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GENERALIZED FUGLEDE-PUTNAM THEOREM AND

m-QUASI-CLASS A(k) OPERATORS

Mohammad H.M. Rashid

Abstract. For a bounded linear operator T acting on an complex infinite dimensional
Hilbert space H, we say that T is an m-quasi-class A(k) operator for k > 0 and m is a

positive integer (abbreviation T ∈ Q(A(k),m)) if T ∗m
(

(T ∗|T |2kT )
1

k+1 − |T |2
)

Tm ≥ 0.

The famous Fuglede-Putnam theorem asserts that: the operator equation AX = XB

implies A∗X = XB∗ when A and B are normal operators. In this paper, we prove that
if T ∈ Q(A(k),m) and S∗ is an operator of class A(k) for k > 0. Then TX = XS,
where X ∈ B(H) is an injective with a dense range which implies XT ∗ = S∗X.
Keywords. Bounded linear operator; Hilbert space; Fuglede-Putnam theorem; Normal
operator.

1. Introduction

Let H be an infinite dimensional complex Hilbert and B(H) denotes the algebra
of all bounded linear operators acting on H. Throughout this paper, the range and
the null space of an operator T will be denoted by ran(T ) and ker(T ), respectively.
Let M and M⊥ be the norm closure and the orthogonal complement of the sub-
space M of H. The classical Fuglede-Putnam theorem [12, Problem 152] asserts
that if T ∈ B(H) and S ∈ B(H) are normal operators such that TX = XS for some
operator X ∈ B(H), then T ∗X = XS∗. The references [16, 17, 18, 19, 20, 21] are
among the various extensions of this celebrated theorem for non-normal operators.

Every operator T can be decomposed into T = U |T | with a partial isometry U ,
where |T | is the square root of T ∗T . If U is determined uniquely by the kernel con-
dition ker(U) = ker(|T |), then this decomposition is called the polar decomposition,
which is one of the most important results in operator theory ( [7], [12], [14] and
[31]). In this paper, T = U |T | denotes the polar decomposition satisfying the kernel
condition ker(U) = ker(|T |).

Recall that an operator T ∈ B(H) is positive, T ≥ 0, if 〈Tx, x〉 ≥ 0 for all x ∈ H.
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An operator T ∈ B(H) is said to be hyponormal if T ∗T ≥ TT ∗. Hyponormal opera-
tors have been studied by many authors and it is known that hyponormal operators
have many interesting properties similar to those of normal operators ( [1, 4, 5, 8, 9]
and [13] ). An operator T is said to be p-hyponormal if(T ∗T )p ≥ (TT ∗)p for
p ∈ (0, 1] and an operator T is said to be log-hyponormal if T is invertible and
log |T | ≥ log |T ∗|. p-hyponormal and log-hyponormal operators are defined as ex-
tension of hyponormal operator.

An operator T ∈ B(H) is said to be paranormal if it satisfies the following norm
inequality

‖T 2‖‖x‖ ≥ ‖Tx‖
2

for all x ∈ H. Ando [3] proved that every log-hyponormal operator is paranormal.
It was originally introduced as an intermediate class between hyponormal and nor-
maloid operators.

In order to discuss the relations between paranormal and p-hyponormal and log-
hyponormal operators, Furuta el al. [9] introduced a class A defined by |T 2| ≥ |T |2

and they showed that class A is a subclass of paranormal and contains p-hyponormal
and log-hyponormal operators. Class A operators have been studied by many re-
searchers, for example [9, 10]. Fujii et al. [10] introduced a new class A(t, s) of
operators: For t > 0 and s > 0, the operator T belongs to class A(s, t) if it satisfies
the operator inequality

(
|T ∗|t|T |2s|T ∗|t

) t
t+s ≥ |T ∗|2t.

