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ON CERTAIN HESSENBERG MATRICES RELATED WITH
LINEAR RECURRENCES

Sibel Koparal, Nese Omiir and Cemile D. Colak

Abstract. In this paper, we present various results for permanents and determinants
of some Hessenberg matrices. Also, some special cases for permanents are given.
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1. Introduction

Matrix methods are useful tools deriving some properties of linear recurrences.
Some authors obtained many connections between certain sequences and perma-
nents of Hessenberg matrices in the literature [1]-[4],[6],[10]-[12].

The permanent of an n— square matrix Ay, = [a;;] is defined by

perAq = Z Hflw(i)7

ceD, i=1

where the summation extends over all permutations ¢ of the symmetric group D,,.

In [9], Minc defined the super-diagonal matrix and showed that the permanent
of the matrix equals the order k-Fibonacci number.

In [5], Kili¢ derived recurrence relations and generating matrices for the sums of
usual tribonacci numbers and 4n subscripted tribonacci sequences {7y, }, and their
sums. Also, the relationships between these sequences and permanents of certain
matrices are obtained.

In [6], Kilig and Tagc1 found the relationships between the sums of the Fibonacci
and Lucas numbers and 1-factors of bipartite graphs.

In [7], Kili¢ and Tasc defined the n x n tridiagonal Toeplitz (0, —1,1)-matrix
Mn = [mi,j] with miq, = —1 for 1 < ) < T, My 41 = M1, = 1 for 1 < ) <n-— 1
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and 0 otherwise, and the n x n tridiagonal Toeplitz (0, —1,1)-matrix L, = [I; ;]
with li,i = —1 for 2 S ) S n,li,i_H = li+1,i =1forl S ) S n — 1, 1171 = —% and 0
otherwise. They showed perMy = F_(,,41) and perLy, = L2;", where F,, and L,, is
the nth Fibonacci and Lucas numbers, respectively.

In [8], Li showed new Fibonacci-Hessenberg matrices and gave another proof of
the well-known results relative to the Pell and Perrin numbers.

In [3], Kalman showed that the (n+k)-th term of a sequence is defined recursively
as a linear combination of the preceding %k terms:

(1.1) Upik = CoUn + C1URLT + oo + Ch_1Unik_1
in which the initial terms ug = ... = ug_o2 = 0,ux_1 = 1 and cg,cq,...,Ck_1 are
constants.

In [10], considering the generalized Fibonacci-Narayana sequence {G,(a,c,7)},
Ramirez derived some relations between this sequence and a permanent of one type
of the upper Hessenberg matrix. For example,

d e e e 0
1 a 0 0 C
per 1 a 0 0O --- ¢ = Gnir_1(a,c,r),
1 a 0 0
1 a 0
L 1 a_

where the generalized Fibonacci-Narayana sequence {Gy(a,c,r)}, oy is defined as
follows:
Gnla,c,r) = aGr-1(a,c,r) + cGp_r(a,c,r), 2<71 <n,

with the initial conditions Go(a,c,r) =0, Gi(a,c,r) =1, for i = 1,2, ....7 — 1.
In [12], Trojovsky defined tridiagonal matrices BY = [bfj] in the form
1 ifi=jori=j—1,
(—1)7T° ifi=j+1,
0 otherwise,

where 6 € {0,1} and showed

s _ | Flnya—esy2 ifn=0 (mod 2),
det Bn o { F(nJrl)/Q ifn=1 (mod 2).

2. Some results

In this section, we define the sequence {R,,(a,b,c,d)} and determine some relation-
ships between the terms of this sequence and permanents of certain upper Hessen-
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berg matrices. A sequence {R,(a,b,c,d)} is defined by for 3 <d < n,
(2.1) R,(a,b,¢,d) = aRp_1(a,b,c,d) + bR, —2(a,b,c,d) + cRy—q(a, b, c,d),

in which Ry(a,b,c,d) = 0, Ry1(a,b,c,d) = Ra(a,b,c,d) = ... = Rq—2(a,b,c,d) =1
and R4_1(a,b,c,d) = a. The sequence {R,(a,b,c,d)} is a generalization of the
tribonacci sequence. When a = b = ¢ = 1 and d = 3, R,(1,1,1,3) = T, (the
nth tribonacci number). If ¢ = 0 and d = 3, the generalized Fibonacci sequence
{Un(a,b)} is obtained. If a = b = 1,¢ = 0 and d = 3, the Fibonacci sequence {F,}
is obtained and if a = ¢ =1, b = 0 and d = 3, the Narayana sequence is obtained.

