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η-RICCI SOLITONS IN (ε, δ)-TRANS-SASAKIAN MANIFOLDS

Mohd Danish Siddiqi

Abstract. The objective of the present paper is to study (ε, δ)-trans-Sasakian manifolds
admitting η-Ricci solitons. It is shown that a symmetric second order covariant tensor
in an (ε, δ)-trans-Sasakian manifold is a constant multiple of the metric tensor. Also,
an example of an η-Ricci soliton in a 3-diemsional (ε, δ)-trans-Sasakian manifold is
provided in the region where (ε, δ)-Trans Sasakian manifold is expanding.
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1. Introduction

In 1985, J. A. Oubina [22] introduced a new class of almost contact metric man-
ifolds known as trans-Sasakian manifolds. An almost contact metric structure on
a manifold M is called a trans-Sasakian structure if the product manifold M × R

belongs to the class W4, where the classification of almost Hermition manifolds
appears as a class W4 of Hermitian manifolds which are closely related to locally
conformal Kähler manifolds studied by Gray and Hervella [14]. The class C5 ⊕ C6

[22] coincides with the class of trans-Sasakian structure of type (α, β). This class
consists of both Sasakian and Kenmotsu structures. If α = 1, β = 0 then the class
turn into Sasakian and when α = 0, β = 1 then it turn into Kenmotsu. The above
manifolds are studied by many authors like D. E. Blair and J. C. Marrero [1], K.
Kenmotsu [17], C. S. Bagewadi and Venkatesha [8], U. C. De and M. M. Tripathi
[12].

The differential geometry of manifolds with indefinite metric plays an interest-
ing role in physics. Manifolds with indefinite metric have been studied by several
authors. The concept of (ǫ)-Sasakian manifolds was initiated by A. Bejancu and K.
L. Duggal [2] and further investigation was taken up by X. Xufeng and C. Xiaoli
[30]. U. C. De and A. Sarkar [11] studied (ε)-Kenmotsu manifolds with indefinite
metric. S. S. Shukla and D. D. Singh [25] extended with indefinite metric which
is a natural generalization of both (ε)-Sasakian and (ε)-Kenmotsu manifolds. The

Received December 19, 2017; accepted November 20, 2018
2010 Mathematics Subject Classification. Primary 53C15, 53C20; Secondary 53C25, 53C44

45



46 M. D. Siddiqi

authors H. G. Nagaraja et al. [20] studied (ε, δ)-trans-Sasakian manifolds which are
extensions of (ε)-trans-Sasakian manifolds. M. D. Siddiqi et al. also studied some
properties of (ε, δ)-trans-Sasakian manifolds in [26].

In 1982, R. S. Hamilton [15] stated that Ricci solitons move under the Ricci flow
simply by diffeomorphisms of the initial metric, that is, they are stationary points
of the Ricci flow which is given by

∂g

∂t
= −2Ric(g).(1.1)

Definition 1.1. A Ricci soliton (g, V, λ) on a Riemannian manifold is defined by

LV g + 2S + 2λ = 0,(1.2)

where S is the Ricci tensor, LV is the Lie derivative along the vector field V on M

and λ is a real scalar. The Ricci soliton is said to be shrinking, steady or expanding
depending on whether λ < 0, λ = 0 and λ > 0, respectively.

In 1925, Levy [18] obtained necessary and sufficient conditions for the existence of
such tensors. later, R. Sharma [24] initiated a study of Ricci solitons in contact
Riemannian geometry . After that, Tripathi [27], Nagaraja et al. [21] and others
like C. S. Bagewadi et al. ([7], [16]) extensively studied Ricci solitons in almost (ǫ)-
contact metric manifolds. In 2009, J. T. Cho and M. Kimura [10] introduced the
notion of η-Ricci soliton and gave a classification of real hypersurfaces in non-flat
complex space forms admitting η-Ricci solitons. Later η-Ricci solitons in (ε)-almost
paracontact metric manifolds were studied by A. M. Blaga et. al. in [5]. Moreover,
η-Ricci solitons have been studied by various authors for different structures (see
[3], [4], [23], [9], [28]). Recently, K. Venu et al. [29] studied the η-Ricci solitons in
trans-Sasakian manifolds. Motivated by these studies in the present paper we inves-
tigate η-Ricci solitons in 3-dimensional (ε, δ)-trans-Sasakian manifolds and derive
the expression for the scalar curvature.