Furuta el al. [9] introduced class A(k) for k > 0 as a class of operators including
p-hyponormal and log-hyponormal operators, where A(1) coincides with class A
operator. We say that an operator T is class A(k), k > 0 (Abbreviation, T ∈ A(k)

) if (T ∗|T 2k|T )
1

k+1 ≥ |T |2. The inclusion relations among these classes are known
as follows:

{hyponormal operators} ⊂ {p− hyponormal operators for 0 < p ≤ 1}

⊂ {class A(s, t) operators for s, t ∈ [0, 1]}

⊂ {class A operators}

⊂ {paranormal operators}.

and

{hyponormal operators} ⊂ {p− hyponormal operators for 0 < p ≤ 1}

⊂ {class A operators}

⊂ {class A(k) for k ≥ 1}.

2. Spectral properties of k-quasi class A(m) operators

Throughout this article we would like to present some known results as propositions
which will be used in the sequel. Firstly, we begin with the following definition.
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Definition 2.1. We say that an operator T ∈ B(H) is of m-quasi class A(k)
(abbreviate Q(Ak,m) ), if

T ∗m(T ∗|T |2kT )1/(k+1)Tm ≥ Tm∗|T |2Tm,

where m is a positive integers and k > 0. If m = 1, then T is called a quasi-class
A(k) and if k = m = 1, then Q(Ak,m) coincides with quasi-class A operator.

Lemma 2.1. [6, Hansen’s Inequality] If A,B ∈ B(H) satisfying A ≥ 0 and ‖B‖ ≤
1, then

(B∗AB)α ≥ B∗AαB ∀α ∈ (0, 1].

Proposition 2.1. [23, Lemma 2.2]Let T ∈ Q(Ak,m) and Tm not have a dense
range. Then

T =

(
T1 T2

0 T3

)
on H = ran(Tm)⊕ ker(T ∗m),

where T1 = T |ran(Tm) is the restriction of T to ran(Tm), and T1 ∈ A(k) and T3 is

nilpotent of nilpotency m. Moreover, σ(T ) = σ(T1) ∪ {0}.

Proposition 2.2. [23, Theorem 2.3] Let T ∈ B(H) be a Q(Ak,m) operator and
M be its invariant subspace. Then the restriction T |M of T to M is also Q(Ak,m)
operator.

Proposition 2.3. [23, Theorem 2.4] Let T ∈ Q(Ak,m). Then the following as-
sertions holds:

(a) If M is an invariant subspace of T and T |M is an injective normal operator,
then M reduces T .

(b) If (T − λ)x = 0, then (T − λ)∗x = 0 for all λ 6= 0.

A complex number λ is said to be in the point spectrum σp(T ) of T if there is a
nonzero x ∈ H such that (T −λ)x = 0. If, in addition, (T ∗− λ̄)x = 0, then λ is said
to be in the joint point spectrum σjp(T ) of T . Clearly, σp(T ) ⊆ σjp(T ). In general,
σp(T ) 6= σjp(T ).

In [33], Xia showed that if T is a semi-hyponormal operator, then σp(T ) =
σjp(T ); Tanahashi extended this result to log-hyponormal operators in [27]. Aluthge
[2] showed that if T is w-hyponormal, then nonzero points of σp(T ) and σjp(T ) are
identical; Uchiyama extended this result to class A operators in [28]. In the follow-
ing, we will point out that if T is a quasi-∗-class (A, k) operator for a positive integer
k, then nonzero points of σjp(T ) and σp(T ) are also identical and the eigenspaces
corresponding to distinct eigenvalues of T are mutually orthogonal.

Corollary 2.1. If T ∈ Q(Ak,m), then σjp(T ) \ {0} = σp(T ) \ {0}.
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Corollary 2.2. If T ∈ Q(Ak,m) and α, β ∈ σp(T ) \ {0} with α 6= β. Then
ker(T − α) ⊥ ker(T − β).

