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SOME SYMMETRIC PROPERTIES OF KENMOTSU MANIFOLDS
ADMITTING SEMI-SYMMETRIC METRIC CONNECTION
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Abstract. The objective of the present paper is to study some symmetric properties
of the Kenmotsu manifold endowed with a semi-symmetric metric connection. Here we
consider pseudo-symmetric, Ricci pseudo-symmetric, projective pseudo-symmetric and
¢-projective semi-symmetric Kenmotsu manifolds with respect to the semi-symmetric
metric connection. Finally, we provide an example of the 3-dimensional Kenmotsu
manifold admitting a semi-symmetric metric connection which verifies our result.
Keywords: Kenmotsu manifold; projective curvature tensor; semi-symmetric metric
connection; 7-Einstein manifold.

1. Introduction

In 1932, Hayden [12] introduced the idea of metric connection with a torsion on
a Riemannian manifold. By considering the torsion tensor of a linear connection,
Friedmann and Schouten [11] gave a new connection called semi-symmetric connec-
tion. The torsion tensor with respect to the semi-symmetric connection V is given
by

(1.1) T(X,Y)=VxY -VyX —[X,Y].

The connection V is called a semi-symmetric metric connection [12] if Vg = 0,
otherwise, non-metric connection. A relation between the semi-symmetric metric
connection V and the Levi-Civita connection V on (M, g) established by Yano [18]
is given by

(1.2) VxY =VxY +n(Y)X — g(X,Y)E.

Semi-symmetric manifolds form a subclass of the class of pseudo-symmetric man-
ifolds. The concept of pseudo-symmetric manifold was introduced by Chaki and
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Chaki [8] and Deszcz [10] in two different ways. Here we study the properties of
pseudo-symmetric manifolds with a semi-symmetric metric connection in the Deszcz
sense. An n-dimensional Riemannian manifold M is called pseudo-symmetric in the
sense of Deszcz [10] if the Riemannian curvature tensor R satisfies the following re-
lation

(1.3) (R(X,Y) - R)(U, V)W = La((X A, Y) - R)(U, V)W,

for all the vector fields X,Y, Z, U, V,W € TM. Where Lg is a smooth function on
M and X Ay Y is an endomorphism defined by

(1.4) (X Ny Y)Z = g(Y,2)X — g(X, Z)Y.

The notion of semi-symmetric metric connection has been weakened by many ge-
ometers such as [2, 3, 5, 9, 15, 17] etc., with different structures of manifolds
and submanifolds. In particular, De [1] and Bagewadi et. al. [4] studied semi-
symmetric metric connection on Kenmotsu manifolds with a projective curvature
tensor. Also in [16], Singh et. al. studied the semi-symmetric metric connection in
an e-Kenmotsu manifold.

The projective curvature tensor P with respect to the semi-symmetric metric
connection on a Kenmotsu manifold is defined by [1]

1

n—1

(1.5) P(X,Y)Z=R(X,Y)Z - [S(Y, Z2)X — 8(X,Y)Z),

for X,Y,Z € x(M). Here S is the Ricci tensor with respect to the semi-symmetric
metric connection.

Further, a relation between the curvature tensor R of the semi-symmetric metric
connection V and the curvature tensor R of the Levi-Civita connection V is given
by [18]

(1.6) R(X,Y)Z = R(X,Y)Z-a(Y,Z2)X +a(X,2)Y
9(Y,Z)LX + g(X, Z)LY,

where « is a tensor field of type (0,2) and L is a tensor field of type (1,1) which is
given by

(A7) al¥.2) = g(LY, 2) = (Vyn)(Z) —u(¥ n(Z) + 5n(E)g(Y. 2),

for any vector fields X,Y, Z € x(M). From (1.6), it follows that

(1.8) S(Y,Z)=8(Y,Z)— (n—2)a(Y,Z) —ag(Y, Z),

where S denotes the Ricci tensor with respect to V and a=trace of .

Motivated by these studies, we investigate the semi-symmetric metric connec-
tion due to Yano [18] on Kenmotsu manifolds. The paper is organized as follows.
After giving preliminaries and basic results of the Kenmotsu manifold in Section
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2, in Section 3 we study pseudo-symmetric Kenmotsu manifolds with respect to
the semi-symmetric metric connection, proving that either Lz = —2 or the mani-
fold is n-Einstein. In the next section we prove that in a Ricci pseudo-symmetric
Kenmotsu manifold with respect to the semi-symmetric metric connection, either
Ls = —2 or the manifold is n-Einstein. Sections 5 and 6 are devoted to the study
of projective pseudo-symmetric and ¢-projective semi-symmetric Kenmotsu mani-
folds with respect to the semi-symmetric metric connection. Finally, we construct
an example of a 3-dimensional Kenmotsu manifold admitting the semi-symmetric
metric connection and verify the results.

