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A NEW LOG-LOCATION REGRESSION MODEL WITH
INFLUENCE DIAGNOSTICS AND RESIDUAL ANALYSIS

Emrah Altun, Haitham M. Yousof and G. G. Hamedani

Abstract. A new four-parameter lifetime model called Odd Log-Logistic Burr XII dis-
tribution is defined and investigated. Some of its mathematical properties are derived.
Some useful characterization results based on the ratio of two truncated moments,
based on the hazard function, as well as on the conditional expectation of certain func-
tions of a random variable, are presented. The maximum likelihood method is used to
estimate the model parameters by means of a graphical Monte Carlo simulation study.
Moreover, we introduce a new log-location regression model based on the proposed
distribution. The Jackknife estimation method as an alternative method is used to
estimate the unknown parameters of a new regression model. The generalized cook
distance and likelihood distance measures are used to detect possible influential ob-
servations. Martingale and modified deviance residuals are defined to detect outliers
and evaluate the model assumptions. The potentiality of the new regression model is
illustrated by means of a real data set.

Keywords: Regression Model; Burr XII Distribution; Residual Analysis; Influential
Diagnostics; Simulation; Jackknife Estimation Method.

1. Introduction

The Pearson system of distributions was originally introduced as an effort for mod-
eling visibly skewed observations. It was well known at the time how to adjust a
theoretical model to fit the first two cumulants or moments of observed data. In his
original paper and analogously to the Pearson system of densities, Burr [4] proposed
another system of distributions that includes twelve types of cdfs (cumulative dis-
tribution function) which yield a variety of density shapes. This system is obtained
by considering cdfs satisfying a differential equation whose solution is given by

G(t) =

1
exp [— [ (t)dt] +1°
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where 1 (t) is chosen such that G (t) is a cdf on the real line. Twelve choices
for ¢ (t) made by Burr resulted in twelve distributions which might be useful for
modeling Data. The principal aim in choosing one of these forms of distributions
is to facilitate the mathematical analysis to which it is subjected, while attaining a
reasonable approximation. Burr ([4], [5], [6]) and others (see Burr and Cislak [7],
Hatke [18], Rodriguez [24]) devoted special attention to one of these forms, denoted
by type XII, whose distribution function G(z) is

(1.1) G@wL@A):{l—[1+<;>a1ﬁ}7x>0.

Both a and 3 are shape parameters, A > 0 is a scale parameter. A location pa-
rameter can easily be introduced to make (1.1) a four parameter model. The cor-
responding probability density function (pdf) of (1.1) is

a7 —p—1

(1.2) g(t;a, B, \) = afA~ >t [1 + (;) } ;x> 0.

The Burr XII (BXII) model has many applications in different areas including ac-
ceptance sampling plans, reliability and failure time modeling. Tadikamalla [28]
studied the BXII model and its related models, namely: Pareto type 1T (Lomax),
log-logistic, compound Weibull gamma and Weibull exponential distributions. Zim-
mer et al. [31] proposed a new three-parameter Burr XII distribution. This dis-
tribution, having Weibull and logistic as sub-models, is a very popular distribution
for modeling lifetime data and phenomena with monotone failure rates. Shao [29]
studied the maximum likelihood estimation for the three-parameter BXII model.
Soliman [27] studied the estimation of parameters from progressively censored data
using the Burr-XIT model. Recently, Silva et al. [25] proposed a new location-scale
regression model based on the BXII model; Silva et al. [26] proposed a residual for
the log-BXII regression distribution whose empirical model is close to normality;
Afify et al. [2] studied the Weibull BXII distribution; Cordeiro et al. [11] proposed a
double BXII model with forty special cases; Yousof et al. [30] proposed and studied
the Topp Leone generated Burr XII distribution, among others.

Gleaton and Lynch [14] defined the cdf of the so-called odd log-logistic-G (OLL-G)
family (for = > 0) by

(1.3) F(x:0,¢) =

G(z,8)°
G(z,€)" + G(,€)"
The OLL-G density function is

(1.4) fla;6,8) =

)

0g(x,€) [G(x,€)G(x, )"
(G, ) + G(x,€)]”
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where 6 > 0 is the shape parameter and £ = &, = ( &1, &2, ...) is a parameters vector.
A random variable (rv) X with pdf (1.4) is denoted by X ~OLL-G (6,&). In the
last decade, researchers have showed a great interest in introducing a new family
of distributions by adding parameter(s) to OLL-G family. Recent extensions of the
OLL-G family can be cited as follows: the Zografos-Balakrishnan odd log-logistic
family of distributions by Cordeiro et al. [8], the generalized odd log-logistic family
by Cordeiro et al. [9], the beta dd log-logistic generalized family of distributions by
Cordeiro et al. [10], and a new generalized odd log-logistic family of distributions
by Haghbin et al. [16].

Here, a new extension of the BXII distribution is proposed by means of the
OLL-G family. Inserting (1.1) and (1.2) in (1.3) and (1.4), the cdf and pdf of the
odd log-logistic BXII (OLLBXII) distribution are defined as

and

f(x) = f(z;0,0,8,\) = Haﬂ)\—:z;a—l [1+ (;)"]‘5‘1
(1.6) (T3
(b GO Y () 7)

2 x>0,

respectively.

