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ON TZITZEICA CURVES IN EUCLIDEAN 3-SPACE E3

Bengii Bayram, Emrah Tung, Kadri Arslan and Giinay Oztiirk

Abstract. In this study, we consider Tzitzeica curves (Tz-curves) in a Euclidean 3-
space E3. We characterize such curves according to their curvatures. We show that
there is no Tz-curve with constant curvatures (W-curves). We consider Salkowski (TC-
curve) and anti-Salkowski curves.

Keywords: Tz-curves, W-curves, TC-curves

1. Introduction

Gheorgha Tzitzeica, a Romanian mathematician (1872-1939), introduced a class
of curves, nowadays called Tzitzeica curves, and a class of surfaces of the Euclidean
3-space called Tzitzeica surfaces. A Tzitzeica curve in E3 is a spatial curve z = x(s)
for which the ratio of its torsion ko and the square of the distance d,s. from the
origin to the osculating plane at an arbitrary point x(s) of the curve is constant,
ie.,

K2
a2

osc

(1.1)

=a

where dys. = (Na,z) and a # 0 is a real constant, Ny is the binormal vector of x.

In [3] the authors gave the connections between the Tzitzeica curve and the
Tzitzeica surface in a Minkowski 3-space and the original ones from the Euclidean
3-space. In [7] the authors determined the elliptic and hyperbolic cylindrical curves
satisfying Tzitzeica condition in a Euclidean space. In [12], the elliptic cylindrical
curves verifying Tzitzeica condition were adapted to the Minkowski 3-space. In [2],
the authors gave the necessary and sufficient condition for a space curve to become
a Tzitzeica curve. The new classes of symmetry reductions for the Tzitzeica curve
equation were determined. In [1], the authors were interested in the curves of
Tzitzeica type and they investigated the conditions for non-null general helices,
pseudo-spherical curves and pseudo-spherical general helices to become of Tzitzeica
type in a Minkowski space E3.
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A Tzitzeica surface in E? is a spatial surface M given with the parametrization
X (u,v) for which the ratio of its Gaussian curvature K and the distance dy,, from
the origin to the tangent plane at any arbitrary point of the surface is constant, i.e.,

K
I

tan

(12) = ax
for a constant a;. The orthogonal distance from the origin to the tangent plane is
defined by

(1.3) dtan = <X,ﬁ>

where X is the position vector of the surface and ﬁ is a unit normal vector of the
surface.

The asymptotic lines of a Tzitzeica surface with a negative Gausssian curvature
are Tzitzeica curves [7]. In [18], the authors gave the necessary and sufficient condi-
tion for the Cobb-Douglas production hypersurface to be a Tzitzeica hypersurface.
In addition, a new Tzitzeica hypersurface was obtained in parametric, implicit and
explicit forms in [§]

In this study, we consider Tzitzeica curves (Tz-curves) in a Euclidean 3-space
E3. Furthermore, we investigate a Tzitzeica curve in a Euclidean 3-space E? whose
position vector & = x(s) satisfies the parametric equation

(1.4) x(s) = mo(s)T(s) + m1(s)N1(s) + ma(s)Na(s),

for some differentiable functions, m;(s), 0 <14 < 2, where {T, N1, No} is the Frenet
frame of z. We characterize such curves according to their curvatures. We show
that there is no Tzitzeica curve in E® with constant curvatures (W-curves). We give
the relations between the curvatures of the Tz-Salkowski curve (TC-curve) and the
Tz-anti-Salkowski curve.

