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Abstract. In this paper, we find conditions to characterize the projective change be-
tween two («, 3)-metrics, such as exponential (a, 3)-metric, L = ae= and Randers
metric L = @ + f on a manifold with dim n > 2, where a and @ are two Riemannian
metrics, 8 and 8 are two non-zero 1-forms. We also discuss special curvature properties
of two classes of (a, 8)-metrics.
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1. Introduction

M. Matsumoto [10] introduced the concept of («, 8)-metric on a differentiable
manifold with local coordinates z?, where a® = a;;(x)y’y’ is a Riemannian metric
and 3 = b;(x)y’ is a 1-form on M™. M. Hashiguchi and Y. Ichijyo [6] studied some
special (a, 8)-metrics and obtained interesting results. In the projective Finsler
geometry, there is a remarkable theorem called Rapcsak [14] theorem, which plays
an important role in the projective geometry of Finsler spaces. In fact, this theorem
gives the necessary and sufficient condition for a Finsler space to be projective to
another Finsler space.

The projective change between two Finsler spaces has been studied by many
authors ([2], [5], [8], [11], [12], [16]). In 1994, S. Bacso and M. Matsumoto [2]
studied the projective change between Finsler spaces with («, 8)-metric. In 2008,
H. S. Park and Y. Lee [11] studied the projective changes between a Finsler space
with (o, 8)-metric and the associated Riemannian metric. The authors Z. Shen and
Civi Yildirim [16] studied a class of projectively flat metrics with a constant flag
curvature. In 2009, Ningwei Cui and Yi-Bing Shen [5] studied projective change
between two classes of (a, 8)-metrics. Also the author N. Cui [4] studied the S-
curvature of some («, 8)-metrics. In this paper, we find conditions to characterize
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the projective change between two («, 8)-metrics, such as the exponential (a, f)-

. ] .= 5 . . .
metric, L = ae« and Randers metric L = @ + 8 on a manifold with dim n > 2,
where a and @ are two Riemannian metrics, § and 8 are two non-zero 1-forms. In
addition, we discuss special curvature properties of two classes of («, 8)-metrics.

2. Preliminaries

The terminology and notation are referred to ([15], [9], [1]). Let M™ be a real
smooth manifold of dimension n and let I = (M™, L) be a Finsler space on the
differentiable manifold M™ endowed with the fundamental function L(z,y). We use
the following notation:

gij = 30:0;L?,
Cijk = 30k9ij,
hij = gi; — lil;,

(21> i 1 _ar
Vik = 29 (9jgrk + akgrj = 0rgjk);
G = Iyt G = 6,6,
G;k = 0xGY, G}kl = 0;G;k,

where 9; = a?li'

Definition 2.1. A change L — L of a Finsler metric on the same underlying
manifold M is called projective change if any geodesic in (M, L) remains to be
geodesic in (M, L) and vice versa.

A Finsler metric is projectively related to another metric if they have the same
geodesic as point sets. In Riemannian geometry, two Riemannian metrics o and @
are projectively related if and only if their spray coefficients have the relation [5]

(2.2) Gl = Gh+ Ay,

where A = A(x) is a scalar function on the based manifold.

Two Finsler metric F and F are projectively related if and only if their spray
coefficients have the relation [5]

(2.3) G =G + Py,
where P(y) is a scalar function and homogeneous of degree one in 3.

Definition 2.2. A Finsler metric is called a projectively flat metric if it is projec-
tively related to a locally Minkowskian metric.

For a given Finsler metric L = L(x,y), the geodesic of L is given by

A2t
dt?

T dt

(2.4) +2G*( =0,
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where G = G%(z,y) are called geodesic coefficients, which are given by

(25) 6 = L { (W~ (170 .

Let ¢ = ¢(s), |s| < bg, be a positive C* satisfying the following
(2.6) B(s) — s¢'(s) + (b* — s?)¢"(s) > 0, (|s| < b < by).

Let o = y/a;j(z)y'y? be a Riemannian metric, 3 = b;y" is a 1-form satisfying
|1Bz]la < bo for all x € M, then L = a¢(s), s = g, is called an (regular) (o, ()-
metric. In this case, the fundamental form of the metric tensor induced by L is
positive definite. Let VS = bi|jdxi ® da? be the covariant derivative of 8 with
respect to a.

Denote
1 1
rig = 5 (bitj +bj1i) 515 = 5(bij; = bjpa)-
3 is closed if arlldlonly if 5,7 = 0 [17]. Let s; = b'sj, 32» = ailslj, so = siyt, sh = s;y]
and oo = ;Y'Y .