1.1. Preliminaries

Let M be an almost contact metric manifold equipped with the almost contact
metric structure (φ, ξ, η, g) consisting of a (1, 1) tensor field φ, a vector field ξ, a
1-form η and a Riemannian metric g satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0,(1.3)

g(φX, φY ) = g(X,Y )− εη(X)η(Y ), η(X) = εg(X, ξ), g(ξ, ξ) = ε,(1.4)

for all X,Y vector fields on M , where ε is 1 or -1 according as ξ is space-like or
time-like. In particular, if the metric g is positive definite, then the (ε)-almost
contact metric manifold is the usual almost contact metric manifold [25].

An (ε)-almost contact metric metric manifold is called an (ε)-trans Sasakian
manifold [25] if

(∇Xφ)Y = α(g(X,Y )ξ − εη(Y )X) + β(g(φX, Y )ξ − εη(Y )φX)(1.5)
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holds for some smooth functions α and β on M . According to the characteristic
vector field ξ we have two classes of (ε)-trans-Sasakian manifolds. When ε = −1
and index of g is odd, then M is a time-like trans-Sasakian manifold and when ε = 1
and index of g is even, then M is a space-like trans-Sasakian manifold. Further,
M is a usual trans-Sasakian manifold for ε = 1 and the index of g is 0 and M is a
Lorentzian trans-Sasakian manifold for ε = −1 and the index of g is 1. An ε-almost
contact metric manifold is said to be a (ε, δ)-trans-Sasakian manifold if it satisfies

(∇Xφ)Y = α(g(X,Y )ξ − εη(Y )X) + β(g(φX, Y )ξ − δη(Y )φX)(1.6)

holds for some smooth functions α and β on M , where ε is 1 or −1 according as ξ
is space-like or time-like and δ is alike ε.
From (1.6), we have

∇Xξ = −εαφX − δβφ2X,(1.7)

and

(∇Xη)Y = δβ[εg(X,Y )− η(X)η(Y )]− αg(φX, Y ).(1.8)

In (ε, δ)-trans-Sasakian manifold M , we have the following relations [7]:

R(X,Y )ξ = (α2 − β2)[η(Y )X − η(X)Y ](1.9)

+2εδαβ[η(Y )φX − η(X)φY ]

+ε[(Y α)φX − (Xα)φY ]

+δ[(Y β)φ2X − (Xβ)φ2Y ]

+2αβ(δ − ε)g(φX, Y )ξ,

S(X, ξ) = [((n− 1)(εα2 − δβ2)− (ξβ)]η(X)(1.10)

−ε((φX)α)− (n− 2)ε(Xβ)),

Qξ = ((n− 1)(εα2 − δβ2)− (ξβ))ξ + εφ(gradα) − ε(n− 2)(gradβ),(1.11)

where R is the curvature tensor, S is the Ricci tensor and Q is the Ricci operator
given by S(X,Y ) = g(QX, Y ).

Further in a (ε, δ)-trans-Sasakian manifold, we have

εφ(gradα) = ε(n− 2)(gradβ),(1.12)

and

ε(ξα) + 2εδαβ = 0.(1.13)
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Using (1.9) and (1.12), for constants α and β , we have

R(ξ,X)Y = (α2 − β2)[εg(X,Y )ξ − η(Y )X ],(1.14)

R(X,Y )ξ = (α2 − β2)[η(Y )X − η(X)Y ],(1.15)

η(R(X,Y )Z) = (α2 − β2)[g(Y, Z)η(X)− g(X,Z)η(Y )],(1.16)

S(X, ξ) = [((n− 1)(εα2 − δβ2)− (ξβ)]η(X),(1.17)

Qξ = [(n− 1)(εα2 − δβ2)− (ξβ)]ξ.(1.18)

An important consequence of (1.7) is that ξ is a geodesic vector field

∇ξξ = 0.(1.19)

For an arbitrary vector field X , we have that

dη(ξ,X) = 0.(1.20)

The ξ-sectional curvature Kξ of M is the sectional curvature of the plane spanned
by ξ and a unit vector field X . From (1.15), we have

Kξ = g(R(ξ,X), ξ,X) = (α2 − β2)− δ(ξβ).(1.21)

It follows from (1.21) that ξ-sectional curvature does not depend on X .