The paper is organized as follows: The graphical presentation and motivation
for the new model are presented in Section 2. In Section 3, we derive some math-
ematical properties of the new model. In Section 4, some useful characterization
results based on the ratio of two truncated moments, based on the hazard function,
and based on the conditional expectation of certain functions of a random variable
are presented. In Section 5, the maximum likelihood method is discussed to esti-
mate the model parameters by means of a Monte Carlo simulation study. A new
log-location regression model and its estimation via maximum likelihood method
and Jackknife estimation method, sensitivity analysis, and residual analysis are pre-
sented and displayed in Section 6. In Section 7, two applications to real data sets are
performed to demonstrate the empirically importance of the new model. Finally,
some conclusions and future work are given in Section 8.
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2. Graphical presentation and motivation

The importance of pdf (1.6) can be summarized as follows: the OLLBXII model
contains some well-known models as its sub-models. More clearly, the BXII model
is a special sub-model when § = 1. For § = A=a =1and § = A= (0 = 1, we
have the standard Lomax and standard log-logistic distributions, respectively. For
A= a = 1 we have the OLL-Lomax distribution. For A= 5 = 1 we have the OLL-LL
distribution. For 8 — 1 we have the OLL-Weibull distribution.
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FiG. 2.1: The pdf plots of OLLBXII distribution for several parameter values.

We are motivated to introduce OLLBXII distribution because it contains a num-
ber of the aforementioned known lifetime models as illustrated above. The hrf of
OLLBXII distribution exhibits decreasing, upside-down, and bathtub hazard rates
as illustrated in Figure 2.2. It is shown in Section 3 that OLLBXII distribution can
be viewed as a mixture of the two-parameter BXII distribution. It can be viewed as
a suitable model for fitting the left-skewed, right-skewed, symmetric and bimodal
data sets as illustrated in Figure 2.1.

Moreover, Figure 2.3 displays the hrf regions of OLLBXII distribution for fixed
a = 4, A\ = 0.1 parameters. The developed computational codes are provided in
Appendix. As seen from Figure 2.3, when the parameter § < 0.255, the hrf of
OLLBXII distribution is decreasing, otherwise, it is upside-down. Similar results
can be obtained for different parameter combinations by using the computational
codes given in Appendix.
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F1c. 2.2: The hrf plots of OLLBXII distribution for several parameter values.
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F1a. 2.3: The hrf regions of OLLBXII distribution for fixed o = 4, A = 0.1 param-
eters.
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3. Mathematical Properties

3.1. Quantile function

Let U have a uniform U(0, 1) distribution, the quantile function (qf) of OLLBXII
distribution is defined by

1 o

B

(3.1) Q () = A

=

(1-w?
uv + (1 —u)
follows the density function (1.6). The following algorithm can be used to generate
random variables from density (1.6).
Algorithm 3.1. Algorithm

1. Generate U ~ U(0,1)

_ 1/a
- (1—U)1/o 1/B
2. Set X = A{{iylmufuwe

The effects of the shape parameters of the new model can be measured by the
skewness and kurtosis using the gf (3.1). These measures, called Bowley’s skewness
and Moors’s kurtosis, are given respectively by

1/4) + Q(3/4) — 2Q(1/2)

e
Shewness = Q) - QU4

and Q(7/8) — Q(5/8) + Q(3/8) — Q(1/8)
Q(6/8) — Q(2/8)

Kurtosis =

The plots of Bowley’s skewness and Moors’s kurtosis of the BOLL-GHN distri-
bution are displayed in Figure 3.1. Figures 3.1(a) and (b) display the effects of the
parameters 5 and 6 on skewness and kurtosis measures for fixed @ = 10, A = 0.5.
Figures 3.1(c) and (d) display the effects of the parameters o and 6 on skewness
and kurtosis measures for fixed 5 = 10, A = 0.5. As seen in Figure 3.1; when the
parameters «, 8 and € increase, skewness and kurtosis decrease.

3.2. Mixture representation

We provide a very useful linear representation for the OLLBXII cdf. First, we use
a power series for the quantity A; (6 > 0 real) given by

52 w=Saf{i-p+ ()7}
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o0 . .

where a, = Ek (—1)’“‘H (3) (i) For any real 8 > 0, we consider the generalized
j:

binomial expansion

(3.3) B; = i (—1)F (Z) {1 - [1 n (i)“}ﬁ}k.

Inserting (3.2) and (3.3) in equation (1.5), we obtain

ki ar {1- [1+(§)“]_B}k
Fa) = 2 o
)17}

> b 1= 1+ (
k=0
where b, = a, + (—1)]C (Z) The ratio of the two power series can be expressed as

[e's} N -8 k e’
(3.4) F(x):ch{l— {H(X) ] } =3 Gl (@, B,N),
k=0

k=0

>|8

where I (z; 0, 8,\) = [G(m,a,ﬁ,)\)]k is the exponentiated BXII cdf with power
parameter k, and the coefficients ¢;’s (for k > 0) are determined from the recurrence

equation
o0
cp = bal <ak + bal Z bwck_w) .
w=0

By differentiating (3.4), the pdf of X can be expressed as

(3.5) chJrkﬂ'lJrk € Ot,ﬂ, Z Urg x5, T) 5’)‘>7

k=0

where 711k (z;, 8, A) is the exponentiated BXII density with power parameter
k41, g(x;a, (1 +7r)B,A) is the BXII density with parameters «, (1 +7) 5 and A

and
R » (L+k) k
Ur = Z (=1) mckﬂ (r)

k=0

3.3. Moments and cumulants

Let W be a random variable having BXII distribution (1.2) with parameters o and
B and A\. Forn < af & % < f3, the nt" ordinary and incomplete moments of W
are given respectively, by

1, = BA\"B (B —na~', 1+ na™?)

and
en(z) =BA"B (2% 8 —na~ ', 1+na™"),
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where -
B(a,b) = / t (14 ¢) @0y
0

and ;
B(z a,b) = / 11 (14 ¢)~ (et gy
0
are beta and incomplete beta functions of the second type, respectively. So, several
structural properties of the OLLBXII model can be obtained from (3.4) and those
properties of BXII distribution.
The n*" ordinary moment of X is given by