2. Preliminaries

Let M be an n-dimensional almost contact Riemannian manifold equipped with
the almost contact metric structure (¢, &, 7, g), where ¢ is a (1,1) tensor field, ¢ is a
characteristic vector field, n is a 1-form and g is the Riemannian metric satisfying
the following conditions [7];

(2.1) ¢*(X) = -X +n(X)¢, () =1,
(22) g(¢X,9Y) =g(X,Y) —n(X)n(Y),
for all vector fields X, Y on M. If an almost contact metric manifold satisfies
(2.3) (Vxo)(Y) = g(¢X,Y)§ —n(Y)oX,

then M is called a Kenmotsu manifold [14]. Here V denotes the operator of covariant
differentiation with respect to g. From (2.3), it follows that

(2.4) Vx§=X—-n(X)E,
(2.5) (Vxm)(Y) = g(X,Y) = n(X)n(Y).

In a Kenmotsu manifold M, the following relations hold:

no¢ =0, ¢¢=0, g(X,&) =n(X),

(2.6) n(R(X,Y)Z) = [g(X, Z)n(Y) = g(Y, Z)n(X)],

2.7) (a) R(& X)Y = n(Y)X —g(X,Y)¢], (b) R(X,Y)E = [n(X)Y —n(Y)X],

(28) (a) S(X,Y) = —(n — Dg(X,¥), (b) QX = —(n— )X,

(2.9) (a) S(X, &) = =(n—1)n(X), (b) S, &) = —(n—1), (¢) Q€ = —(n - 1)¢,

(2.10) (Vw R)(X,Y)§ = g(W, X)Y — g(W,Y) X — R(X, Y)W,

(2.11) S(6X, ¢Y) = S(X,Y) + (n — 1)n(X)n(Y)

Now by using (1.7), (2.1) and (2.5) in (1.6), we have the following relation
R(X,Y)Z = R(X,Y)Z -3[g(Y,2)X —g(X,Z)Y]+2[n(Y)X

(2.12) = n(X)Y]n(Z) +2[g(Y, Z)n(X) = g(X, Z)n(Y)]¢.

Contracting X in (2.12), we get

(2.13) S(Y,2) = S(Y,2) = (3n = 5)g(Y, Z) + 2(n — 2)n(Y)n(Z).
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Again contracting Y and Z in (2.13), we get
(2.14) F=r—(n—1)3n-4),

where 7 and r are the scalar curvatures with respect to the semi-symmetric metric
connection and the Levi-Civita connection respectively.

3. Pseudo-symmetric Kenmotsu manifold with respect to the
semi-symmetric metric connection

Definition:An n-dimensional Kenmotsu manifold M is said to be pseudosym-
metric with respect to semi-symmetric metric connection if the curvature tensor R
of V satisfies the condition

(3.1) (R(X,Y)- R)U. V)W = Lp((X A, Y) - R)(U, V)W,

where L is a function on M. From (3.1), we have

R(X,Y)(R(U, V)W) — R(R(X,Y)U,V)W — R(U, R(X,Y)V)W
—R(U,V)(R(X,Y)W) = Lg[(X Ay Y)(R(U, V)W) — R(X Ay YU, V)W
(3.2) —R(U,(X Ay Y)V)W — R(U,V)(X Ay Y)W].
Replacing X by £ in (3.2), we get
R(EY)RUVIW) — R(R(EY)U, V)W — R(U,R(&,Y)V)W
—R(U,V)(R(§,Y)W) = Lg[(§ Ag Y)(R(U, V)W) — R((§ Ay YU, V)W
(3.3) —R(U,(EN, Y)VIW — R(U,V)(E N, YIW].
Using (1.4) and (2.12) in (3.3) and then taking the inner product with &, we obtain

(L +2)[=R(U,V,W,Y) +n(RU,V)W)n(Y) + 29(Y, U)n(V)n(W)
—29(Y,U)g(V,W) = n(R(Y,V)W)n(U) — 29(Y, V)n(U)n(W)

B4)  +29(Y,V)g(U, W) = n(RU,Y)W)n(V) — n(RU, V)Y )n(W)] = 0.
On plugging U =Y =¢; in (3.4) and taking summation over i, we get

35 (Lr+ SV, W) = (n=35)g(V,W) +2(n— 1)n(V)n(W)] = 0.
This implies that either Lz = —2 or

(3.6) SV, W) =(n—->5)g(V,W)+2(1 —n)n(V)n(W).

On contracting (3.6), we get

(3.7) r=n(n-—"7)+2.