2. Basic Notations

Let z : I ¢ R — [E? be a unit speed curve in a Euclidean 3-space E3. Let us
denote T'(s) = 2'(s) and call T'(s) a unit tangent vector of = at s. We denote the
curvature of z by k1(s) = ||z”(s)||. If k1(s) # 0, then the unit principal normal
vector Ni(s) of the curve z at s is given by z (s) = £1(s)Ni(s). The unit vector
Na(s) = T(s) x Ny(s) is called the unit binormal vector of z at s. Then we have
the Serret-Frenet formulae:

T'(s) = ri(s)Ni(s),
(2.1) Ni(s) = —ri(s)T(s) + wa(s)Na(s),
Niy(s) = —ra(s)Ni(s),

where r2(s) is the torsion of the curve x at s (see, [10]).
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If the Frenet curvature k1(s) and torsion ko(s) of x are constant functions then
x is called a screw line or a helix [9]. Since these curves are the traces of 1-parameter
family of the groups of Euclidean transformations then F. Klein and S. Lie called
them W-curves [14]. It is known that a curve x in E? is called a general heliz if
the ratio k2(s)/k1(s) is a nonzero constant [16]. Salkowski (resp. anti-Salkowski)
curves in a Euclidean space E3 are generally known as the family of curves with A
constant curvature (resp. torsion) but non-constant torsion (resp. curvature) with
an explicit parametrization [15, 17] (for T.C-curve see also [13]).

For a space curve z : I C R — E3, the planes at each point of x(s) spanned
by {T, N1}, {T, N2} and { N1, N2} are known as the osculating plane, the rectifying
plane and normal plane, respectively. If the position vector = lies on its rectifying
plane, then x(s) is called rectifying curve [5]. Similarly, the curve for which the
position vector x always lies in its osculating plane is called osculating curve. Finally,
x is called normal curve if its position vector z lies in its normal plane.

Rectifying curves characterized by the simple equation
(2:2) 2(5) = A(5)T(s) + ja(s) Na(s),

where A(s) and u(s) are smooth functions and T'(s) and Na(s) are tangent and
binormal vector fields of x, respectively [5, 6].

For a regular curve x(s), the position vector x can be decomposed into its
tangential and normal components at each point:

(2.3) x=al 42V,

A curve in E3 is called N-constant if the normal component z™V of its position
vector x is of constant length [4, 11]. It is known that a curve in E? is congruent
to an N-constant curve if and only if the ratio :—f is a non-constant linear function
of an arc-length function s, i.e., g—f(s) = ¢18 + ¢o for some constants ¢; and ¢o with

c1 # 0 [4]. Further, an N-constant curve x is called first kind if ||™ || = 0, otherwise
second kind [11].

3. Tzitzeica Curves in E3
In the present section we characterize Tzitzeica curves in E? in terms of their

curvatures.

Definition 3.1. Let z : I ¢ R — E? be a unit speed curve with curvatures
k1(s) > 0 and ka(s) # 0. If the torsion of x satisfies the condition

2
(3.1) ko(s) = a.ds,,,
for some real constant a then x is called Tzitzeica curve (Tz-curve), where

(32) dosc = <N2a Z‘>

is the orthogonal distance from the origin to the osculating plane of z.
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We have the following result.

Proposition 3.1. Let z : I C R — E3 be a unit speed curve in E3. If x is a
Tz-curve, then the equation

(3.3) Kb (1, No) + 2k2 (x, N1) = 0
holds.

Proof. Let x be a unit speed curve in E3, then by the use of the equations (3.1) and
(3.2) we get

Ka(s)
<Ah’$>2

Further, differentiating the equation (3.4), we obtain the result. O

(3.4) =a#0.

Definition 3.2. Let z : I ¢ R — E2 be a unit speed curve with curvatures
k1(s) > 0 and ka(s) # 0. Then z is a spherical curve if and only if

Ka(s) K1 (s) /
(3.5) ki(s) (m(s)"i%(s))
holds [9].

Theorem 3.1. Letz:1 C R — E3 be a unit speed spherical curve in E3. If x is
a Tz-curve then the equation

=
=
A
—
&3
N

k(s

(3.6) -

holds between the curvatures of x.
Proof. Let x be a unit speed spherical curve in E3. Then we have
(3.7) ]l = r

where 7 is the radius of the sphere. Differentiating the equation (3.7) with respect
to s, we get

(3.8) (x,T) =0.