The generating function R(z) of R,(a,b,c,d) is given by

(@—1+0b2)2¢71 — b2 —az?+ 2
(1—2)(1 —az—bz2— cz?)

R(z) =

Now we give relationships between terms of the sequence {R,(a,b,c,d)} and the
permanents of certain matrices.

For n > 1, define a n x n matrix Hy(a,b,¢,d, k,t) = [h; ;] with h;1q,; = 1 for
1<i<n—-2,hj;=afor1<i<n—1,h41=bfor1<i<n-—1,h; =cfor
3<t1<d, hijgri-1 =cfor2<i<n—d+1hy,n_1 =k, hy,y, =1, and 0 otherwise,
ie.,

[a b c c 0 0 7
1 a b 0 c
(2.2)  Hu(a,b,c,d k,t) = Loe b0 ¢
0
1 a b
L0 .

Then we give the following Theorem.

Theorem 2.1. Let Hy(a,b,c,d, k,t) be the matriz defined in (2.2). Then, for
n>1andd>3,

(2.3)  perHy(a,b,c,d, k,t) = kRpta—2(a,b,¢,d) — (ka — t) Ryta—3(a, b, c,d),

where the real numbers k and t.

Proof. (Induction on n) If n = 1, then we have

perHy(a,b,c,d, k,t) =t = kR4g_1(a,b,c,d) — (ka —t) Rg—2(a, b, c,d).
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Suppose that the equation holds for n — 1. Then we show that the equation holds
for n. Expanding the perH,, with respect to the last column d times, we write

perHy(a,b, ¢, d, k,t)
= aperHy_1(a,b,c,d, k,t) + bperHy,_a(a,b, ¢, d, k,t) + cperHy_a(a, b, ¢, d, k, t).

By our assumption, we have

perHy(a,b,c,d, k,t) = a(kRpta-3(a,b,c,d) — (ka —t) Rpta—a(a, b, c,d))
+b (kRp+d—a(a,b,c,d) — (ka —t) Rpta—s(a, b, ¢, d))
+c(kRp—2(a,b,c,d) — (ka — t) Rp—3(a,b,c,d))

= kRnta—2(a,b,c,d) — (ka —t) Rpya—3(a, b, c,d).

Thus, the proof is complete. O

When ¢t = a and k = 1in (2.3), we have perHy (a,b,¢,d, 1,a) = Rpta—2(a, b, ¢, d).

For n > 1, define a n x n matrix En(a,b,c,d, k,t) = [e; ;] with e;41,; = —1 for
1<i<n—-2¢,;=aforl1<i<n—-1¢e;,p1=bfor1<i<n-—1e,;=cfor
3<i<d ejqri-1=cfor2<i<n—d+1,e,n-1=—Fk, ey, =1, and 0 otherwise,
ie.,

[ a b c - c 0 0
-1 a b 0 c :
En(a,b,c,d, k,t) = “Loa b0 ¢
-1 a b
. O -kt |

It is clearly showed from [2] that
det Ey(a,b,c,d, k,t) = perHy(a, b, ¢,d, k, t).
Now, we take the n x n matrix Hy,(a,b, ¢, 3, k,t) by the following form:

fa b ¢ 0

H,(a,b,c,3,k,t) =
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Then, we have
(2.4) perHy(a,b,¢,3,k,t) = kRp41(a,b,¢,3) — (ka — t) R, (a,b, ¢, 3).
For example, from [9], fora=b=c=1t =k =1 in (2.4), we have that
perHy(1,1,1,3,1,1) = Ty, 41 = perF(n, 3),

where T, is the nth tribonacci number.