1.2. η-Ricci solitons on (M,φ, ξ, η, g)

Fix h a symmetric tensor field of (0, 2)-type which we suppose to be parallel
with respect to the Levi-Civita connection ∇, that is, ∇h = 0. Applying the Ricci
commutation identity [20]

∇2h(X,Y ;Z,W )−∇2h(X,Y ;W,Z) = 0,(1.22)

we obtain the relation

h(R(X,Y )Z,W ) + h(Z,R(X,Y )W ) = 0.(1.23)

Replacing Z = W = ξ in (1.23) and using (1.9) and the symmetry of h, we have

2(α2 − β2)[η(Y )h(X, ξ)− η(X)h(Y, ξ)](1.24)

+2ε[(Y α)h(φX, ξ) − (Xα)h(φY, ξ)] + 2δ[(Y β)h(φ2X, ξ)− (Xβ)h(φ2Y, ξ)]

+4εδαβ[η(Y )h(φX, ξ)− η(X)h(φY, ξ)] + 4αβ(δ − ε)g(φX, Y )h(ξ, ξ) = 0.

Putting X = ξ in (1.24) and by virtue of (1.3), we obtain

−2[ε(ξα) + 2εδαβ]h(φY, ξ)(1.25)
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+2[(α2 − β2)− δ(ξβ)][η(Y )h(ξ, ξ)− h(Y, ξ)] = 0.

By using (1.13) in (1.25), we have

[(α2 − β2)− δ(ξβ)][η(Y )h(ξ, ξ)− h(Y, ξ)] = 0.(1.26)

Suppose (α2 − β2)− δ(ξβ) 6= 0; it results in

h(Y, ξ) = η(Y )h(ξ, ξ).(1.27)

Now, we can call a regular (ε, δ)-trans-Sasakian manifold if (α2−β2)−δ(ξβ) 6= 0,
where regularity, means the non-vanishing of the Ricci curvature with respect to
the generator of the (ε, δ)-trans-Sasakian manifold.

Differentiating (1.27) covariantly with respect to X , we have

(∇Xh)(Y, ξ) + h(∇XY, ξ) + h(Y,∇Xξ)(1.28)

= [εg(∇XY, ξ) + εg(Y,∇Xξ)]h(ξ, ξ)

+η(Y )[(∇Xh)(Y, ξ) + 2h(∇Xξ, ξ)].

By using the parallel condition ∇h = 0, η(∇Xξ) = 0 and by virtue of (1.27) in
(1.28), we get

h(Y,∇Xξ) = εg(Y,∇Xξ)h(ξ, ξ).

Now using (1.7) in the above equation, we get

−εαh(Y, φX) + δβh(Y,X) = −αg(Y, φX)h(ξ, ξ) + εδβg(Y,X)h(ξ, ξ).(1.29)

Replacing X = φX in (1.29) and after simplification, we get

h(X,Y ) = εg(X,Y )h(ξ, ξ),(1.30)

which together with the standard fact that the parallelism of h implies that h(ξ, ξ)
is a constant, via (1.27). Now by considering the above equations, we can give the
conclusion:

Theorem 1.1. Let (M,φ, ξ, η, g) be a (ε, δ)-trans-Sasakian manifold with a non-

vanishing ξ-sectional curvature and endowed with a tensor field h ∈ ΓT 0
2 (M) which

is symmetric and φ-skew-symmetric. If h is parallel with respect to ∇, then it is a

constant multiple of the metric tensor g.