Hence we can state the following:

Theorem 3.1. Let M be an n-dimensional pseudo-symmetric Kenmotsu manifold
with respect to semi-symmetric metric connection. Then either Lz = —2 or the
manifold is 7-Einstein with constant scalar curvature r = n(n — 7) 4+ 2 with respect
to Levi-Civita connection.
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4. Ricci pseudo-symmetric Kenmotsu manifold with respect to the
semi-symmetric metric connection

Definition:An n-dimensional Kenmotsu manifold M is said to be Ricci pseudo-
symmetric with respect to semi-symmetric metric connection, if

(4.1) (R(X,Y) - 5)(2,U) = LsQ(g,5)(%,U; X,Y),

holds true on M, where Lg is some function and Q(g,S) is the Tachibana tensor
on M. From (4.1), it follows that

(4.2) S(R(X,Y)Z,U)+ 8(Z, R(X,Y)U)
= Lg[S(X Ay Y)Z,U) + 8(Z,(X Ny Y)U)].
Putting Y = U = ¢ in (4.2), we have
(4.3) S(R(X.€)Z,€) + S(Z,R(X,§)¢) = Lg[S((X N ) Z,€) + S(Z, (X N E)E)].
Using (1.4), (2.12), (2.13) and (2.7) in (4.3), we can get
(4.4) (Ls+2)[S(X,Z) = (n = 3)g(X, Z) + 2(n — 2)n(X)n(Z)] = 0.
This implies that either Lg = —2 or
(4.5) S(X,Z)=(n-3)g9(X,Z)+ 22— n)n(X)n(Z).
On contracting (4.5) over X and Z, we get
(4.6) r=(n—1)(n-4).

Thus we can state the following theorem:

Theorem 4.1. If a Kenmotsu manifold M is Ricci pseudo-symmetric with respect
to semi-symmetric metric connection, then either Lg = —2 or the manifold is #n-
Einstein with constant scalar curvature r = (n—1)(n—4) with respect to Levi-Civita
connection.

5. Projective pseudo-symmetric Kenmotsu manifold with respect to
the semi-symmetric metric connection

Definition:An n-dimensional Kenmotsu manifold M is said to be projective
pseudo-symmetric with respect to semi-symmetric metric connection if

(5.1) (R(X,Y) - P)(U, V)W = Lp((X Ay Y) - P)({U, V)W,
holds on M. Putting Y =W = ¢ in (5.1), we get

(5.2) (R(X,8) - P)(U,V)E = Lp((X Ng §) - P)(U,V)E.
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Now right hand side of (5.2) can be written as

Lp((X Ny €) - P)(U,V)E Lpl(X Ag )P)(U,V)E = P((X Ag U, V)E
(5:3) — PU.(X N V)E = P(UV)(X Ag )E]-

By virtue of (1.4), (1.5), (2.12), (2.13) and (2.7) in (5.3), we obtain
(5-4) Lp((X Ng€) - P)U,V)§ = —Lp- P(UV)X.
Next by considering left hand side of (5.2), we have

(R(X,8)-P)(U, V)¢ = R(X,§P(U.V)E— P(R(X, U, V)E
(5.5) — P(U,R(X,&)V)é — P(U,V)R(X, €)E.

Again using (1.5), (2.12), (2.13) and (2.7) in (5.5), we get
(5.6) (R(X,€) - P)(U,V)é =2P(U,V)X.
Substituting (5.4) and (5.6) in (5.2), we obtain

(5.7) (Lp +2)P(U,V)X =0.

This leads us to the following:

Theorem 5.1. If an n-dimensional Kenmotsu manifold is projective pseudo-symmetric
with respect to the semi-symmetric metric connection, then either Lp = —2 or the
manifold is projectively flat.

Also, in a Kenmotsu manifold, Bagewadi, Prakasha and Venkatesha [4] proved the
following:

Lemma 5.1.[4] If the projective curvature tensor of a Kenmotsu manifold M admit-
ting the semi-symmetric metric connection vanishes, then M reduces to an Einstein
manifold with the constant scalar curvature —n(n — 1).

Hence from Theorem 5.1. and Lemma 5.1., we conclude that:

Corollary 5.1. A projective pseudo-symmetric Kenmotsu manifold admitting the
semi-symmetric metric connection is an Einstein manifold with the constant scalar
curvature with respect to the Levi-Civita connection provided Lp # —2.

6. ¢-projective semi-symmetric Kenmotsu manifold with respect to
the semi-symmetric metric connection

Definition: An n-dimensional Kenmotsu manifold M is said to be ¢-projectively
semi-symmetric with respect to the semi-symmetric metric connection if P(X,Y) -

¢=0.
Let us consider an n-dimensional Kenmotsu manifold M which is ¢-projective
semi-symmetric. Then we have

(6.1) P(X,Y)¢Z — pP(X,Y)Z =0,
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for any vector fields X,Y and Z on M.
By virtue of (1.5) in (6.1) gives

R(X,Y)¢pZ — ¢R(X,Y)Z + %[S’(Y, 6Z)X

n —

(6.2) —S(X,02)Y + S(Y,Z)pX — S(X,Z)pY] = 0.