Proof. Let x ∈ ker(T − α) and y ∈ ker(T − β). Then Tx = αx and Ty = βy.
Therefore

α〈x, y〉 = 〈αx, y〉 = 〈Tx, y〉 = 〈x, T ∗y〉 = 〈x, βy〉 = β〈x, y〉.

Hence α〈x, y〉 = β〈x, y〉 and so (α − β)〈x, y〉 = 0. But α 6= β, hence 〈x, y〉 = 0.
Consequently, ker(T − α) ⊥ ker(T − β).

Theorem 2.1. Let T ∈ B(H). If T ∈ Q(Ak,m) with a dense range, then T is a
class A(k) operator for k > 0.

Proof. Since T has a dense range, ran(Tm) = H. Then there exists a sequence
{xn} ⊂ H such that lim

n→∞
Tmxn = y. Since T ∈ Q(Ak,m), we have

〈T ∗m(T ∗|T |2kT )
1

k+1Tmxn, xn〉 ≥ 〈T ∗m|T |2Tmxn, xn〉

〈T ∗m(T ∗|T |2kT )
1

k+1Tmxn, xn〉 ≥ 〈T ∗m|T |2Tmxn, xn〉

〈(T ∗|T |2kT )
1

k+1Tmxn, T
mxn〉 ≥ 〈|T |2Tmxn, T

mxn〉 ∀n ∈ N

By the continuity of the inner product, we have

〈((T ∗|T |2kT )
1

k+1 − |T |2)y, y〉 ≥ 0,

for all y ∈ H. Therefore T is a class A(k) operator for k > 0.

Corollary 2.3. Let T ∈ B(H). If T ∈ Q(Ak,m) and not class A(k), then T is
not invertible.

3. Generalized Fuglede-Putnam Theorem

For T ∈ B(H) and S ∈ B(H), we say that the FP-theorem holds for the pair (T, S)
if TX = XS implies T ∗X = XS∗, ran(X) reduces T , and ker(X)⊥ reduces S, the
restrictions T |ran(X) and S|ker(X)⊥ are unitary equivalent normal operators for all

X ∈ B(H). The following result is very useful in the sequel.

Proposition 3.1. [26] Let T ∈ B(H) and S ∈ B(H). Then the following asser-
tions are equivalent.

1. If TX = XS, where X ∈ B(H), then T ∗X = XS∗,

2. If TX = XS, where X ∈ B(H), then ran(X) reduces T , ker(X)⊥ reduces S,
the restrictions T |

ran(X)
and S|ker(S)⊥ are normal.



Generalized Fuglede-Putnam Theorem 77

The numerical range of an operator T , denoted by W (T ), is the set defined by

W (T ) = {〈Tx, x〉 : ‖x‖ = 1}.

In general, the condition S−1TS = T ∗ and 0 /∈ W (T ) do not imply that T is
normal. If T = SB, where S is positive and invertible, B is self-adjoint, and S
and B do not commute, then S−1TS = T ∗ and 0 /∈ W (S), but T is not normal.
Therefore the following question arises naturally.
Question: Which operator T satisfying the condition S−1TS = T ∗ and 0 /∈ W (S)
is normal?

In 1966, Sheth [24] showed that if T is a hyponormal operator and S−1TS = T ∗

for any operator S, where 0 /∈ W (S), then T is self-adjoint. We extend the result
of Sheth to the class A(k), k > 0 operators as follows.

Theorem 3.1. Let T ∈ B(K). If T or T ∗ belongs to class A(k) for every k > 0
and S is an operator for which 0 /∈ W (S) and ST = T ∗S, then T is self-adjoint.

To prove Theorem 3.1 we need the following Lemmas.

Lemma 3.1. [30] If T ∈ B(H) is any operator such that S−1TS = T ∗, where
0 /∈ W (S), then σ(T ) ⊆ R.

Lemma 3.2. Let T ∈ B(H) and let T belongs to the class A(s, t) for some s > 0
and t > 0, we have

(a) If T̃s,t is normal, then T is normal [29].