E(X™) Zvr/ o, (1+7) 8, \)dz,

and (for 0 < (147) 8 —na™!)
(3.6) = v, (L+7)BA"B((1+7)B8—na™ ', 1+na™t).
r=0
By setting n = 1 in (3.6), we have the mean of X. The last integration can be

computed numerically for most parent distributions. The n'" central moment of X,
say ln, is given by

" n _
pn=E (X —pp)" =" ( ) (=1)"™™ H
m=0

The cumulants (k) of X are determined from the ordinary moments as (for s > 2)

s—1 s—1
Ko =l — > (k B 1) Kk s

k=1

where 1 = p}. The skewness (y; = Hg/lﬁ:g/Q) and kurtosis (v = k4/k3) of X are
just the third and fourth standardized cumulants. They are important to derive
Edgeworth expansions for the cdf and pdf of the standardized sum and mean of
independent and identically distributed random variables with OLLBXII distribu-
tion.

3.4. Moment generating function

Let X have OLLBXII(6, c, 8, A) distribution. The mgf of X, say M (t), using the
Maclaurin series expansion of an exponential function (Abramowitz and Stegun [3]),
can be written as

M (t) = Elexp (tX)] = > _ (=1)™ E(X™)/ml.
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Another representation for M(t) can be obtained from (3.4) as an infinite weighted

sum oo
t) = Z v Mg (1),
r=0

where M, (t) is the mgf of the BXII density with parameters «, (1 +r) S and
A. Paranaiba et al. [20] introduced a simple exemplification for the megf of the
three-parameter BXII distribution. In a similar manner, we provide another exem-
plification for the mgf, say My, (), of the BXII(«, (1 4 r) 5, A) model. For 0 > ¢,

we can write

)a} —B(1+r)-1 .

M(t)=aB(1+r) A\ /000 exp (yt) y** [1 + (%

Next, we require the Meijer G-function defined by

L'+t T —a; -t
G;”;f( | L;l’ ’b ) (2mi)~ / )H ( i =Y x~tdt,
’ Ty eens H] —nt1 aJth) (].717]‘*15)

j =m-+1

where i = v/—1 is the complex unit and L denotes an integration path (Gradshteyn
and Ryzhik [15], Section 9.3). The Meijer G-function contains, as particular cases,
many integrals with elementary and special functions (see Prudnikov et al. [21]).
We now assume that o = m3~!, where m and /3 are positive integers. This condition
is not restrictive since every positive real number can be approximated by a rational
number. We have the following result, which holds for m and g positive integers,
—1 < pand 0 > p (Prudnikov et al. [22], p. 21),

I (p,p,mB™",v) =/ exp (—pz) o (1+xm’371) dz,
0

or
—1 B,8+m —1\m A(ma_u)7A<5’U+l)
I(p,n,mB™"0) = VG, ((mp ) A (B,0) ’
where 1 m—1
V = 8700 (—v)] "m0 ()
and

A(Bya)=af™  (a+1) 87 (a+B) 571
The mgf of of the BXII(a, 8, \) can be written as

M (t) =ml (=xt,mp~" =1,mB~!, =B — 1) ,t < 0.

Hence, the mgf of of the OLLBXII(A, o, (1 + ) 5, \) can be expressed as

mZvT ( At,m B (r—l—l)]_l—l,m[,B(r—i-l)]_l,—[6(r+1)+1]).
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3.5. Incomplete moment

The st incomplete moment, say ¢s(t), of OLLBXII distribution is given by ¢4 (t) =
fg x® f(z)dz. From the equation (3.4),

oo t
ps(t) = ZUT / z® g(z; o, B (r + 1), N)de,
r=0 0

and using the lower incomplete gamma function, we have (for s < af3)
ps(t) = ZUTB (r+1)NB(t%B(r+1) —sa™ ', 1+sa™").
r=0

The 1°¢ incomplete moment of X, denoted by ¢1 (t), is simply determined from ()
by taking s = 1. The 1% incomplete moment has important applications related to
the residual life, the mean waiting time and Bonferroni and Lorenz curves.

3.6. Moments of reversed residual life and mean waiting time

The s'* moment of the reversed residual life, say Ry(t) = E[(t — X)* | X <] for
t>0and s=1,2,..., uniquely determines F(z). Then, R4(t) is defined by

Ru(t) = ﬁ/o (t — 2)°dF ().

The st" moment of the reversed residual life of X is
Ry(t) = == iﬂv Blr+ XN B(t*%B8(r+1) —sa ', 1+sa™")
° A il(s—i) " ’ ’ :

The mean waiting time (MWT') or the mean inactivity time (MIT), also named the
mean reversed residual life function, R;(t) = E[(t — X) | X < t], represents the
waiting time elapsed since the failure of a component on condition that this failure
has occurred in (0, z). The MIT of X can be obtained by setting s = 1 in the above
equation.
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Fia. 3.1: The skewness and kurtosis plots of OLLBXII distribution for several
parameter values.
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4. Characterizations

In this section we present certain characterizations of OLLBXII distribution. These
characterizations are in terms of: (i) the ratio of two truncated moments; (i) the
hazard function and (#4i) conditional expectations of functions of the random vari-
able. One of the advantages of characterization (i) is that the cdf is not required
to have a closed form. We present our characterizations (i) — (#é4) in three sub-
sections.

4.1. Characterizations based on the ratio of two truncated moments

In this subsection we present characterizations of OLLBXII distribution in terms
of a simple relationship between two truncated moments. Our first characteriza-
tion result employs a theorem due to Glanzel [12], see Theorem 1 of Appendix A.
Note that the result also holds when the interval H is not closed. Moreover, as
mentioned above, it could also be applied when the cdf F' does not have a closed
form. As shown in Glénzel [13], this characterization is stable in the sense of weak
convergence.