The relation between the geodesic coefficient G of L and the geodesic coefficient

G, of a is given by

(2.7) Gl = Gg + aQsé + {roo — 2Qo¢so}{wbi + @oflyi},
where
o _ 00 —s(68" ¢
20((¢ — s¢') + (0% — s2)¢")’
_ ¢
Q = oy
B 1 ¢//
R TCEr R Ry

Definition 2.3. [5] Let

i o3 .1 oaGgm |
(2:8) Djw = OyI Oyk oyl <G n+1oym 4 ) ’

where G? is the spray coefficient of L. The tensor D = Déklai ®dr? @ dz* ® dat is
called the Douglas tensor. A Finsler metric is called a Douglas metric if the Douglas
tensor vanishes.

We know that the Douglas tensor is a projective invariant [13]. Note that the
spray coefficients of a Riemannian metric are quadratic forms and one can see that
the Douglas tensor vanishes (2.8). This shows that the Douglas tensor is a non-
Riemannian quantity. In what follows, we use quantities with a bar to denote the
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corresponding quantities of metric L. We compute the Douglas tensor of a general
(a, B)-metric. Let

(2.9) G' = G + aQsh + {ren — 2Qaso }b'.
Using (2.9) in (2.7), we have
(2.10) Gi=G'+ O{roo — 2Qasoya g,

Clearly, G* and G are projective equivalents according to (2.3). They have the
same Douglas tensor. Let

(2.11) T" = aQsh + Y{roo — 2Qasg }b".

Then G = G, + T*, thus

i = Din
o P NI/ O SR W
O oyIoyRoyt \* n+10ym 4 n+10ym Y
o3 . 1 o1™ .
2.12 = — | T"— —— ") .
(2.12) Oy Oyk oyl ( n+1 oy™ 4 )

To simplify (2.12), we use the following identities

= by, S = a_Z(bka — SYk),

@ y

Y

where y; = aﬂyl, Qe = 83—;;. Then

[OZQSZ)n]ym = OflmeSSn + 0‘72Ql[bma2 - Bym]SgL
= Q'so
and
Y(roo — 2Qasg)b™]ym = P'a (b — s?)[roo — 2Qas]

+ 20[ro — Q'(b” = 5%)s0 — Qssol,
where r; = birij and ro = ;5. Thus from (2.11), we get
Ty = Q'so+ Yt (b7 = 53)[roo — 2Qas]
(2.13) + 2[rg — Q'(b* — s%)so — Qsso)].
We assume that the (o, 3)-metrics L and L have the same Douglas tensor, i.e.,

Diy, = Diy,. Thus from (2.8) and (2.12), we get

o3 P — 1 —m )
— (T -T —— (T - T, »)y" )| =0.
8yﬂ<9yk’8yl( n—|—1( 4 Y )y) 0
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Then there exists a class of scalar functions H;k = H}k (z), such that

1
n+1

(2.14) Hiyy=T -T — (T — T )y,

where Hf, = Hipy/y".

Theorem 2.1. [/] For the special form of (a, 8)-metric, L = a+ €8 + k (%2),

where €, k are non-zero constant, the following are equivalent:

e L has an isotropic S-curvature, i.e., S = (n+1)c(x)L for some scalar function
c(z) on M.

e L has an isotropic mean Berwald curvature.

B is a killing one form of constant length with respect to cv. This is equivalent
to Too = So = 0.

e L has a vanished S-curvature, i.e., S = 0.

L is a weak Berwald metric, i.e., E = 0.

3. Projective Change between Randers Metric and Exponential
(a, B)-metric
In this section, we find the projective relation between two («, §)-metrics on the
same underlying manifold M of dimension n > 2. For (¢, 8)-metric L = aeg, one
can prove by (2.6) that L is a regular Finsler metric if and only if 1-form f satisfies
the condition ||By]lo < 1 for any « € M. The geodesic coefficient are given by (2.7)
with
_ 1-2:
O = sarr—emy
_ 1
1/} T 2(14b2—s5—s82)"
Using (3.1) in (2.7), we get

¢ o= o g ! 2o’
T e a3 T 2 e —ap) [ a -

(3.2) x  [a?b' 4 (a —2B)y1].

For the Randers metric L = @ + 3, one can also prove by (2.6) that L is a regular
Finsler metric if and only if || ||o < 1 for any x € M. The geodesic coefficients are
given by (2.7) with

1 —

First, we prove the following lemma:
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Lemma 3.1. Let L = aex and T = a+ 3 be two (a, B)-metrics on a manifold M
with dimension n > 2. Then they have the same Douglas tensor if and only if both
metrics are Douglas metrics.

Proof. First, we prove the sufficient condition. Let L and L be Douglas metrics and
the corresponding Douglas tensor D; i and D7, Then by the definition of Douglas
metric, we have D;‘kl =0and D;‘kl = 0, that is, both metrics have the same Douglas

tensor. Next, we prove the necessary condition. If L and L have the same Douglas
tensor, then (2.14) holds.
Using (2.13), (3.1) and (3.3) in (2.14), we have

A'a” 4+ Bl + C'a® + Dia* + E'a® + Fia?