Further, differentiating the equation (3.8), we have
1

3.9 Ny) = ——.

( ) <$, 1> K1

By differentiating the equation (3.9), we obtain
/
(3.10) (@, Np) = -1

R1R2

Finally, substituting (3.9) and (3.10) into (3.3), we get the result. [J
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Corollary 3.1. Let x : I C R — E3 be a unit speed spherical Tz-curve in E>.
Then the torsion of x satisfies the equation

KRy =2 (w)°

11 =
(3.11) 2 3/@%

Proof. Substituting (3.6) into (3.5), we get the result. O

Corollary 3.2. Let x : I C R — E2 be a unit speed anti-Salkowski spherical
Tz-curve in E3. Then the curvature of T is given by

\/§;<;2
c1 sin (\/gngs) — €9 COS (\/?:/-125)

where c1, co are integral constants and ko is the constant torsion of x.

(3.12) Ky =

Proof. Let 2 : I C R — E3 be a unit speed anti-Salkowski spherical Tz-curve in E3.
Then from (3.11), we obtain the differential equation

(3.13) KKy — 2 (1)) — 3k2k2 =0
which has the solution (3.12). O

Lemma 3.1. Letx:I C R — E3? be a unit speed curve in E® whose position vector
satisfies the parametric equation

(3.14) x(s) = mo(s)T(s) + m1(s)N1(s) + ma(s)Na(s)
for some differentiable functions, m;(s), 0 <i < 2. If x is a Tz-curve then we get

my — Kim; =

1,
(315) mll + K1Mg — KeMo = 0,
mh 4+ kamy = O,
0

Khymg + 2K3my =

Proof. Let x : I ¢ R — E3 be a unit speed curve in E3. Then, by taking the
derivative of (3.14) with respect to the parameter s and using the Frenet formulae,
we obtain

)
(3.16) +(m1(s) + £1(s)mo(s) — ka(s)ma(s))N1(s)
( Jma(s)

Further, using the equations (3.3) and (3.16), we get (3.15). [
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Theorem 3.2. Let z : I C R — E3 be a unit speed anti-Salkowski Tz-curve in
E3 (with the curvatures k1 > 0 and kg # 0) given with the parametrization (3.14).
Then x is congruent to a rectifying curve with the parametrization

(3.17) x(s) = (s+¢1) T(s) + caNa(s)

where ¢1 and co are integral constants.

Proof. Let x be a unit speed anti-Salkowski Tz-curve in E3. Then, the torsion &
of z is constant. From the equation (3.15), we get

mg = S+
(318) mq =0
mo = C2

where ¢; and cg are integral constants. Finally, substituting (3.18) into (3.14), we
get the result. [

Corollary 3.3. Letxz:I CR — E3? be a unit speed anti-Salkowski Tz-curve in E?
(with curvatures k1 > 0 and ko # 0) given with the parametrization (3.14). Then
x is congruent to N -constant curve of second kind.

Corollary 3.4. Letx: I C R — E? be a unit speed Salkowski Tz-curve in E® (with
the curvatures k1 > 0 and ko # 0) given with the parametrization (3.14). Then we
have

(3.19) m{ + (k7 + 3k3) m1 4+ K1 =0

where the curvature k1 of x is a real constant.

Proof. Let = be a unit speed Salkowski Tz-curve in E2. Hence, the curvature ; of
x is constant, from the equation (3.15), we get the result. O

Corollary 3.5. There is no Tz-curve with a constant curvature and a constant
torsion. (i.e. Tz-W-curve)

Proof. Let x be a unit speed Tz-curve in E? with a constant curvature and a constant
torsion. (i. e. Tz-W-curve). Then, using (3.15), we obtain

ki1(s) e
(3.20) ) sta

which is a contradiction. [
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