(b) If m2(σ(T )) = 0, where m2 means the planer Lebsegue measure, then T is
normal [22].

Proof. [Proof of Theorem 3.1] Suppose that T or T ∗ is a class A(k), k > 0 operator.
Since σ(T ) ⊆ W (S), S is invertible and hence ST = T ∗S becomes S−1T ∗S = T =
(T ∗)∗. Apply Lemma 3.1 to T ∗ to get σ(T ∗) ⊆ R. Then σ(T ) = σ(T ∗) = σ(T ∗) ⊆
R. Thus m2(σ(T )) = m2(σ(T

∗))) = 0 for the planer Lebesgue measure m2. It
follows from Lemma 3.2 that T or T ∗ is normal. Since σ(T ) = σ(T ∗) ⊆ R.
Therefore, T is self-adjoint.

We can extend the result of Theorem 3.1 to the class of Q(Ak,m) as follows:

Theorem 3.2. Let T ∈ B(H). If T ∈ Q(Ak,m) and S is an arbitrary operator for
which 0 /∈ W (S) and ST = T ∗S, then T is a direct sum of self-adjoint and nilpotent
operator.

Proof. Since T is m-quasi-class A(k). then by Proposition 2.1, T has the following
matrix representation:

T =

(
T1 T2

0 T3

)
on H = ran(Tm)⊕ ker(T ∗m),



78 M.H.M. Rashid

where T1 = T |ran(Tm) is the restriction of T to ran(Tm), and T1 is a class A(k)

and T3 is nilpotent of nilpotency m. Since S−1TS = T ∗ and 0 /∈ W (S), we have
σ(T ) ⊆ R by Lemma 3.1. Therefore σ(T1) ⊆ R because σ(T ) = σ(T1) ∪ {0} and
hence T1 is self-adjoint by Theorem 3.1 because T1 belongs to class A(k). Now let
Q be the orthogonal projection of H onto ran(Tm). Since T ∈ Q(Ak,m) we have

(
|T1|

2 0
0 0

)
= Q|T |2Q ≤ Q(T ∗|T |2kT )1/(k+1)Q

≤
(
QT ∗|T |2kT )Q

)1/(k+1)

≤
(
QT ∗(QT ∗TQ)kT )Q

)1/(k+1)
=

(
(T ∗

1 |T1|
2kT1)

1
k+1 0

0 0

)

by Lemma 2.1. Therefore,

Q(T ∗|T |2kT )1/(k+1)Q =

(
|T1|

2 0
0 0

)
= Q|T |2Q.

Since S is normal, we can write (T ∗|T |2kT )1/(k+1) =

(
|T1|

2 C
C∗ D

)
. Since

(
|T1|

2(k+1) 0
0 0

)
= Q(T ∗|T |2kT )Q = Q((T ∗|T |2kT )k+1)1/(k+1)Q,

we can easily show that C = 0. Therefore,

(T ∗|T |2kT )1/(k+1) =

(
|T1|

2 0
0 D

)

and hence

T ∗|T |2kT =

(
|T1|

2(k+1) 0
0 Dk+1

)
= T ∗(T ∗T )kT.

This implies that D = (T ∗
3 |T3|

2kT3)
1/(k+1), and by the matrix representation of T

we also have

T ∗T =

(
T1T

∗
1 T ∗

1 T2

T ∗
2 T1 + T ∗

3 T3 T ∗
2 T2

)
.

Therefore T ∗
2 T2 = 0 and hence T2 = 0, which completes the proof.

The following corollary is an extension of the result of Theorem 3.1 to the class of
quasi-class A(k) operators.

Corollary 3.1. If T is a quasi-class A(k) operator and S is an arbitrary operator
for which 0 /∈ W (S) and ST = T ∗S, then T is self-adjoint.

