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Abstract. In this paper, we present various results for permanents and determinants
of some Hessenberg matrices. Also, some special cases for permanents are given.
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1. Introduction

Matrix methods are useful tools deriving some properties of linear recurrences.
Some authors obtained many connections between certain sequences and perma-
nents of Hessenberg matrices in the literature [1]-[4],[6],[10]-[12].

The permanent of an n− square matrix An = [aij ] is defined by

perAn =
∑

σ∈Dn

n
∏

i=1

aiσ(i),

where the summation extends over all permutations σ of the symmetric group Dn.

In [9], Minc defined the super-diagonal matrix and showed that the permanent
of the matrix equals the order k-Fibonacci number.

In [5], Kılıç derived recurrence relations and generating matrices for the sums of
usual tribonacci numbers and 4n subscripted tribonacci sequences {T4n}, and their
sums. Also, the relationships between these sequences and permanents of certain
matrices are obtained.

In [6], Kılıç and Taşcı found the relationships between the sums of the Fibonacci
and Lucas numbers and 1-factors of bipartite graphs.

In [7], Kılıç and Taşcı defined the n × n tridiagonal Toeplitz (0,−1, 1)-matrix
Mn = [mi,j ] with mi,i = −1 for 1 ≤ i ≤ n,mi,i+1 = mi+1,i = 1 for 1 ≤ i ≤ n − 1
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and 0 otherwise, and the n × n tridiagonal Toeplitz (0,−1, 1)-matrix Ln = [li,j ]
with li,i = −1 for 2 ≤ i ≤ n, li,i+1 = li+1,i = 1 for 1 ≤ i ≤ n− 1, l1,1 = − 1

2 and 0

otherwise. They showed perMn = F−(n+1) and perLn = L
−n

2 , where Fn and Ln is
the nth Fibonacci and Lucas numbers, respectively.

In [8], Li showed new Fibonacci-Hessenberg matrices and gave another proof of
the well-known results relative to the Pell and Perrin numbers.

In [3], Kalman showed that the (n+k)-th term of a sequence is defined recursively
as a linear combination of the preceding k terms:

(1.1) un+k = c0un + c1un+1 + ...+ ck−1un+k−1

in which the initial terms u0 = ... = uk−2 = 0, uk−1 = 1 and c0, c1, ..., ck−1 are
constants.

In [10], considering the generalized Fibonacci-Narayana sequence {Gn(a, c, r)},
Ramı́rez derived some relations between this sequence and a permanent of one type
of the upper Hessenberg matrix. For example,
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

= Gn+r−1(a, c, r),

where the generalized Fibonacci-Narayana sequence {Gn(a, c, r)}n∈N
is defined as

follows:
Gn(a, c, r) = aGn−1(a, c, r) + cGn−r(a, c, r), 2 ≤ r ≤ n,

with the initial conditions G0(a, c, r) = 0, Gi(a, c, r) = 1, for i = 1, 2, ..., r − 1.

In [12], Trojovský defined tridiagonal matrices Bδ
n
=

[

bδij
]

in the form







1 if i = j or i = j − 1,

(−1)
j+δ

if i = j + 1,
0 otherwise,

where δ ∈ {0, 1} and showed

detBδ
n
=

{

F(n+4−6δ)/2 if n ≡ 0 (mod 2),
F(n+1)/2 if n ≡ 1 (mod 2).

2. Some results

In this section, we define the sequence {Rn(a, b, c, d)} and determine some relation-
ships between the terms of this sequence and permanents of certain upper Hessen-
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berg matrices. A sequence {Rn(a, b, c, d)} is defined by for 3 ≤ d ≤ n,

(2.1) Rn(a, b, c, d) = aRn−1(a, b, c, d) + bRn−2(a, b, c, d) + cRn−d(a, b, c, d),

in which R0(a, b, c, d) = 0, R1(a, b, c, d) = R2(a, b, c, d) = ... = Rd−2(a, b, c, d) = 1
and Rd−1(a, b, c, d) = a. The sequence {Rn(a, b, c, d)} is a generalization of the
tribonacci sequence. When a = b = c = 1 and d = 3, Rn(1, 1, 1, 3) = Tn (the
nth tribonacci number). If c = 0 and d = 3, the generalized Fibonacci sequence
{Un(a, b)} is obtained. If a = b = 1, c = 0 and d = 3, the Fibonacci sequence {Fn}
is obtained and if a = c = 1, b = 0 and d = 3, the Narayana sequence is obtained.