(3.4) Hoo = Kof+Ua® + Ma* + Na® + Va2 + R 0
where
A = (14 6%)[2s5(1+b%) — 2s0)],
BY = (1+0%)[roob’ — 26(3 + b%)sf + 2Bs0b
— 2xsso(1+ )y’ — 2Mroy'] — 2Xs0Y",
C' = B3+ 2b%)(2\roy’ — roob’) — 2\Bsso(2 + by’
+ ANBso(1 + b))yt + 282(1 — 26%)sh — Ab*rooy’,
D' = 2B3(3+2b%)sh + rgoB(2 + b2)b
+  2AB(Bso + 285%so — Bb*ro — 2Bro — s*r00)Y’,
E' = Brog[Bb' + A(3b% — 4s? — 2807y
+  2M33(ssg — ro — 250)y" — 2B%s),
F' = 2X\33(Bro — Bso + $°T00)y"
2%t — Broob’,
\ = 1
n+1
and
K = 2(1+b%)2 U=48(b"-3b*>—2), M =25%b* +2)?,

N = 4831 +0b?), V =—-48*2+0b?), R=24".
Then (3.4) is equivalent to
Aia" + BiaS + Cia® + Diat + Fiad + Fia?
(3.5) = (KaS+Ua® + Ma*+ Na? +Va? + R)(HE, +as)).
Replacing »® in (3.5) by —%%, we have
— Ad" 4+ B'a® - Ca® + Dia* — E'a® 4+ Fla?
(3.6) = (Ka® —Ua®+ Ma* — No® +Va? + R)(HY, — as,).
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Subtracting (3.6) from (3.5), we get

A'd” +C'a® + E'a® = (Ud® + No®)Hi,
(3.7) + (Ka®+ Ma* +Va? + R)a 5.
From (3.7), we have

Q?[Ae® + C'a® + E'a — (Ua® + Na)Hj,
(3.8) —a sy (Ka*+ Ma? + V)] = Ra 5.
From (3.8), R@ 3} has the factor o2, i.e., the term R@ 3, = 28° @ 3}, has the factor
a?. We can study two cases for Riemannian metric.
Case (i): If @ # p(z)a, then R5; = 235 has the factor o®. Note that 5 has no
factor a?. Then the only possibility is that §sj has the factor a?. Then for each i
there exists a scalar function 7* = 7’(z) such that 85, = 7’a® which is equivalent
to b;5}, + bxSy = 2n'ajr. When n > 2 and we assume that 7 # 0, then

2 > rank(b;s;) + rcmk(bkE;)
> rank(b;3) + b;ﬁ;)

= rank(2n'a;) > 2,

which is impossible unless 7° = 0. Then 85, = 0. Since 8 # 0, we have 5 = 0,
which says that 3 is closed.
Case (ii): If @ = p(z)a, then (3.7), becomes
Ru(z)sy, = o*[A%a* +C'a? + E' — (Ua? + N)H,

(3.9) — w(z)si(Ka* + Ma? + V).
From (3.9), we can see that u(z)R3} has the factor o?. i.e., u(x)R5} = 2u(x)343°
has the factor o®. Note that p(x) # 0 for all z € M and /3% has no factor a®. The
only possibility is that 85; has the factor o?. As the similar reason in case (i), we
have 53 = 0, when n > 2, which says that 3 is closed.

M. Hashiguchi [7] proved that the Randers metric L = @+ 3 is a Douglas metric

if and only if Bis closed. Thus L is a Douglas metric. Since L is projectively related
to L, then both L and L are Douglas metrics. [

Theorem 3.1. The Finsler metric L = aes is projectively related to L = & + B
if and only if the following conditions are satisfied

Gl = GL + 0y' — t¢ab’,
(310) b1|J = T[(l + 2b2)aij — 3bibj]7
dg =0,
where b* = a'b;, b= ||Bla, bi; denotes the coefficient of the covariant derivatives

of B with respect to a, T = 7(x) is a scalar function and 6 = 0;y" is a 1-form on a
manifold M with dimension n > 2.
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Proof. First, we prove the necessary condition. Since the Douglas tensor is invariant
under projective changes between two Finsler metrics, if L is projectively related
to L, then they have the same Douglas tensor. According to Lemma 3.1, we obtain
that both L and L are Douglas metrics.

~ We know that the Randers metric L =@+ 3 is a Douglas metric if and only if
B is closed, i.e., df = 0.
The Finsler metric L = ae? is a Douglas metric if and only if

(3.11) bij = T[(1 + 2b%) — 3b;b;],

for some scalar function 7 = 7(x) [3], where b;; denotes the coefficient of the
covariant derivatives of 8 = b;y" with respect to «. In this case, g is closed. Since
f is closed, s;; = 0 = b;; = bj|;. Thus sj =0 and so = 0.