Proposition 4.1. Let X : O —

0,
(=0T Y 4 (0)7]
I

let q1 (:U): ({1_[1+( /3} 1+ ) B) <~ and QQ(x):(h (‘T) [1—’_(%)&]

2 > 0. The random Varlable X has pdf (1.6) if and only if the function n defined
in Theorem 1 has the form

1 ANa
D) 1 (7> :| ’ ’
n () 5 [ + \ x>0
Proof. Let X be a random variable with pdf (1.6), then

) be a continuous random variable and

—B

for

(1—F@»EMNX)szx}:9P+(EYT%, x>0,

A
and
0 r\ o128
A-F@)Elg(X) | X=a=5[1+(3)] . 2>0
and finally

n(x)q (z) — g2 (z) = —%m (x) [1 + (%)a] <0 for x>0.

Conversely, if 1 is given as above, then

v T @a@ _aptee!
(@)= e Gy

n(z)q (z) N v 0

a2 (2) 1+ (%)°
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and hence

s (2) =1og{[1+ (i)a}ﬁ} z> 0.

Now, in view of Theorem 1, X has density (1.6).

Corollary 4.1. Let X : Q — (0,00) be a continuous random variable and let
q1 (z) be as in Proposition 4.1. The pdf of X is (6) if and only if there exist functions
q2 and n defined in Theorem 1 satisfying the differential equation

n' (z)q1 (x) _ afA—o o1
1@ 0@ -e@ " 1+ 35)°

The general solution to the differential equation in Corollary 4.1 is

x> 0.

1=+ ) [ foncrer ()T o 0]

where D is a constant. Note that a set of functions satisfying the above differential
equation is given in Proposition 4.1 with D = 0. However, it should be also noted
that there are other triplets (g1, ¢2,7) satisfying the conditions of Theorem 1.

4.2. Characterization based on hazard function

It is known that the hazard function, hp, of a twice differentiable distribution
function, F', satisfies the first order differential equation

[ (@) _ ()

f (@) he(z)
For many univariate continuous distributions, this is the only characterization avail-
able in terms of the hazard function. The following characterization establish a
non-trivial characterization of OLLBXII distribution, for # = 1, which is not of the
above trivial form.

Proposition 4.2. Let X : & — (0,00) be a continuous random variable. The
pdf of X is (1.6), for @ = 1, if and only if its hazard function hp () satisfies the
differential equation

a—1 a25}\72az2(a71)

Wy (@) = ——hr (2) = 2
L+ ()]

, x> 0.
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Proof. If X has pdf (1.6), then clearly the above differential equation holds.
Now, if the differential equation holds, then

% {a7 @D ()} = aﬂxa% { 1+ (%)a] _1} x>0,

from which, we obtain

aﬂ)\fazafl

O GT

, x>0,
which is the hazard function of OLLBXII distribution.
4.3. Characterization based on the conditional expectation of certain

functions of the random variable

In this subsection we employ a single function v of X and characterize the distri-
bution of X in terms of the truncated moment of 1 (X ). The following proposition
has already appeared in Hamedani’s previous work [17], so we will just state it here
as a proposition, which can be used to characterize OLLBXII distribution.

Proposition 4.3. Let X : Q — (d,e) be a continuous random variable with
cdf F . Let ¢ (z) be a differentiable function on (d,e) with lim,_,.- ¢ (z) = 1.
Then for § #1,

Ep(X) [ X za]=06¢(x), =z€(de)

if and only if
v(@)=(1-F)’ ", zede).

i
Remark 4.3. (A) For (d,e) = (0,00), ¢ (z) = [1+(%)"] and 6 = % )
Proposition 4.3 provides a characterization of OLLBXII distribution.

5. Estimation

If X follows the OLLBXII distribution with vector of parameters ® = (6, a, 3, )\)T,
the log-likelihood for @ from a single observation x of X is given by

(@) = logh+loga+loghB—alogh— (f+1)logs
+(0—1)log [(1—s")s7?] —2log [(1 — 575)9 +5*9ﬂ ,
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where s = [1+ (% a]. The components of the unit score vector U = U(®) =

(1 — s*ﬂ)e log (1 — s’ﬁ) — Bs~ % log s

U(0)=0""+log [(1-s7")s77] =2 (1—sB)° 4 508

)

Ula) = a_l—log)\—@

Bps—28-1 — Bp (1 — 575) g—h-1
(1—sP)s B

_2961)5_5_1 (1- s‘ﬁ)a_l — 0Bps—08-1

(1—58)° + 508

+(0-1)

)

s72Plogs — s B (1 — s‘B) log s
(1—sP)sA8
_295’5 (1- S*B)efl logs — 0s % log s
(1—58)" 45708

UB) = p7'—logs+(0—-1)

and

Bgs™P71 — Bg (1 —s7F) A1

_ 1
U\ = —arx'-— s F) s

+(0—1)

B+1)q
S

29qs_5_1 (1- 8_6)9_1 —0Bgs—9P-1
(1—58)" + 508

i

where p = (%)a log (f) and ¢ = ar®A\~*"L. For a random sample = = (1, ..., a:n)T

of size n from X, the total log-likelihood is £,(®) = Y"1, ¢ (®), where () (D)
is the log-likelihood for the i*" observation. The total score function is U, =
Yo U@, where U has the form given before. Maximization of £(®) (or £, (®))
can be easely performed using well-established routines such as the nlm or optimize
in the R statistical package. Setting these equations to zero, U(®) = 0, and solving
them simultaneously gives the MLE ® b of ®. These equations cannot be solved
analytically and statistical software can be used to evaluate them numerically using
iterative techniques such as the Newton-Raphson algorithm.