Let (M,φ, ξ, η, g) be an (ε)-almost contact metric manifold. Consider the equation
[10]

Lξg + 2S + 2λg + 2µη ⊗ η = 0,(1.31)
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where Lξ is the Lie derivative operator along the vector field ξ, S is the Ricci
curvature tensor field of the metric g, and λ and µ are real constants. Writing Lξg

in terms of the Levi-Civita connection ∇, we obtain:

2S(X,Y ) = −g(∇Xξ, Y )− g(X,∇Xξ)− 2λg(X,Y )− 2µη(X)η(Y ),(1.32)

for any X,Y ∈ χ(M).

Definition 1.2. The data (g, ξ, λ, µ) which satisfy the equation (3.10) is said to
be η- Ricci soliton on M [10]; in particular, if µ = 0 then (g, ξ, λ) is the Ricci
soliton [10] and it is called shrinking, steady or expanding following λ < 0, λ = 0
or λ > 0, respectively [10].

Now, from (1.7) , the equation (1.31) becomes:

S(X,Y ) = −(λ+ δβ)g(X,Y ) + (εδβ − µ)η(X)η(Y ).(1.33)

The above equations yields

S(X, ξ) = −[(λ+ µ) + (1− ε)δβ]η(X)(1.34)

QX = −(λ+ βδ)X + (εδβ − µ)ξ(1.35)

Qξ = −[(λ+ µ) + (1− ε)δβ]ξ(1.36)

r = −λn− (n− 1)εδβ − µ,(1.37)

where r is the scalar curvature. Off the two natural situations regrading the vector
field V : V ∈ Spanξ and V⊥ξ, we investigate only the case V = ξ.

Our interest is in the expression for Lξg + 2S + 2µη ⊗ η. A direct computation
gives

Lξg(X,Y ) = 2δβ[g(X,Y )− εη(X)η(Y )].(1.38)

In a 3-dimensional (ε, δ)-trans-Sasakian manifold the Riemannian curvature tensor
is given by

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y(1.39)

−
r

2
[g(Y, Z)X − g(X,Z)Y ].

Putting Z = ξ in (1.39) and using (1.9) and (1.10) for 3-dimensional (ε, δ)-trans-
Sasakian manifold, we get

(α2 − β2)[η(Y )X − η(X)Y ] + 2εδαβ[η(Y )φX − η(X)φY ](1.40)

+ε[(Y α)φX − (Xα)φY ] + δ[(Y β)φ2X − (Xβ)φ2Y ]
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+2(δ − ε)αβg(φX, Y )

= ε[(εα2 − δβ2)− (ξβ)]η(Y )X − η(X)Y ]

+εη(Y )QX − εη(X)QY − ε[((φY )α)X + (Y β)X ] + ε[((φX)α)Y + (Xβ)Y ].

Again, putting Y = ξ in (1.40) and using (1.3) and (1.13), we obtain

QX =
[r

2
− 2(εα2 − δβ2) + ε(α2 − β2)

]

X.(1.41)

+
[

4(εα2 − δβ2)−
r

2
− (α2 − β2)

]

η(X)ξ

From (1.41), we have

S(X,Y ) =
[r

2
− 2(εα2 − δβ2) + ε(α2 − β2)

]

g(X,Y )(1.42)

+
[

4(εα2 − δβ2)−
r

2
− (α2 − β2)

]

εη(X)η(Y ).

Equation (1.42) shows that a 3-dimensional (ε, δ)-trans-Sasakian manifold is η-
Einstein.
Next, we consider the equation

h(X,Y ) = (Lξg)(X,Y ) + 2S(X,Y ) + 2µη(X)η(Y ).(1.43)

By Using (1.48) and (1.42) in (1.43), we have

h(X,Y ) =
[

r − 4(εα2 − δβ2) + 2ε(α2 − β2) + 2δβ
]

g(X,Y )(1.44)

+
[

8(εα2 − δβ2)− 2ε(α2 − β2)− 2δβ − r
]

εη(X)η(Y ) + 2µη(X)η(Y ).