For n > 1; we define an n x n matrix Wy(a, b, ¢, 3, k, t) as in the compact form,
by the definition of Hy,(a,b, ¢, 3, k, t);

11 1
1

0
(2.5) Wa(a, b, e, 3,k,t) =
anl(aa bv ¢, 37 ka t)

0

Now, we have the following theorem:

Theorem 2.2. Let Wy(a,b,c,3,k,t) be the matriz defined in (2.5). Then, for
n>2

n n

perWhy(a,b,c,3,k,t) = kZRi(a, b,c,3) — (ka—1) ZRi_l(a, b, ¢, 3).
i=1 =1

Proof. (Induction on n) If n = 3, we write

peTWS (CL, b7 ¢, 37 ka t)

3 3
= k+t+at+bk=kY Ri(abc3)—(ka—t)> Ri1(a,b,c,3).
i=1 i=1
Suppose that the equation holds for n. Then we show that the equation holds for
n + 1. From the definitions of matrices Hy(a,b,c,3,k,t) and Wy(a,b,¢, 3, k,t),
expanding the perWy1(a,b, ¢, 3, k,t) with respect to the first column gives us
perWyyi1(a,b, ¢, 3,k,t) = perHy(a, b, ¢, 3, k, t) + perWy(a, b, ¢, 3, k, t).
By our assumption and (2.4), we have
perWai1(a, b, ¢,3,k,t)
= kRyy1(a,b,¢,3) — (ka—1t) Ry(a,b,c,3)

+kY  Ri(a,b,¢,3) — (ka—t) Y Ri_1(a,b,c,3)

i=1 i=1
n+1 n+1
= kY Ri(a,bc,3)— (ka—1)> Ri_1(a,b,c,3).
=1 =1

Thus the proof is obtained. O
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When a = b =c=1in (2.1), the sequence {R,}, special case of the sequence
{R,(a,b,c,d)}, is defined by the recurrence

(2.6) R,=Ry_1+Ry2+Ru_q, 3<d<n

in which Rg =0, Ry = Ry = ... = Rg—2 = R4—1 = 1 and especially from (1.1), the
sequence {S,} is defined by

(2.7) Sp=5n-1+Sn—2+Sn—a, 3<d<n

in which Sg =51 =Sy =...=S4-3=0and Sg_2 = S4—1 = 1. For d = 3 in (2.6)

and (2.7), the sequences {R,} and {S,} coincide as the tribonacci sequence.

For n > 1, define an n X n matrix Z, = [z; ;] with z;j41;, =1for 1 <i<n -1,
zig=1for1<i<n, 212=0,z%z,;41=1for2<i<n—-1,2z,;,=1for3<i<d,
Zid+i—1 = 1 for 2 <i<n —d+ 1 and 0 otherwise, i.e.,

10 1 -~ 1 0 .. 0
1 1 1 0 - 1
0
(2.8) _ 1 1 1 0 1
SR
1 1 1
L0 1 1

Then we give the following Theorem.

Theorem 2.3. Let Zy,, be the matriz defined in (2.8). Then, forn > 5 and d > 3,

peTZn = Rn+d73 + Rn+d74 - Rn+d75 + Sn75-
Proof. We prove this by induction on n. For n = 5, we write
perZs =2Rg11 +1 = Rgyo + Rgy1 — Rqg + So.

The claim is true for n = 5. Assume that the claim is true for n — 1. Thus we show
that the claim is true for n. Expanding the perZ, according to the last column d
times, we have

perZy, = perdy 1+ perZy o + perdin_q-

By our assumption, we have
perZy = Rpiq—a+ Rotqg—5 — Ryya—6+ Sn-s

+Rn+d75 + Rn+d76 - Rn+d77 + Snf’?
+Rn—3 + Rn—4 - Rn—5 + Sn—d—f)'
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From the sequences {R,} and {S,}, we write
peTZn = Rn+d73 + Rn+d74 - Rn+d75 + Sn75-