The parameter estimation procedure of the OLLBXII model can be summarized
as follows:

e The optim function of R software is used to minimize the minus log-likelihood
function of the BXII model by means of the Nelder-Mead (NM) optimization
method. There is no need to provide the derivatives of the objective function
for the NM method.
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e The estimated parameters of BXII distribution is used as the initial values of
the OLLBXII model. The initial value of the additional parameter # is chosen
as 1. Then, the parameter estimations of the OLLBXII model are obtained
with the optim function as given in first step.

e The inverse of the estimated Hessian matrix is used to obtain the correspond-

ing standard errors.

5.1. Simulation Study

In this section, the parameter estimation efficiency of the MLE method is eval-
uated for the parameters of OLLBXII distribution by means of the Monte Carlo
simulation. The following simulation procedure is implemented:

1. Set the sample size n and the vector of parameters 8 = (6, 3, «, \)
2. Generate random observations of size n from OLLBXII(6, 3, a, A) distribution

3. Using the generated random observations in Step 2, estimate 0 by means of
MLE method

4. Repeat steps 2 and 3, N times

5. Using 6 and 0 compute the mean relative estimates (MREs) and mean square
errors (MSEs) via the following equations:

~ “ 2
MRE = i oi’j/ai and MSE = i (emNei)
j=1

i ,i=1,2,34.

j=1

The statistical software R is used to obtain simulation results. The chosen
parameter values for simulation study are 8 = (0.5,5,5,0.5), N = 10,000 and
n = (50,55, 60, ...,500). We expect that MREs are closer to one when the MSEs
are near zero. Figures 4 and 5 display the estimated biases, MSEs and MREs. As
seen from these figures, the estimated MSEs for all parameters tend to zero for large
sample sizes and the values of MREs tend to one. The biases for the parameters 6, 8
and « are positive whereas the biases for the parameter A is negative. The biases for
all the parameters tend to zero for large sample sizes. It is clear that the estimates
of parameters are asymptotically unbiased. Therefore, the MLE is an appropriate
method for estimating parameters of the OLLBXII distribution. Similar results can
be obtained for different parameter vectors.
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6. Log-OLLBXII regression model

Let X denotes a random variable with OLLBXII distribution and let ¥ = log(X).
The density function of Y (for y € Re) for @« = 1/0 and A = exp(u), can be
expressed as

(6.1)
0—1

98 (1exp (152)) ™ exp (152 Hk(l +exp (g))ﬂ (1-+exp (y%))ﬂ

fy)=

- oo (22) T+ v )™

where 1 € Re is the location parameter, o > 0 is the scale parameter, § > 0 and
B > 0 are the shape parameters. We refer to equation (6.1) as the Log-OLLBXII
(LOLLBXII) distribution, say Y ~ LOLLBXII(6, 8,0, ). The plots in Figure 6.1
show shapes of density function (6.1) for selected parameter values. They reveal that
this distribution is a good candidate to model left and right skewed and symmetric
lifetime data sets. The survival function corresponding to (6.1) is given by

1 (e (52) ]
[1- (e (52)) 7]+ (1 exp (55))

and the hrf is simply h(y) = f(y)/S(y). The standardized random variable Z =
(Y — u)/o has density function
(6.3)

(6.2) Sy =1-

fo) = 08(1 + exp (2)) "V exp (2) Hl — (1 +exp (z))*ﬁ} (14 exp (Z))iﬁ:|0—1

[-arene ) s areoe ]

6.1. Estimation
6.1.1. Maximum Likelihood Estimation

Based on the LOLLBXII density, we propose a linear location-scale regression
model linking the response variable y; and the explanatory variable vector v =
(vit, ..., vip) given by

(6.4) yi=v]B+oz, i=1,...,n,

where the random error z; has density function (6.3), 8 = (f1,...,5,)7, and 0 > 0,
6 > 0 and 8 > 0 are unknown parameters. The parameter y; = v] 3 is the location
of y;. The location parameter vector p = (u1,...,pu,)7T is represented by a linear
model p = V3, where V = (vq,...,v,)T is a known model matrix. The LOLLBXII
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Fia. 6.1: Plots of the LOLLBXII density function for some parameter values.

model (6.4) provides new avenues for modeling several types of data sets. Note that
when the parameter § = 1, the LOLLBXII regression model reduces to the Log-
BXII (LBXII) regression model introduced by Silva et al. [25].

Consider a sample (y1,v1),..., (Yn,Vn) of n independent observations, where
each random response is defined by y; = min{log(z;),log(c;)} where z; and ¢; are
lifetime and censoring times, respectively. We assume non-informative censoring
such that the observed lifetimes and censoring times are independent. Let F and
C be the sets of individuals for which y; is the log-lifetime or log-censoring, respec-
tively. The log-likelihood function for the vector of parameters 7 = (6, 3,0,87)7
from model (6.4) has the form I(7) = > L;(7)+ > lEC)(T), where [;(T) = log[f(yi)],

icF ieC
ZEC)(T) = log[S(vi)], f(y:) is the density (6.1) and S(y;) is the survival function (6.2)
of Y;. The total log-likelihood function for 7 is given by

£(r) =rlog (%2) = (8+1) ¥ log (1 +exp () + X 2

+(0-1) X log[[1-(1+ oxp (20) ] (1 + exp (szﬁq
(6.5) T 6 ]
—Ziglog [[1 — (1 +exp (zi))*f’] +(1+exp(z)”? }

—B1°
1 1— [1—(1+exp(zi)) ]
+iezc o8 |: [1*(1+exp(zl'))_ﬁ]9+(1+exp(zi))_[39 ’
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where z; = (y; — v]3)/o and r is the number of uncensored observations (fai-
lures). The MLE 7T of the vector of unknown parameters can be evaluated by
maximizing the log-likelihood function (6.5). The optim function of R software
is used to estimate 7. Under the standard regularity conditions, the asymptotic
distribution of (¥ — 7) is multivariate normal N, 3(0, K (7)~'), where K(7) is the
expected information matrix. The asymptotic covariance matrix K(7)~! of 7 can
be approximated by the inverse of the (p+3) X (p+ 3) observed information matrix
_fJ(T), whose elements are evaluated numerically. The approximate multivariate
normal distribution N, 3(0, —L(7)~") for 7 can be used, in the classical way, to
construct approximate confidence intervals for the parameters in 7.