On plugging Y = ¢ in (6.2) and then using (2.12), (2.13) and (2.7), we obtain
(63) 2(X, 026 ~ 1= 5(X,67)¢ = 0.

Now taking the inner product of the above equation with &, we get

(6.4) 29(X,¢7) — ﬁé‘(}(, ¢Z) = 0.

Replacing Z by ¢Z in (6.4) and then by virtue of (2.1) and (2.13), we obtain
(6.5) S(X,Z) = Ag(X, Z) + Bn(X)n(Z),

where A =5n — 7 and B = —2(3n — 5).

Hence we can state the following:

Theorem 6.1. An n-dimensional ¢-projective semi-symmetric Kenmotsu manifold
with respect to the semi-symmetric metric connection is n-Einstein with respect to
the Levi-Civita connection.

7. Example

Consider a 3—dimensional manifold M = {(z,y,2) € R : z # 0}, where (z,y, z)
are the standard coordinates in R3. We choose the vector fields

El = —e_zg E2 = G_ZQ E3 = a

oy’ 0z’

which are linearly independent at each point of M. Let g be the Riemannian metric
defined by

(7.1) g =e**(de @ dx 4+ dy @ dy) +n @ n,

where 7 is the 1—form defined by n (X) = g(X, E3), for any vector field X on M.

Then {E1, E3, Es} is an orthonormal basis of M. We define a (1, 1) tensor field ¢
as

0 0 0 0 0
7.2 X—+Y— Z—=Y——-X—).
72 o(xg+vg) +7 = ( )

Thus, we have

(73) ¢(E1) = Eg, ¢(E2) = —E1 and ¢(E3) =0.
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The linearity property of ¢ and g yields that
n(ks) = 1, P*X = —X +1(X) Es,
for any vector fields X, Y on M.

Moreover, we get

[E“é.] = Ei? [E“EJ] = 07 7’7] = 172

Using Koszul’s formula, we obtain
VEIEZ = _55 iné-:Eh 1= 172

and others are zero. Thus for F3 =&, M (¢,£,n,g) is a Kenmotsu manifold. Now,
the non-zero terms of the semi-symmetric metric connection on M become

(7.4) Ve Ei=-2¢, Vg&=2E, i=1,2.

With the help of the above results it can be easily verified that

R(E,, E2)E3 =0, R(Es, E3)E3 = —Es, R(E©, E3)Es = —Ex,

R(Ey, E2)E2 = —En, R(FEs, E3)Es = Ej, R(FE1,Es)E; =0,

R(E4, E2)Ey = Es, R(Ey, E3)E; =0, R(FE1, E3)E; = Es.

and

R(Ey,Ey)E3 =0, R(Ey, E3)E3 = —2F,, R(Ey, E3)E3 = —2F},

R(Ey, E))Ey = —4AEy, R(Es, E3)Ey = 2F3, R(Ey, E3)Ey = 0,
(7.5) R(Ey,F2)E, = 4E,, R(E, E3)E; =0, R(E,, E3)E; = 2E;3.

In view of (1.1), one can obtain the torsion tensor T with respect to the semi-
symmetric metric connection as

T(E;,E;))=0 for i=1,2,3;

T(Ey,E;) =0, T(Ey,E3)=FE;, T(Es E3)=Es.
Since E1, Eo, F3 forms a basis, the vector fields X,Y, Z € x(M) can be written as

X a1 bl C1 El
(7.6) Y | =] a2 b2 c Ey ],
A as by c3 Es

where a;, b;,c; € RT (the set of all positive real numbers), ¢ = 1,2,3. Using the
expressions of the curvature tensors, we find values of the Riemannian curvature
and Ricci curvature with respect to the semi-symmetric metric connection as;

R(X,Y)Z = [—4{a1ba —biaz}bs + 2{c1as — ajca}c3)Fy
[—4{b1as — a1ba}as + 2{c1ba — bica}cs] B

[—2{c1a2 — a1ca}as — 2{c1ba — bica}bs] Es,
(7.8) S(Ey,E1) = S(E2,Ey)=—6, S(E3, E3) = —4.
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In view of the expression of the endomorphism (E; Ay E;)E, = g(E;, Ey)E; —
g(Ei, Ey,)E; for 1 <1i,j,w < 3 and equations (7.5) and (7.8), one can easily verify

that

(7.9)

S(R(E;, Es)Ej, Es) + S(Ej, R(E;, E3)Es) = —2[S((E; Ay E3)E;, E3)

+ S(Ej,(E; Ay Es)E3)),

in view of the above equation Theorem 4.1. is verified.
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