuous;
6. [|Q] := sup,e, [Qs)]; with L2 < 1.
Then the following conclusions hold

1. Inclusion (3.1) has at least one solution u* € C(J,R"™);

2. If the series )~ , 8" converges uniformly to ¢ = 0, where 6(qt) < ¢6(t) for
every t € Ry, ¢ > 1, then the fractional integral inclusion (3.1) is generalized
Ulam-Hyers with function o, where o(t) = t + ¢(¢) for each ¢ € Ry and
s(t) == >.° , 0™. Equivalently, for each € > 0 and v € C(J,R™) there exists

u € C(J,R™) such that
Q
/ G(t,s,v |() ds +g(t),

lu(t) —v(t)| <e, teJ

and
[v(t) —u*(t)| < o(e), te

Proof. Define the multivalued operator M : C'(J,R™) — P(C(J,R™)) by

M(u):z{veCJR" [v(¢) /G VS, U ()dg—l—g(t)}.

Then (3.1) is equivalent to the fixed point inclusion

(3.3) u€ M(u), ueC(J,R").

The rest of the proof will be given in three steps.

Step 1. M(u) € P.,(C(J,R™)).
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By the continuity of Q and g, we obtain y(¢,¢) € G(t,<,u), t,¢ € J such that

b
v(t) = / W(t,c)%dc e M(u).

In view of [1], Theorem 8.6.3, together with the hypotheses 1 and 2 we conclude
that M (u) is a compact set for all u € C(J,R™).

Step 2. H(M(u1), M(uz)) < 0(|Jur — uz2|)), wui,uz € C(J,R™).
For uy,ug € C(J,R™), we let v1 € M (u1). Thus

b
wlt) € [ Gltssun() 3 Tds +g(0)

Therefore there is an integrable function v; such that

b
w = [ nt93 L+ g0,

In virtue of the assumption 4, we conclude that
H(G(t,s,u1), G(t,s,u2)) < p(t, )0(|u1(c) — ua(S)]) < plt, )0(Jur — uzl).
So, there exists w € G(¢,¢,u2(s)) such that
1t 6) —wl < p(t,)0([Jur — o)), t,c €.
Define a set I'(¢, <) by
I(t,¢) == {wlln(t,¢) — w[ < pt, <)0(|lur — uz)}

and a multivalued operator by

O(t,s) :=T(t,5) ﬂ G(t, S, u2(§)).

Thus according to the assumptions 2 and 3, © is jointly measurable and lower semi-
continuous in ¢. Consequently, there exists v2(t,<) a selection for ©, jointly mea-
surable, integrable in ¢ and lower semi-continuous in ¢. Hence v2(t,<) € G(t,, uz)
and

|’71 (tv <) - ’72(t7 <)| < p(t, §)9(||u1 - u2||)7 t,ce d

Consider

b
i) € [ 6o )3 ds +g0)

with

b
) = [ 695 dc+ 900
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Then, by utilizing assumption 6, we get

b
0n(®) 020 < T2 [, Your — ) < O(ur — o).

a

Similar arguments can be used for u; and us. Hence, in view of Theorem 2.2,
inclusion (3.1) has a solution.

Step 3. Generalized Ulam-Hyers stable.

Now, our aim is to show that the fixed point inclusion (3.3) is generalized Ulam-
Hyers stable. Let € > 0 and p € C(J,R™) for which there exists v € C(J,R™) such

that
b
utye [ G(t,c,mc))|f|2,§<_)ad<+g<t>, e

and
|u—pll <e

This implies that
Dy (u, M(p)) < e

Since M is a multivalued 8—contraction and applying Theorem 2.3, we have that
M is a multivalued o—weakly Picard operator. Then according to Theorem 2.1,
we conclude that the fixed point problem (3.3) is generalized Ulam-Hyers stable.
Therefore, the fractional integral inclusion (3.1) is generalized Ulam-Hyers stable.
For the last assertion, we utilize Theorem 2.3, which completes the proof.