Proof. If T is a quasi-classA(k) operator, T has the following matrix representation:

T =

(
T1 T2

0 0

)
onH = ran(T )⊕ ker(T ∗),
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where T1 is a class A(k) on ran(T ) and σ(T ) = σ(T1)∪ {0}. Since T1 is self-adjoint
and T2 = 0 by Theorem 3.2, T is also self-adjoint.

In 1976, Stampfli and Wadhwa [25] showed that if T ∗ ∈ B(H) is hyponormal, S ∈
B(H) is dominant, X ∈ B(H) is injective and has a dense range, and if XT = SX ,
then T and S are normal. on the other hand, in 1981, Gupta and Ramanujan [11]
showed that if T ∈ B(H) is k-quasihyponormal operator and S ∈ B(H) is normal
operator for which TY = Y S where Y ∈ B(H) is injective with dense range, then T
is normal operator unitarily equivalent to S. In the following theorem , we extend
the result of Gupta and Ramanujan to the class Q(Ak,m) operators. We need the
following Lemmas.

Lemma 3.3. [15] Let T, S be normal operators. If there exist injective operators
X and Y such that XT = SX and Y S = TY , then T and S are unitarily equivalent.

Lemma 3.4. Let T = U |T | be the polar decomposition of T which belong to class

A(p, p) for p > 0. Then T̃p,p = |T |pU |T |p is semi-hyponormal and
˜̃
T p,p is hyponor-

mal.

Theorem 3.3. Let T ∈ B(H) be class A(k) and N ∈ B(H) be a normal operator.
If X ∈ B(H) has dense range and satisfies TX = XN , then T is also a normal
operator.

Proof. Since TX = XN and X has dense range, we have Xran(N) = ran(T ). If
we denote the restriction of X to ran(N) by X1, then X1 : ran(N) → ran(T ) has
dense range and for every x ∈ ran(N)

X1Nx = XNx = TXx = TX1x

so that X1N = TX1. Since T is of class A(k) then T belongs to class A(p, p), where

p = max{1, k}. Hence it follows from Lemma 3.4 that T̃p,p is semi-hyponormal and

hence there is a quasiaffinity Y such that T̃p,pY = Y T . Thus we have

T̃p,pY X1 = Y TX1 = Y X1N

since Y X1 has dense range, T̃p,p is normal, and so T is normal by Lemma 3.2.

Theorem 3.4. Let T ∗ ∈ B(H) be of class A(k) for k > 0 and let S ∈ B(H) be of
class A(k) for k > 0. If XT = SX, where X : H → H is an injective bounded linear
operator with dense range, then T is a normal operator unitarily equivalent to S.

Proof. Since T ∗ and S are class A(k), then T ∗ and S are class A(p, p), where
p = max{1, k}. Now, decompose S and T ∗ into their normal and pure parts by

S = W ⊕ J and T ∗ = L∗ ⊕ Q∗. Let X1 =
˜̃
X = |J̃p,p|

1
2 |J̃p,p|

1
2X |Q̃∗

p,p|
1
2 |Q̃∗

p,p|
1
2 .
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Since XQ = JX, X1
˜̃Qp,p = ˜̃Jp,pX1, where

˜̃Qp,p , ˜̃Jp,p are hyponormal operators
by Lemma 3.4 and X1 is quasi-affinity. Now by Fuglede-Putnam Theorem for

hyponormal operators, X1
˜̃Qp,p = ˜̃J∗

p,pX1 and ran(X1) reduces
˜̃Jp,p and (kerX1)

⊥

reduces ˜̃Qp,p and ˜̃Jp,p|ran(X1)
and ˜̃Qp,p|(kerX1)⊥ are unitarily equivalent normal

operators. Since X1 is quasiaffinity, then ran(X1) = H and (kerX1)
⊥ = {0} and

˜̃Qp,p and ˜̃Jp,p are unitarily equivalent normal operators. In particular, ˜̃Qp,p and
˜̃Jp,p are normal operators and by Lemmas 3.3, 3.3, the result follows.