The generating function R(z) of Rn(a, b, c, d) is given by

R(z) =
(a− 1 + bz) zd−1 − bz3 − az2 + z

(1− z) (1− az − bz2 − czd)
.

Now we give relationships between terms of the sequence {Rn(a, b, c, d)} and the
permanents of certain matrices.

For n ≥ 1, define a n × n matrix Hn(a, b, c, d, k, t) = [hi,j ] with hi+1,i = 1 for
1 ≤ i ≤ n− 2, hi,i = a for 1 ≤ i ≤ n− 1, hi,i+1 = b for 1 ≤ i ≤ n− 1, h1,i = c for
3 ≤ i ≤ d, hi,d+i−1 = c for 2 ≤ i ≤ n− d+ 1, hn,n−1 = k, hn,n = t, and 0 otherwise,
i.e.,

(2.2) Hn(a, b, c, d, k, t) =
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.

Then we give the following Theorem.

Theorem 2.1. Let Hn(a, b, c, d, k, t) be the matrix defined in (2.2). Then, for
n > 1 and d ≥ 3,

(2.3) perHn(a, b, c, d, k, t) = kRn+d−2(a, b, c, d)− (ka− t)Rn+d−3(a, b, c, d),

where the real numbers k and t.

Proof. (Induction on n) If n = 1, then we have

perH1(a, b, c, d, k, t) = t = kRd−1(a, b, c, d)− (ka− t)Rd−2(a, b, c, d).
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Suppose that the equation holds for n− 1. Then we show that the equation holds
for n. Expanding the perHn with respect to the last column d times, we write

perHn(a, b, c, d, k, t)

= aperHn−1(a, b, c, d, k, t) + bperHn−2(a, b, c, d, k, t) + cperHn−d(a, b, c, d, k, t).

By our assumption, we have

perHn(a, b, c, d, k, t) = a (kRn+d−3(a, b, c, d)− (ka− t)Rn+d−4(a, b, c, d))

+b (kRn+d−4(a, b, c, d)− (ka− t)Rn+d−5(a, b, c, d))

+c (kRn−2(a, b, c, d)− (ka− t)Rn−3(a, b, c, d))

= kRn+d−2(a, b, c, d)− (ka− t)Rn+d−3(a, b, c, d).

Thus, the proof is complete.

When t = a and k = 1 in (2.3), we have perHn(a, b, c, d, 1, a) = Rn+d−2(a, b, c, d).

For n ≥ 1, define a n × n matrix En(a, b, c, d, k, t) = [ei,j] with ei+1,i = −1 for
1 ≤ i ≤ n− 2, ei,i = a for 1 ≤ i ≤ n− 1, ei,i+1 = b for 1 ≤ i ≤ n− 1, e1,i = c for
3 ≤ i ≤ d, ei,d+i−1 = c for 2 ≤ i ≤ n−d+1, en,n−1 = −k, en,n = t, and 0 otherwise,
i.e.,

En(a, b, c, d, k, t) =
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.

It is clearly showed from [2] that

detEn(a, b, c, d, k, t) = perHn(a, b, c, d, k, t).

Now, we take the n× n matrix Hn(a, b, c, 3, k, t) by the following form:

Hn(a, b, c, 3, k, t) =
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Then, we have

(2.4) perHn(a, b, c, 3, k, t) = kRn+1(a, b, c, 3)− (ka− t)Rn(a, b, c, 3).

For example, from [9], for a = b = c = t = k = 1 in (2.4), we have that

perHn(1, 1, 1, 3, 1, 1) = Tn+1 = perF(n, 3),

where Tn is the nth tribonacci number.

For n > 1; we define an n× n matrix Wn(a, b, c, 3, k, t) as in the compact form,
by the definition of Hn(a, b, c, 3, k, t);

(2.5) Wn(a, b, c, 3, k, t) =
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.