Next, we consider the following fractional integral inclusion

(3.4) u(t) € / t K(t,s,u(s)) 20) 4 ¢ h(t),

<7l—0t

where u € R"™, 2 belongs to the unit sphere of R, 0 < @ < n and t,c € J =
[a,b], a,b > 0. When Q = 1 and o — n, inclusion (3.4) reduces to the Volterra type
integral inclusion. In the same manner as of Theorem 3.1, we have the following

Theorem 3.2 Let K : J X J xR" = Py e, : J = R" and h : J — R" such that

1. There exists an integrable function + : J — R’} such that K(t,¢,u) C 2(c) x
B(0,1), t,c€ J,u e R" = E;

2. K(.yu):JxJxXR™ = Py ey is jointly measurable for all v € R™;
3. K(,,5,u): JXJXR™ = Py cp is lower semi-continuous for all (s, u) € (J,R"™);

4. There exist a continuous function p : J x J — Ry with sup,¢; f; p(t,¢)ds <1
and a positive function 6 : R; — R satisfying

(3.5) H(K(t,g,u),K(t,g,v)) < p(t,)8(|u —v|);
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5. Q and h are continuous;

6. (|9 := sup,c, [Q(s)]; with L2L < 1.
Then the following conclusions hold:

1. Inclusion (3.4) has at least one solution u* € C(J,R"™);

2. If the series )~ , 8" converges uniformly to ¢ = 0, where 6(qt) < ¢6(t) for
every t € Ry, ¢ > 1, then the fractional integral inclusion (3.4) is generalized
Ulam-Hyers with function o, where o(t) = t + ¢(¢) for each ¢ € Ry and
s(t) :== >°0°, 0™ Equivalently, for each € > 0 and v € C(J,R") there exists
u € C(J,R™) such that

/ K(t,s,v (_)dg—l—h(t),

lu(®) —v(t)| <e teld

and
[v(t) —u*(t)| < ole), te

Proof. Define the multivalued operator V : C(J,R") — P(C(J,R™)) by
V(u):_{UGCJR”|v /th, ()d —l—h()}

Then (3.4) is equivalent to the fixed point inclusion
(3.6) uweV(u), ueC(J,R").

In a similar method as of Theorem 3.1, we may have V(u) € P.,(C(J,R™)). Now
we proceed to show that V' is —contraction mapping on C(J,R™).

For uy,ug € C(J,R™), we let v1 € V(uz1). Thus

e / Ko m(©) Sffi ds + ht).

Therefore, there is an integrable function v; such that

t
Q
wi) = [ .02 dc+ no
In view of the assumption 4, we conclude that

H(K(t,s,u1), K(t,s,u2)) < p(t,$)0(|ui(s) — ua(s)]) < p(t,)0(|lur — ua).
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Thus, there exists w € K(t,¢,u2(s)) such that
7t 6) —wl < pt,)0([lur — uall), t,c€J.
Define a set A(t,s) by
Aty ¢) == A{w: It ¢) —wl < p(t,)0(|lur — ual)}

and a multivalued operator by
U(t, ) = A(t,<) ﬂ K(t, S, ug(c)).

Therefore, according to the assumptions 2 and 3, ¥ is jointly measurable and
lower semi-continuous in ¢. Consequently, there exists y2(t,¢) a selection for U,
jointly measurable, integrable in ¢ and lower semi-continuous in ¢. Hence, v2(t,<) €
K(t,s,u2) and

|71(t5§) - 72(t5§)| < p(tvg)e(nul - u2||)7 t,s € J.

Consider

va(t) € /t K(t,(,W(())?ffi ds + h(t)

with

va(t) = /t 2(t,<) g(fi ds + h(t).

Define a norm by
lull == sup(Ju(t)e=1M]),
teJ

where ¢(t) := fat p(¢)ds. Then by using the assumption 6, we get

010 = a0 < L2 [ 0) =t e

0O t
Q t

< C|L‘"—*||°‘ p(t7§)9(6q(§)|ul(§) — U2(§)|€_q(§))d<
0O t

= clln——[ p(t,5)e?0(|luy — uzp)

a

Q
< L~ ) (e — )

—x

< O(|Jur — uzl|s)e?™.

Thus, we have
v = v2llB < O([lur — uz2|[B).
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Hence, in view of Theorem 2.2, inclusion (3.4) has a solution.

It suffices to prove that the fixed point inclusion (3.6) is generalized Ulam-Hyers
stable. Let € > 0 and v € C(J,R™) for which there exists u € C'(J,R™) such that

Q(s)

|§|n—o¢

t
ult) € / K(t o)) g 1 ne), tes
and
o1 — valls < Jlu— v < e.

This implies that
Dy.js 0, V() <e

Since V is a multi-valued 6—contraction with respect to the norm ||.||, then V is a
multi-valued weakly operator. Using Theorem 2.3, we have that V is a multi-valued
o—weakly Picard operator. Then according to Theorem 2.1, we conclude that the
fixed point problem (3.6) is generalized Ulam-Hyers stable. This implies that there
exists a solution u* of inclusion (3.4) such that

lv—ulls <o(e), €>0.

Thus, we have
v —u*| <a(ett®e), teJ=la,b.

Theorem 2.3 yields the last conclusion and this completes the proof.
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