Putting X = Y = ξ in (1.5), we get

h(ξ, ξ) = 2[2ε(εα2 − δβ2)− 2µ].(1.45)

Now, (1.30) becomes

h(X,Y ) = 2[2ε(εα2 − δβ2)− 2µ]εg(X,Y ).(1.46)

From (1.43) and (1.46), it follows that (g, ξ, µ) is an η-Ricci soliton.
Therefore, we can state as:

Theorem 1.2. Let (M,φ, ξ, η, g) be a 3-dimensional (ε, δ)-trans-Sasakian mani-

fold. Then (g, ξ, µ) yields an η-Ricci soliton on M .
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Let V be pointwise collinear with ξ, i.e., V = bξ, where b is a function on the
3-dimensional (ε, δ)-trans-Sasakian manifold. Then

g(∇Xbξ, Y ) + g(∇Y bξ,X) + 2S(X,Y ) + 2λg(X,Y ) + 2µη(X)η(Y ) = 0

or

bg((∇Xξ, Y ) + (Xb)η(Y ) + bg(∇Y ξ,X) + (Y b)η(X)

+2S(X,Y ) + 2λg(X,Y ) + 2µη(X)η(Y ) = 0.

Using (1.7), we obtain

bg(−εαφX − δβ(−X + η(X)ξ, Y ) + (Xb)η(Y ) + bg(−εαφY − δβ(−Y + η(Y )ξ,X)

+(Y b)η(X) + 2S(X,Y ) + 2λg(X,Y ) + 2µη(X)η(Y ) = 0.

which yields
2bδβg(X,Y )− 2bδβη(X)η(Y ) + (Xb)η(Y )(1.47)

+(Y b)η(X) + 2S(X,Y ) + 2λg(X,Y ) + 2µη(X)η(Y ) = 0.

Replacing Y by ξ in (1.47), we obtain

(Xb) + (ξb)η(X) + 2[2(εα2 − δβ2)− (ξβ) + λ+ µ]η(X) = 0.(1.48)

Again putting X = ξ in (1.48), we obtain

ξb = −2(εα2 − δβ2) + (ξβ)− λ− µ.

Plugging this in (1.48), we get

(Xb) + 2[2(εα2 − δβ2)− (ξβ) + λ+ µ]η(X) = 0,

or
db = −

{

λ+ µ+ (ξβ) + 2(εα2 − δβ2)
}

η = 0.(1.49)

Applying d on (1.49), we get
{

λ+ µ+ (ξβ) + 2(εα2 − δβ2)
}

dη. Since dη 6= 0 we
have

λ+ µ+ (ξβ) + 2(εα2 − δβ2) = 0.(1.50)

Equation (1.50) in (1.49) yields b as a constant. Therefore from (1.47), it follows
that

S(X,Y ) = −(λ+ δβ)g(X,Y ) + (εδbβ − µ)η(X)η(Y ),

which implies that M is of constant scalar curvature for the constant δβ. This leads
to the following:
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Theorem 1.3. If in a 3-dimensional (ε, δ)-trans-Sasakian manifold the metric g

is an η-Ricci soliton and V is pointwise collinear with ξ, then V is a constant

multiple of ξ and g is of constant scalar curvature provided δβ is a constant.

Tanking X = Y = ξ in (1.30) and (1.42) and comparing, we get

λ = −2(ǫα2 − δβ2) + (ξβ) + µ = −2Kξ − µ.(1.51)

From (1.37) and (1.51), we obtain

r = 6(ǫα2 − δβ2) + 3(ξβ)− 2εδβ + 2µ.(1.52)

Since λ is a constant, it follows from (1.51) that Kξ is a constant.

Theorem 1.4. Let (g, ξ, µ) be an η-Ricci soliton in the 3-dimensional (ε, δ)-trans
Sasaakian manifold (M,φ, ξ, η, g). Then the scalar λ+ µ = −2Kξ, r = 6Kξ + 2µ+
3(ξβ)− 2εδβ.

Remark 1.1. For µ = 0, (1.51) reduces to λ = −2Kξ , so the Ricci soliton in a 3-
dimensional (ε, δ)-trans-Sasakian manifold is shrinking.