Now, we have the following theorem:

Theorem 2.2. Let Wn(a, b, c, 3, k, t) be the matrix defined in (2.5). Then, for
n > 2

perWn(a, b, c, 3, k, t) = k

n
∑

i=1

Ri(a, b, c, 3)− (ka− t)
n
∑

i=1

Ri−1(a, b, c, 3).

Proof. (Induction on n) If n = 3, we write

perW3(a, b, c, 3, k, t)

= k + t+ at+ bk = k

3
∑

i=1

Ri(a, b, c, 3)− (ka− t)

3
∑

i=1

Ri−1(a, b, c, 3).

Suppose that the equation holds for n. Then we show that the equation holds for
n + 1. From the definitions of matrices Hn(a, b, c, 3, k, t) and Wn(a, b, c, 3, k, t),
expanding the perWn+1(a, b, c, 3, k, t) with respect to the first column gives us

perWn+1(a, b, c, 3, k, t) = perHn(a, b, c, 3, k, t) + perWn(a, b, c, 3, k, t).

By our assumption and (2.4), we have

perWn+1(a, b, c, 3, k, t)

= kRn+1(a, b, c, 3)− (ka− t)Rn(a, b, c, 3)

+k

n
∑

i=1

Ri(a, b, c, 3)− (ka− t)

n
∑

i=1

Ri−1(a, b, c, 3)

= k

n+1
∑

i=1

Ri(a, b, c, 3)− (ka− t)

n+1
∑

i=1

Ri−1(a, b, c, 3).

Thus the proof is obtained.
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When a = b = c = 1 in (2.1), the sequence {Rn} , special case of the sequence
{Rn(a, b, c, d)} , is defined by the recurrence

(2.6) Rn = Rn−1 +Rn−2 +Rn−d, 3 ≤ d ≤ n

in which R0 = 0, R1 = R2 = ... = Rd−2 = Rd−1 = 1 and especially from (1.1), the
sequence {Sn} is defined by

(2.7) Sn = Sn−1 + Sn−2 + Sn−d, 3 ≤ d ≤ n

in which S0 = S1 = S2 = ... = Sd−3 = 0 and Sd−2 = Sd−1 = 1. For d = 3 in (2.6)
and (2.7), the sequences {Rn} and {Sn} coincide as the tribonacci sequence.

For n > 1, define an n× n matrix Zn = [zi,j ] with zi+1,i = 1 for 1 ≤ i ≤ n− 1,
zi,i = 1 for 1 ≤ i ≤ n, z1,2 = 0, zi,i+1 = 1 for 2 ≤ i ≤ n− 1, z1,i = 1 for 3 ≤ i ≤ d,

zi,d+i−1 = 1 for 2 ≤ i ≤ n− d+ 1 and 0 otherwise, i.e.,

(2.8) Zn =
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Then we give the following Theorem.

Theorem 2.3. Let Zn be the matrix defined in (2.8). Then, for n ≥ 5 and d ≥ 3,

perZn = Rn+d−3 +Rn+d−4 −Rn+d−5 + Sn−5.

Proof. We prove this by induction on n. For n = 5, we write

perZ5 = 2Rd+1 + 1 = Rd+2 +Rd+1 −Rd + S0.

The claim is true for n = 5. Assume that the claim is true for n− 1. Thus we show
that the claim is true for n. Expanding the perZn according to the last column d

times, we have
perZn = perZn−1 + perZn−2 + perZn−d.

By our assumption, we have

perZn = Rn+d−4 +Rn+d−5 −Rn+d−6 + Sn−6

+Rn+d−5 +Rn+d−6 −Rn+d−7 + Sn−7

+Rn−3 +Rn−4 −Rn−5 + Sn−d−5.
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From the sequences {Rn} and {Sn}, we write

perZn = Rn+d−3 +Rn+d−4 −Rn+d−5 + Sn−5.

So the proof is complete.