Theorem 3.5. If T ∗ ∈ B(H) is of class A(k) for k > 0, S ∈ B(H) is of class A(k)
for k > 0 and XT = SX for X ∈ B(H) is quasiaffinity, then XT ∗ = S∗X

Proof. Since by assumption XT = SX , we can see that (ker(X))⊥and ran(X) are
invariant subspaces of T ∗ and S , respectively. Then T ∗|(kerX)⊥ is of class A(k) and

S|
ran(X)

is also of classA(k). Now consider the decompositionH = (kerX)⊥⊕kerX

and H = ran(X)⊕ (ran(X))⊥. Then we have the following matrix representation:

T =

[
T1 T2

0 T3

]
, S =

[
S1 S2

0 S3

]
, X =

[
X1 0
0 0

]
,

where T ∗
1 is of class A(k), S1 is of class A(k) and X1 is injective with dense range.

Therefore, we have X1T1x = XTx = SXx = S1X1x for x ∈ (kerX)⊥. That is,
X1T1 = S1X1 and T1 and S1 are normal by Theorem 3.4. By Fuglede-Putnam
theorem we have X1T

∗
1 = S∗

1X1. Therefore, (kerX)⊥ and (ran(X)) reduces T ∗ and
S, respectively. Hence, we obtain the XT ∗ = S∗X .

Theorem 3.6. Let T ∈ Q(Ak,m) and let S∗ be an operator of class A(k) for
k > 0. If TX = XS, where X ∈ B(H) is an injective with dense range. Then
XT ∗ = S∗X.

Proof. Let T1 = T |ran(Tm) and S1 = S|ran(Sm). Then we have the following matrix
representation:

T =

(
T1 T2

0 T3

)
, S =

(
S1 0
0 0

)
,(3.1)

where T1 is class A(k), Tm
3 = 0 and S∗

1 = 0. Notice that TmX = XSm for all

positive integer m. Thus X(ran(Sm)) = ran(Tm). If we denote the restriction of
X to ran(Sm) by N then N : ran(Sm) → ran(Sm) is an injective and has a dense
range. Since NS1x = XSx = TXx = T1Nx for all x ∈ ran(Sm), it follows that
NS1 = T1N. On the other hand, since T1 and S∗

1 are belong to class A(k), it follows
from Theorem 3.5 that T1 is a normal operator unitarily equivalent to S1. Now
let E be the orthogonal projection of H onto ran(Tm). Since T ∈ Q(Ak,m) and
T1 is a normal operator, from the argument of the proof of Theorem 3.2 we have
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T2 = 0 and hence ran(Tm) reduces T . Since X∗(ker(Tm∗

)) ⊆ ker(Sm∗

) = ker(S∗),
we have that for each x ∈ ker(Tm∗

),

X∗T ∗

3 x = X∗T ∗x = S∗X∗x = 0.(3.2)

But since X has a dense range, X∗ is an injective and hence T ∗
3 x = 0 for every

x ∈ ker(T k∗

). Thus T3 = 0, so that T = T1⊕0. Therefore, the proof is achieved.

Theorem 3.7. If T ∗ ∈ B(H) is of class A(k) for k > 0, S ∈ B(H) is injective
m-quasi-class A(k), and if XT = SX for X ∈ B(H), then XT ∗ = S∗X.

Proof. Since by assumption XT = SX , we can see that (kerX)⊥ and ranX are
invariant subspace of T ∗ and S, respectively. Therefore, by Lemma 2.2 we have that
T ∗|(kerX)⊥ is class A(k) and S|ran(X) ∈ Q(Ak,m). Now consider the decomposition

H = (kerX)⊥ ⊕ kerX . Then we have the matrix representations:

T =

[
T1 0
T2 T3

]
, S =

[
S1 S2

0 S3

]
, X =

[
X1 0
0 0

]
(3.3)

where T ∗
1 is of classA(k) and S1 is injectivem-quasi-classA(k) andX1 is an injective

with dense range. Therefore, we have

X1T1x = XTx = SXx = S1X1x for x ∈ (kerX)⊥.(3.4)

that is, X1T1 = S1X1 and hence, T1 and S1 are normal by Theorem 3.6 and
X1T

∗
1 = S∗

1X1 by the Fuglede-Putnam Theorem. Therefore, it follows from Lemma
2.3 that (kerX)⊥ and ran(X) reduces T ∗ and S , respectively. Hence, we obtain
the XT ∗ = S∗X .