2. Example of η-Ricci solitons on (ε, δ)-Trans-Sasakian manifolds

Example 2.1. Consider the three dimensional manifold M =
{

(x, y, z) ∈ R
3z 6= 0

}

,
where (x, y, z) are the cartesian coordinates in R

3 and let the vector fields

e1 =
ex

z2
∂

∂x
, e2 =

ey

z2
∂

∂y
, e3 =

−(ǫ+ δ)

2

∂

∂z
,

where e1, e2, e3 are linearly independent at each point of M . Let g be the Rieman-
nian metric defined by
g(e1, e1) = g(e2, e2) = g(e3, e3) = ε, g(e1, e3) = g(e2, e3) = g(e1, e2) = 0,
where ǫ = ±1.

Let η be the 1-form defined by η(X) = εg(X, ξ), for any vector field X on M ,
let φ be the (1,1)-tensor field defined by φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0.
Then by using the linearity of φ and g, we have φ2X = −X + η(X)ξ, with ξ = e3.
Further g(φX, φY ) = g(X,Y ) − εη(X)η(Y ), for any vector fields X and Y on M .
Hence for e3 = ξ, the structure defines an (ε)-almost contact structure in R

3.

Let ∇ be the Levi-Civita connection with respect to the metric g, then we have

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y, Z])

− g(Y, [X,Z]) + g(Z, [X,Y ]),
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which is known as Koszul’s formula.

∇e1e3 = −
(ε+δ)

z
e1, ∇e2e3 = −

(ε+δ)
z

e2, ∇e1e2 = 0,
using the above relation, for any vector X on M , we have ∇Xξ = −εαφX −

βδφ2X , where α = 1
z
and β = − 1

z
. Hence (φ, ξ, η, g) structure defines the (ε, δ)-

tran-Sasakian structure in R
3.

Here ∇ is the Levi-Civita connection with respect to the metric g , so we have

[e1, e2] = 0, [e1, e3] = −
(ε+δ)

z
e1, [e2, e3] = −

(ε+δ)
z

e2.
Thus we have

∇e1e3 = −
(ε+ δ)

z
e1 + e2,∇e1e2 = 0

∇e2e1 = 0, ∇e2e2 = −
(ε+ δ)

z
e2, ∇e2e3 = −

(ε+ δ)

z
e2e1

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = −
(ε+ δ)

z
e1 + e2.

The manifold M satisfies (1.7) with α = 1
z
and β = − 1

z
. Hence M is a (ε, δ)-trans-

Sasakian manifolds. Then the non-vanishing components of the curvature tensor
fields are computed as follows:

R(e1, e3)e3 = (ε+δ)
z2 e1, R(e3, e1)e3 = −

(ε+δ)
z2 e1, R(e1, e2)e2 = (ε+δ)

z2 e1

R(e2, e3)e3 = (ε+δ)
z2 e1, R(e3, e2)e3 = −

(ε+δ)
z2 e1, R(e2, e1)e1 = −

(ε+δ)
z2 e1.

From the above expression of the curvature tensor we can also obtain

S(e1, e1) = S(e2, e2) = S(e3, e3) =
(ε2 + δε)

z2

since g(e1, e3) = g(e1, e2) = 0.
Therefore, we have

S(ei, ei) = −
(ε+ δ)

z2
g(ei, ei),

for i = 1, 2, 3 , and α = 1
z
, β = − 1

z
. Hence M is also an Einstein manifold. In this

case, from (1.32), we have

2δβ[g(ei, ei − εη(ei)η(ei)] + 2S(ei, ei) + 2λg(ei, ei) + 2µη(ei)η(ei) = 0.(2.1)

Now, from (2.1), we get λ = ε[δ(1+z)−ε]
z2 (i.e, λ > 0) and µ = −

ε[ε2−ε−δ(1+ε+εz)]
z2 ,

the data (g, ξ, λ, µ) is an η-Ricci soliton on (M,φ, ξ, η, g) i. e., expanding.
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