The likelihood ratio (LR) statistic can be used for comparing the sub-model
of the LOLLBXII regression model. For example, the LR statistic can be used to
discriminate between the LOLLBXII and LBXII regression models since they are
nested models, or equivalently to test Hy : & = 1. The LR statistic reduces to
w= 2[6@7570, B) —¢(1,3,5,8)], where (6, 3,6, 3) are the unrestricted MLEs and
(1, 8,5, () are the restricted estimates under Hy. The statistic w is asymptotically
(as n — oo) distributed as x%, where k is difference of two parameter vectors of
nested models. For example, £ = 1 for the above hypothesis test.

6.1.2. Jackknife Estimation Method

We used the Jackknife estimation method as an alternative method to estimate
the unknown parameters of LOLLBXII regression model. This method is based
on ”leave one out” procedure. Let 7 be the parameter estimation of whole sample
and 7_; be the parameter estimation when the i, observation is dropped from the
sample. The pseudo-value of i;, observation is given by

(66) i’i:nf—(n—l)f'_i.

Then, Jackknife estimation of 7, is given by
. 1~
(67) Tjack = g ZlT’L
i

It is clear that Jackknife estimation of 7 is the average of pseudo-values. Confidence
intervals of Jackknife estimates are

. s
(6.8) Tjack £ ta/2,(n71)%7

where 1,/ (,—1) is the value that is exceeded with probability /2 for the t distri-
bution with n — 1 degrees of freedom. The parameter estimation of the LOLLBXII
regression model can be obtained by means of the theory described above.
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6.2. Sensitivity analysis

A first tool to perform the sensitivity analysis, as stated before, is by means of
global influence starting from case deletion. Case deletion is a popular method to
investigate the influence of taking out the i, case from the data on the parameters
estimates. This method compares the 7 with 7_; where 7¥_; is the estimated
parameters when the i, case is dropped from the data. If there is a big differences
between 7_; and 7, the dropped observation could be considered as an influential
observation.

Here, generalized cook distance and likelihood distance measures are used to
detect the possible influential observations. These measures are described below.

6.2.1. Generalized cook distance
Generalized Cook distance (GD) is given by
(6.9) GD; (1) = (i = 7)" | ~L(7)] (7= 7,

where —L (7) is the observed information matrix.

6.2.2. Likelihood Distance

The Likelihood Distance (LD) is given by

(6.10) LD; (1) =2{((7) = £(T-i)},

where £ (7) is the estimated log likelihood value of whole data set and ¢ (7_;) is the
estimated log likelihood value when the i;;, observations is dropped.

6.3. Residual analysis

Residual analysis has critical role in checking the adequacy of the fitted model.
In order to analyse departures from error assumption, two types of residuals are
considered: martingale and modified deviance residuals.

6.3.1. Martingale residual

The martingale residuals are defined in the counting process and takes the values be-
tween +1 and—oo (see, Fleming and Harrington(1994) for details). The martingale
residuals for the LOLLBXII model are,

[17(1+exp(zi))’5]9

141 1-— ifi € F.
B + log ( [1(1+exp(zi))ﬂ]9+(l+exp(zi))ﬁs) 1 € F,

6.11 =
O log (1 — [1-Ctepo) 7] ifi e C
[1—(1+exp(2:)~#]" +(1+exp(z:)) ~** ’

where z; = (y; — ) /0.
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6.3.2. Modified deviance residual

The main drawback of the martingale residual is that when the fitted model is
correct, it is not symmetrically distributed about zero. To overcome this problem,
a modified deviance residual was proposed by Therneau et al. (1990). The modified
deviance residual is given by

sign (rar) { =2[ra, +log (1 — rag)|}Y/2, ifi € F
sign (ra;) { *27"M7:}1/2, ifi € C,

(6.12) rp, = {

where 7/, is the martingale residual.

7. Applications

In this section, we provide two applications to real data sets to illustrate the flexibil-
ity of the OLLBXII distribution and the LOLLBXII regression model. The statisti-
cal software R is used for all numerical computations. The following goodness-of-fit
measures are used to compare the OLLBXII model with the BXII model: Cramer
von Mises (W*), Anderson Darling (A*), estimated —¢. In general, the smaller the
values of these statistics, the better the fit to the data. Moreover, LR test is also
used to compare the models.

7.1. Turbocharger data set

We compare the fitting performance of the OLLBXII model with its sub-model.
The first data set comes from Xu et al. [32] and it represents the time to failure
(103 h) of turbocharger of one type of engine. The data are as follows: 1.6 3.5 4.8
546.0657.0737.7808420395.0566.16.57.1737.88.1842.64.55.15.8
6.36.77.37.7798.38.53.04.65.36.08.78.809.0.

The total-time-test (TTT) plot, introduced by Aarset [1], is used to obtain the
empirical behavior of the hazard rate of used data set. When the shape of TTT
plot has a straight diagonal line, the hazard rate is constant. When the shapes of
TTT plot have a convex or concave, the hazard rates are monotonically increasing
or decreasing, respectively. Figure 8 displays the TTT plot of the used data set.
Based on Figure 8, it is clear that the empirical hazard rate of the used data set is
monotonically increasing.