Let T ∈ B(H) be compact, and let s1(T ) ≥ s2(T ) ≥ · · · ≥ 0 denote the singular

values of T , i.e., the eigenvalues of |T | = (T ∗T )
1
2 arranged in their decreasing order.

The operator T is said to belong to the Schatten p-class Cp if

‖T ‖p =




∞∑

j=1

(sj(T ))
p




1
p

= (tr|T |p)
1
p < ∞, 1 ≤ p < ∞,

where tr(.) denote the trace functional. Hence C1(H) is the trace class, C2(H) is the
Hilbert-Schmidt class, and C∞ is the class of compact operator with ‖T ‖

∞
= s1(T )

denoting the usual norm.
For each pairs of operators A and B in B(H), an operator τ in (

¯
B2(H)) is defined

by
τX = AXB.

Evidently ‖τ‖ ≤ ‖A‖‖B‖. And the adjoint of τ is given by the formula τ∗X =

A∗XB∗. In particular, if A and B are both positive, then τ is positive and τ
1
2 =

A
1
2XB

1
2 , as one sees from the calculation

〈τX,X〉 = tr(AXBX∗) = tr(A
1
2XBX∗A

1
2 )

= tr
(
(A

1
2XB

1
2 )(A

1
2XB

1
2 )∗

)
≥ 0.
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Since |τ |2X = |A|2X |B∗|2 and |τ∗|2X = |A∗|2X |B|2, we have

|τ |
1

2n = |A|
1

2n X |B∗|
1

2n

and
|τ∗|

1
2n = |A∗|

1
2n X |B|

1
2n

for each integer n ≥ 1.
Now, we need the following lemma.

Lemma 3.5. Let A and B be operators in B(H). If A and B∗ are m-quasi-class
A(k) for k > 0. Then the operator τ : C2(H) → C2(H) defined by τX = AXB is
m-quasi-class A(k) for k > 0.

Proof. For X ∈ C2(H), we have

τ∗m
((

τ∗|τ |2kτ
) 1

k+1 − |τ |2
)
τmX

= A∗m
[
(A∗|A|2kA)

1
k+1 − |A|2

]
AmXBm

(
B|B∗|2kB∗

) 1
k+1 B∗m

+ A∗m|A|2AmXBm
(
(B|B∗|2kB∗)

1
k+1 − |B∗|2

)
B∗m

Since A and B∗ are m-quasi-class A(k) operators, we have

τ∗m
((

τ∗|τ |2kτ
) 1

k+1 − |τ |2
)
τm ≥ 0.

Theorem 3.8. Let A be m-quasi-class A(k) operator for k > 0 and B∗ be an
invertible class A(k) operator for k > 0. If AX = XB for X ∈ C2(H), then
A∗X = XB∗.

Proof. Let τ be defined on C2(H) by τX = AXB−1. Since B∗ is an invertible class
A(k) operator, then it follows that B∗ is also a class A(k) operator for k > 0. Since
A is an m-quasi-class A(k) operator and (B−1)∗ = (B∗)−1 is an m-quasi-class A(k)
operator, we have that τ is an m-quasi-class A(k) operator on B2(H) by Lemma
3.5. Moreover, we have τX = AXB−1 = X because of AX = XB. Hence X is an
eigenvector of τ. By Proposition 2.3 part (b), we have τ∗X = A∗X(B−1)∗ = X,
that is, A∗X = XB∗. So, the proof is achieved.
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