By using (3.11), we have rog = 7[(1 + 2b%)a? — 332]. Substituting all these in (3.2),
we get

[(1420%)(a® — 20283) — 3ap? + 657%]
2(a? — B2 + b%2a2 — af)

(3.12) G'=G +7 v + 1€l

7[(142b%)a® —38%]b?

2(a?2—pB24+b2a—af) "’

Since L is projectively related to L, this is a Randers change between L and a@.
Noticing that j3 is closed, then L is projectively related to @. Thus, there is a scalar
function P = P(y) on TM — {0} such that

where £ =

(3.13) G' = GL + Py'.
From (3.12) and (3.13), we have

3a8% — 643 — (1 + 2b%)(a® — 3a2p)
2(a? — B2 + b%2a? — af)

(3.14) P+ y' =G — GL + 1)
Note that the RHS of the above equation is a quadratic form. Then there must be
one form 6 = 6;4° on M, such that

3aB? —66% — (1+2b?)()a® — 302 _

2(a? — B2 + b%2a2 — af) 0

P+

Thus (3.14) becomes
(3.15) G, = GL 4+ 0y' — 1D’

Equations (3.11) and (3.12) together with (3.15) complete the proof of the necessity.
Since £ is closed, it suffices to prove that L is projectively related to @. From (3.12)
and (3.15), we have

7[(1 + 26%)(a® — 3a2B) — 3aB% +6533]] ,

P=GL+ |0
G =Gat |0+ 2(a? — p2+ 20?2 — ap) v

that is, L is projectively related to @ [



Projective Change Between Randers Metric and Exponential («, 8)-metric 397
From the above theorem, we get the following corollaries.

Corollary 3.1. The Finsler metric L = T projectively related to L = a@ +
if and only if they are Douglas metrics and the spray coefficients of o and & have
the following relation

Gl = GL + 0y" — 7€a°Y',

where b = a¥b;, T = 7(x) is a scalar function and 6 = 0;y" is one form on a
manifold M with dimension n > 2.

Further, we assume that the Randers metric L=a+pfis locally Minkowskian,
where @ is a Euclidean metric and 8 = b;y* is one form with b; =constant. Then
(3.10) can be written as

i i e 2h
(3.16) {Ga—Gy TEabY,

bi|j = T[(l + 2[)2)(14‘]‘ — 3b1bJ]
Thus, we state

Corollary 3.2. The Finsler metric aes is projectively related to L = @+ B if and
only if L is projectively flat, that is, L is projectively flat if and only if (3.16) holds.

4. Special Curvature Properties of two («, 3)-metrics
We know that the Berwald curvature tensor of a Finsler metric L is defined by
[9]
(4.1) G = Ghda! ® 0; ® da* ® da',

where Gy = [G*] sk, and G* are the spray coefficients of L. The mean Berwald

curvature tensor is defined by

(4.2) E = E;da’ ®da?,

where Eij = %Gmw

A Finsler space is said to be of the isotropic mean Berwald curvature if

n+1
(43) Eij = 2 C(.’I?)Lyiyj,

where ¢(z) is scalar function on M.

In this section, we assume that («, §)-metric L = aes has some special curvature
properties.

Theorem 4.1. The Finsler metric L = ae« having an isotropic S-curvature or
isotropic mean Berwald curvature is projectively related to L = &+ [ if and only if
the following conditions hold:
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e « is projectively related to @,
o 3 is parallel with respect to a, i.e., b;; =0,
o (3 is closed, i.e., dB = 0,

where b;|; denotes the coefficient of the covariant derivative of B with respect to c.

Proof. The sufficiency is obvious from Theorem (§2) For the necessary condition,
from Theorem 3.1, if L is projectively related to L, then

bij; = T[(1+ 2b%)a;; — 3b;b;],

where 7 = 7(z) is scalar function. Transvecting the above equation with y* and 7,
we have

(4.4) roo = T[(1 + 2b%)a? — 337].

From Theorem 2.4, if L has an isotropic S-curvature or an equivalently isotropic
mean Berwald curvature, then rog = 0. If 7 # 0, then (4.4) gives

(4.5) (1+2b%)a* — 382 =0,
which is equivalent to

(4.6) (1 + 2b%)a;; — 3bib; = 0.
Transvecting (4.6) with a?, we get

(4.7) (1+2b%)5) — 3b'b; = 0.

Contracting [ and j in (4.7), we have n + (2n — 3)b? = 0, which is impossible. Thus
7 = 0. Substituting in Theorem 3.2, we complete the proof. [
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