Table 7.1 gives W* and A* statistics and log-likelihood values. Based on Tabl
7.1, it is clear that OLLBXII distribution provides superior fit and therefore could
be chosen as a more adequate model than BXII for used data set.

Moreover, the profile log-likelihood functions of OLLBXII distribution are dis-
played in Figure 7.2. Figure 7.2 reveals that the likelihood equations of OLLBXII
distribution have solutions that are maximizers.
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Table 7.1: Fitting summary of the models: MLE
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Fia. 7.1: The TTT plot of used data set.

errors, A*, W* and estimated —/
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estimates and their standard

Models 0 o B A A* w* —{
BXII 118.7304 | 3.879613 | 0.042166 | 0.582 | 0.0783 | 82.53635
181.7223 | 0.5222 0.0181
OLLBXII | 0.3051 | 118.058 | 10.2619 | 0.09023 | 0.1365 | 0.02005 | 78.34025
0.1053 | 368.047 | 3.04463 | 0.03201

Table 7.2 shows the LR statistics and the corresponding p-values. From Table
7.2, the computed p-value is smaller than 0.05, so the null hypotheses are rejected.
We conclude that the OLLBXII model fits the first data better than the its sub-
model according to the LR test results.

More information can be provided in Figure 7.3 by a histogram of the data
with fitted lines of the pdfs for all distributions. Figure 7.3(a) suggests that the
OLLBXII fits left-skewed data very well. Then, we present the plots of the fitted
density, cumulative and survival functions with the probability-probability (P-P)
plot for the OLLBXII model in Figure 7.3(b). They reveal a good adjustment for
the data of the estimated density, cumulative and survival functions of OLLBXII

distribution.
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Table 7.2: The LR test results for third data set.

Hypotheses | LR p-value
OLLBXII versus BXII | Hy: 60 =1 | 8392 | 0.004

7.2. HIV data set

The hypothetical dataset contains 100 observations on HIV+ subjects belonging
to an Health Maintenance Organization (HMO). The HMO wants to evaluate the
survival time of these subjects. In this hypothetical data set, subjects were enrolled
from January 1, 1989 until December 31, 1991. Study follow up then ended on
December 31, 1995. This data set is reported in Hosmer and Lemeshow [19] and can
also be found in R package Bolstad2. We adopt the LOLLBXII regression model
to analyze this dataset. The variables involved in the study are: y; - observed
survival time (in months); cens; - censoring indicator (0= alive at study end or lost
to follow-up,1=death due to AIDS or AIDS related factors), z;1(1 = yes,0 = no)
represents the history of drug use and x;5 represents the ages of patients.

We consider the following regression model

Yi = Bo + Przi1 + Baxiz + 02,
where y; has the LOLLBXII density, for ¢ = 1,...,100.

7.2.1. Maximum Likelihood Estimation

The MLE method is used to estimate unknown parameters of the LOLLBXII and
LBXII regression models. Table 7.3 lists the MLEs of the model parameters of the
LBXII and LOLLBXII regression models fitted to the current data and the log-
likelihood and AIC values. These results indicate that the LOLLBXII regression
model has the lowest values of these statistics, and so the LOLLW-W model provides
better fitting than LBXII model for current data. For the fitted regression models,
note that Sy, f1 and fs is marginally significant at the 5% level.

LR test is used to compare the LOLLBXII and LBXII regression models. Table
7.4 shows the LR statistic and the corresponding p-value for the used data set.
Based on the figures in Table 7.4, the computed p-value is smaller than 0.05, so the
null hypotheses are rejected. We conclude that the LOLLBXII regression model
provides better fits than its sub-model according to the LR test results.

7.2.2. Jackknife Estimation Method

Here, the Jackknife estimation method is used to estimate the unknown parameters
of LOLLBXII regression model. In Table 7.5, the jackknife estimates for the param-
eters of the LOLLBXII regression model are reported. From Table 7.5, we conclude
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Table 7.3: MLEs of the parameters, their standard errors and p-values, the esti-
mated —¢ and AIC statistic.

LOLL-BXII LBXII
Parameters  Estimates  Std. Errors p-values Estimates Std. Errors p-values
0 0.977 1.356 - - - -
B8 2.940 6.389 - 0.867 0.361 -
o 0.705 1.112 - 0.566 0.080 -
Bo 6.675 3.227 0.039 4.755 0.804 <0.001
B1 -0.090 0.014 <0.001 -0.070 0.017 <0.001
B2 -0.974 0.210 <0.001 -0.902 0.220 <0.001
-0 127.942 130.152
AIC 267.885 270.304

Table 7.4: The LR test results for HIV+ data set.

Hypotheses | LR p-value
LOLLBXII versus LBXII | Hy: =1 | 4.4198 | 0.035

that the parameters 8y and 3, are significant when the jackknife estimation method
is used.

7.2.3. Sensitivity Analysis

Here, possible influential observations are analysed with measures described in Sec-
tion 6.2.. Figure 7.4 displays the results of the generalized Cook distance,GD; (7).
Based on Figure 7.4, cases 41, 48 and 92 can be considered as possible influential
observations.

Moreover, the effects of i;; observation on parameters of LOLLBXII regression
model is analysed and displayed in Figure 7.5. Based on this figure, it is clear that
the most influential observations are 41 and 48.