So the proof is complete. [

For n > 1, define the n x n matrix V9 = [vi,5] with vi4q; =1for 1 <i<n-2,
vig=1for 1 <i<n-—1,v,41 =041 = (—1)176for 1 <7 <n and 0 otherwise,
where 6 € {0,1}. i.e.,

r 1 (_1)1—6 (_1)276 (_1)7172—6 (_1)717175 -
1 1 (-1)>7° 0
(29) V= 11 0
: . (_1)11—2—6
T 1 (_1)7171—6
L 0 1 . |

Theorem 2.4. Let V2 be the matriz defined in (2.9). Then, for n > 1,

(_1)6 (F(n+5+3(71)5)/2 —2- (—1)6) ifn=0 (mod 2),

det V), = s s ,
(<1 (Fassyp =2+ (=1)")  ifn=1 (mod?2),

where F, is the nth Fibonacci number.

Proof. Forn=1,det V¢ =1 = (F3 —1),det Vi =1 = — (F; — 3) and for n = 2,
detVi=0=—(F,—1),det V] =2= (F;5—3).
We show that the claim is true for n — 1. Using expansion on the first column

of det VI | we get as follows

det Vi =detB% |, —det V2 .

From (1.2) and the induction hypothesis, we have

F,— (F —1) ifn=0 (mod?2)
det v — n/2 (n+4)/2 ; ’
n { F(n+3)/2 - (F(n+7)/2 - 3) ifn=1 (HlOd 2),

— (F((n+2)2—1) ifn=0 (mod 2),
— (Fi(nt5y2 —3) ifn=1 (mod 2).

Similarly, using det VO = det BL_; + det B%_, + det V2_,, the desired result is
given. We have the proof. O



160 S. Koparal, N. Omiir and C. D. Colak

Theorem 2.5. Forn > 1, we have

1 _ L(n+2)/2 -1 zfn =0 (mod 2),
perVy = { Liwny2—1 ifn=1 (mod 2),

and

perVg _ { F(n+2)/2 —1 an =0 (InOd 2),

F(n+5)/2 -1 an =1 (InOd 2),

where F,, is the nth Fibonacci number and L,, is the nth Lucas number.

Proof. Considering perBS = { Fin—2t)/2 1 n =0 (mod 2), for § € {0,1} and

F(n+1)/2 ifn=1 (mod 2),
the equalities

peerl1 = perB?kl + perV271 and perVg = perB}kl — perBﬁf2 —i—perV?h27
we have the proof from induction on n. O

3. Some special cases

In this section, we give some special cases of the above theorems:

e For b=1, ¢ =0 and d = 3, the generalized Fibonacci sequence {U,(a, 1)},

perHy, (a,1,0,3, k, t)

[a 1 0
1 a 1 0
— er = tUp(a,1) + kUn_1(a, 1),
0
1 a 1
- k -
perWh, (a,1,0,3,k,t)
1 1 1 1
1

= per 0 anl
= 2 (tU(n(av 1) + (k + t)U(n—l(av 1) + kUn—2(a7 1) + k(a - 1) - t) )

and then,

perWy, (a, 1,0, 3, k,t) = perHy (a, 1,0, 3, k, t)+perHy 1 (a, 1,0, 3, k, t)+k(a—1)+t.
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eFora=1,b=2,¢=0andd=31in (2.1), {J,} is the Jacobsthal sequence
and for n > 2,

perHy (1,2,0,3,k,t)
(1 2 0
1 1 2 0

0
1 1
kot

e Fora=b=k=1,¢=0and d=31n (2.1), {F,} is the Fibonacci sequence,

perHy, (1,1,0,3,1,¢)

(1 1 0
1 1 1 0
_ pe/r. ... '.. '.. '.. e :tFn+Fn_1
0
1 1
. 1 -
and
1 1 1 1
1
0 Hp—1 =t(Fpp1 — 1)+ F.

perWy, (1,1,0,3,1,t) = per

e For d =3 1in (2.6) and (2.7), {T,,} is the tribonacci sequence and

1 0 1 ]
1 1 1 1
perZy, = per RO 1 =21, 1+ Th_3+Th_5.
1 1 1
- 1 1 -
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