For n ≥ 1, define the n× n matrix Vδ
n = [vi,j ] with vi+1,i = 1 for 1 ≤ i ≤ n− 2,

vi,i = 1 for 1 ≤ i ≤ n− 1, v1,i+1 = vi,i+1 = (−1)
i−δ

for 1 ≤ i ≤ n and 0 otherwise,
where δ ∈ {0, 1} . i.e.,

(2.9) Vδ
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Theorem 2.4. Let Vδ
n
be the matrix defined in (2.9). Then, for n ≥ 1,

detVδ
n
=







(−1)
δ
(

F(n+5+3(−1)δ)/2 − 2− (−1)
δ
)

if n ≡ 0 (mod 2),

(−1)
δ
(

F(n+5)/2 − 2 + (−1)
δ
)

if n ≡ 1 (mod 2),

where Fn is the nth Fibonacci number.

Proof. For n = 1, detV0
1
= 1 = (F3 − 1) , detV1

1
= 1 = − (F3 − 3) and for n = 2,

detV1
2 = 0 = − (F2 − 1) , detV0

2 = 2 = (F5 − 3) .

We show that the claim is true for n − 1. Using expansion on the first column
of detV 1

n , we get as follows

detV1

n
= detB0

n−1
− detV0

n−1
.

From (1.2) and the induction hypothesis, we have

detV1

n
=

{

Fn/2 −
(

F(n+4)/2 − 1
)

if n ≡ 0 (mod 2),
F(n+3)/2 −

(

F(n+7)/2 − 3
)

if n ≡ 1 (mod 2),

=

{

−
(

F((n+2)/2 − 1
)

if n ≡ 0 (mod 2),
−
(

F((n+5)/2 − 3
)

if n ≡ 1 (mod 2).

Similarly, using detV0
n = detB1

n−1
+ detB0

n−2
+ detV0

n−2
, the desired result is

given. We have the proof.
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Theorem 2.5. For n ≥ 1, we have

perV1

n =

{

L(n+2)/2 − 1 if n ≡ 0 (mod 2),
L(n−1)/2 − 1 if n ≡ 1 (mod 2),

and

perV0

n =

{

F(n+2)/2 − 1 if n ≡ 0 (mod 2),
F(n+5)/2 − 1 if n ≡ 1 (mod 2),

where Fn is the nth Fibonacci number and Ln is the nth Lucas number.

Proof. Considering perBδ
n =

{

F(n−2+6δ)/2 if n ≡ 0 (mod 2),
F(n+1)/2 if n ≡ 1 (mod 2),

for δ ∈ {0, 1} and

the equalities

perV1

n
= perB0

n−1
+ perV0

n−1
and perV0

n
= perB1

n−1
− perB0

n−2
+ perV0

n−2
,

we have the proof from induction on n.

3. Some special cases

In this section, we give some special cases of the above theorems:

• For b = 1, c = 0 and d = 3, the generalized Fibonacci sequence {Un(a, 1)},

perHn (a, 1, 0, 3, k, t)

= per
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= tUn(a, 1) + kUn−1(a, 1),

perWn (a, 1, 0, 3, k, t)
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1

a
(tU(n(a, 1) + (k + t)U(n−1(a, 1) + kUn−2(a, 1) + k(a− 1)− t) ,

and then,

perWn (a, 1, 0, 3, k, t) = perHn (a, 1, 0, 3, k, t)+perHn−1 (a, 1, 0, 3, k, t)+k(a−1)+t.
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• For a = 1, b = 2, c = 0 and d = 3 in (2.1), {Jn} is the Jacobsthal sequence
and for n > 2,

perHn (1, 2, 0, 3, k, t)

= per
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
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= tJn + 2kJn−1.

• For a = b = k = 1, c = 0 and d = 3 in (2.1), {Fn} is the Fibonacci sequence,

perHn (1, 1, 0, 3, 1, t)

= per




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1 1 0
1 1 1 0
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= tFn + Fn−1

and

perWn (1, 1, 0, 3, 1, t) = per




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1 1 1 ... 1
1
0 Hn−1

...
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= t (Fn+1 − 1) + Fn.

• For d = 3 in (2.6) and (2.7), {Tn} is the tribonacci sequence and

perZn = per



















1 0 1
1 1 1 1

. . .
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. . . · · ·

1
1 1 1

1 1
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





= 2Tn−1 + Tn−3 + Tn−5.
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