Table 7.5: Jackknife estimates for the parameters of LOLLBXII regression model

Parameters | Estimates | Std. Errors | 95% confidence intervals
0 0.933 0.147 [0.641; 1.224]

] 2.862 0.060 [2.743; 2.980]

o 0.659 0.165 [0.331; 0.987]

Bo 6.647 0.203 [ 6.243; 7.050]

31 -0.092 0.015 [-0.121; -0.063]

B2 -0.926 0.538 [-1.994; 0.142]
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7.2.4. Residual Analysis

Figure 7.6 displays the index plot of the modified deviance residuals and its Q-Q
plot against to N(0,1) quantiles for Stanford heart transplant data set. Based on
Figure 7.6 we conclude that none of observed values appears as possible outliers.
Therefore, the fitted model is appropriate for these data set.
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8. Concluding remarks

We propose a new lifetime model called Odd Log-logistic Burr XII distribution.
Some of its mathematical properties are derived. Some useful characterization re-
sults based on the ratio of two truncated moments, based on the hazard function,
and based on the conditional expectation of certain functions of the random vari-
able are presented. The maximum likelihood method is used to estimate the model
parameters by means of a graphical Monte Carlo simulation study. Moreover, we
introduce a new log-location regression model based on the proposed distribution.
The Jackknife estimation method is employed as an alternative method to esti-
mate the unknown parameters of the new regression model. The generalized cook
distance and likelihood distance measures are used to detect possible influential
observations. Martingale and modified deviance residuals are defined to detect out-
liers and evaluate the model assumptions. The potentiality of the new regression
model is illustrated by means of real data sets. Additionally, the index plot of the
generalized cook distance and the plots for the effects of observations on the model
parameters are presented.
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Appendix A

Theorem 1. Let (Q,F,P) be a given probability space and let H = |a,b)
be an interval for some d < b (a = —o00, b =00 might as well be allowed). Let
X :Q — H be a continuous random variable with the distribution function F' and
let ¢1 and ¢ be two real functions defined on H such that

El2(X) | X >a] =Elq (X) | X 2 aln(a), zell,
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is defined with some real function 7. Assume that q;,q2 € C* (H), n € C? (H) and
F is twice continuously differentiable and strictly monotone function on the set H.
Finally, assume that the equation 17g; = g2 has no real solution in the interior of H.
Then F is uniquely determined by the functions ¢, g2 and 7 , particularly

! n' (u)
sz/C" exp (—s(u)) du,
W=, e - am| P
where the function s is a solution of the differential equation s’ = 24— and C

7191 —42
is the normalization constant, such that f g dF =1

Appendix B

library (numDeriv)
rm(list=1s(all=TRUE))

f=function(x,theta,beta,alpha,lambda,a,b)
{

f=G(x,beta,alpha,lambda,a,b)**theta/(G(x,beta,alpha,lambda,a,b)
**theta+(1-G(x,beta,alpha,lambda,a,b))**xtheta)
ff=theta*g(x,beta,alpha,lambda,a,b)*(G(x,beta,alpha,lambda,a,b)
*(1-G(x,beta,alpha,lambda,a,b))) **x(theta-1)/
((G(x,beta,alpha,lambda,a,b)
*xtheta+(1-G(x,beta,alpha,lambda,a,b))**theta))**2

fff=£ff/(1-f)
return (f£ff)
}

g=function(x,beta,alpha,lambda,a,b){dburr(x,beta,alpha,lambda)}
G=function(x,beta,alpha,lambda,a,b){pburr(x,beta,alpha,lambda)l}

pdf=function(x){f(x[1],theta,beta,alpha,lambda)}
pdf2=function(y,theta,beta,alpha,lambda){f(y,theta,beta,alpha,
lambda) }

troca=function (){
y=seq(0.1,15,0.1); mod=c(); deriv=c()
ate=pdf2(y,theta,beta,alpha,lambda)
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ate=ate[ate!=Inf] ; n=length(ate)
for(i in 1:n){deriv=c(deriv,grad(func=pdf,x=c(y[i]l)))}
sinal=sign(deriv)
change=c ()
for(j in 1:n-1){
changel=ifelse(sinal[j]==sinal[j+1],0,1); change=c(change,
changel)}
position=which(change %in% c(1))

if (sum(change)==0) mod<-ifelse(sinal[1]>0,"+","-")
if (sum(change)>0) mod<-ifelse(sinal[position]>sinal[position
+1] ,||+_n ’I|_+II)

if (identical(mod,c("+"))) mod<<-"crescente"

if (identical(mod,c("+-"))) mod<<-"modal"

if (identical (mod,c("+-=","=+"))) mod<<-"n"

if (identical(mod,c("+-","—+" "4+-"))) mod<<-"m"
if (identical(mod,c("-"))) mod<<-"decrescente"
if (identical(mod,c("-+"))) mod<<-"banheira"

if (identical(mod,c("-+","+-"))) mod<<-"inv(n)"
if (identical (mod,c("—-+","+-" _"—+"))) mod<<-"w"
return (c(sum(change)))?}

#fixing parameters
alpha=4;lambda=0.1; alphax=c(); betax=c(); a2=c(); a3=c()

for(theta in seq(0.1,1,0.005))1
for(beta in seq(0.1,1,0.005)){
alphax=c(alphax,theta) ;betax=c(betax,beta);a=troca();a2=c(a2,
a); a3=c(a3,mod)}}

ff=factor (a3,labels=1:2)
ffi=as.numeric (ff)

ffi1[ffl==1]=’royalbluel’ #decres
ff1[ff1==2]="slategrayl’ # inv (n)
ffi1[ff1==3]=’darkslategray3’ #m bimo
ff1[ffl1==4]=’slategrayl’ #mod

plot (alphax ,betax,col=ffl,pch=16,cex=1,ylab =expression(beta)
,xlab=expression(theta))

text(0.17,0.6,’A° ,col=1,cex=1.5)

text(0.6,0.6,’B’,col=1,cex=1.5)

legend(0.7,0.8,c("A, - ,decreasing", "B~ upside-down"
) ,bty="n",cex=1)



