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AN ANALOGUE OF COWLING-PRICE’S THEOREM FOR THE
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Abstract. The Q-Fourier-Dunkl transform satisfies some uncertainty principles in a
similar way to the Euclidean Fourier transform. By using the heat kernel associated
to the Q-Fourier-Dunkl operator, we have established an analogue of Cowling-Price,
Miyachi and Morgan theorems on R by using the heat kernel associated to the Q-
Fourier-Dunkl transform.
Keywords: Cowling-Price’s theorem; Miyachi’s theorem; Uncertainty Principles; Q-
Fourier-Dunkl transform.

1. Introduction

There are many theorems which state that a function and its classical Fourier
transform on R cannot simultaneously be very small at infinity. This principle
has several versions which were proved by M.G. Cowling and J.F. Price [3] and
Miyachi [6]. In this paper, we will study an analogue of Cowling-Price’s theorem
and Miyachi’s theorem for the Q-Fourier-Dunkl transform. Many authors have
established the analogous of Cowling-Price’s theorem in other various setting of
harmonic analysis (see for instance [5]) The outline of the content of this paper is
as follows.
Section 2 is dedicated to some properties and results concerning the Q-Fourier-
Dunkl transform. In Section 3 we give an analogue of Cowling-Price’s theorem,
Miyachi’s theorem, and Morgan’s theorem for the Q-Fourier-Dunkl transform. Let
us now be more precise and describe our results. To do so, we need to introduce
some notations. Throughout this paper α > −1

2 . Notice that if α = −1
2 then the

space is the classical Lebesgue one, we can follow in this case the procedures for
similar transforms, such as the Fourier transform (see for example [3, 6]).

�

Q(x) = exp

(
−
∫ x

0

q(t)dt

)
, x ∈ R(1.1)
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where q is a C∞ real-valued odd function on R.

� Lpα(R) the class of measurable functions f on R for which ‖f‖p,α <∞, where

‖f‖p,α =

(∫
R
|f(x)|p|x|2α+1dx

) 1
p

, if 1 < p <∞,

and ‖f‖∞,α = ‖f‖∞ = esssupx∈R|f(x)|.

� LpQ(R) the class of measurable functions f on R for which ‖f‖p,Q = ‖Qf‖p,α <
∞, where Q is given by (1.1).

We consider the first singular differential-difference operator Λ defined on R

Λf(x) = f ′(x) + (α+
1

2
)
f(x)− f(−x)

x
+ q(x)f(x)(1.2)

where q is a C∞ real-valued odd function on R. For q = 0 we regain the Dunkl
operator Λα associated with reflection group Z2 on R given by

Λαf(x) = f ′(x) + (α+
1

2
)
f(x)− f(−x)

x
.

1.1. Q-Fourier-Dunkl Transform

The following statements are proved in [1]

Lemma 1.1. 1. For each λ ∈ C, the differential-difference equation

Λu = iλu, u(0) = 1

admits a unique C∞ solution on R, denoted by Ψλ, given by

Ψλ(x) = Q(x)eα(iλx),(1.3)

where eα denotes the one-dimensional Dunkl kernel defined by

eα(z) = jα(iz) +
z

2(α+ 1)
jα+1(z) (z ∈ C),

and jα being the normalized spherical Bessel function of index α given by

jα(z) = Γ(α+ 1)

∞∑
n=0

(−1)n( z2 )2n

n! Γ(n+ α+ 1)
(z ∈ C).(1.4)

2. For all x ∈ R, λ ∈ C and n = 0, 1, ... we have

| ∂
n

∂λn
Ψλ(x) |≤ Q(x)|x|ne|Im λ||x|.(1.5)

In particular
| Ψλ(x) |≤ Q(x)e|Im λ||x|.(1.6)
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3. For all x ∈ R, λ ∈ C, we have the Laplace type integral representation

Ψλ(x) = aαQ(x)

∫ 1

−1
(1− t2)α−

1
2 (1 + t)eiλxtdt,(1.7)

where aα =
2Γ(α+ 1)
√
πΓ(α+ 1

2 )
.

Definition 1.1. The Q-Fourier-Dunkl transform associated with Λ for a function
in L1

Q(R) is defined by

FQ(f)(λ) =

∫
R
f(x)Ψ−λ(x)x2α+1dx.(1.8)

Theorem 1.1. 1. Let f ∈ L1
Q(R) such that FQ(f) ∈ L1

α(R). Then for allmost
x ∈ R we have the inversion formula

f(x) (Q(x))
2

= mα

∫
R
FQ(f)(λ)Ψλ(x)|λ|2α+1dλ,

where

mα =
1

22(α+1)(Γ(α+ 1))2
.

2. For every f ∈ L2
Q(R), we have the Plancherel formula∫

R
|f(x)|2 (Q(x))

2 |x|2α+1dx = mα

∫
R
|FQ(f)(λ)|2|λ|2α+1dλ.

3. The Q-Fourier-Dunkl transform FQ extends uniquely to an isometric isomor-
phism from L2

Q(R) onto L2
α(R).

The heat kernel N(x, s), x ∈ R, s > 0, associated with the Q-Fourier-Dunkl trans-
form is given by

N(x, s) = mα
e−

x2

4s

(2s)α+
1
2Q(x)

.(1.9)

Some basic properties of N(x, s) are the following:

� N(x, s)Q2(x) = mα

∫
R
e−sy

2

Ψy(x)|y|2α+1dy.

� FQ(N(., s))(x) = e−sx
2

.

we define the heat functions Wl, l ∈ N as

Q2(x)Wl(x, s) =

∫
R
yle−

y2

4s Ψy(x)|y|2α+1dy(1.10)
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FQ(Wl(., s)) = ilyle−sy
2

.(1.11)

The intertwining operators associated with a Q-Fourier-Dunkl transform on the real
line is given by

XQ(f)(x) = aαQ(x)

∫ 1

−1
f(tx)(1− t2)α−

1
2 dt,

its dual is given by

tXQ(f)(y)a = aα
∫
|x|≥|y| f(x)Q(x)sgn(x)(x2 − y2)α−

1
2 (x+ y)dx(1.12)

tXQ can be written as

tXQ(f)(y) = aα

∫
R
f(x)Q(x)dνy(x),

where

dνy(x) = aαχ{|x|≥|y|}sgn(x)(x2 − y2)α−
1
2 (x+ y)dx

and χ{|x|≥|y|} denote the characteristic function with support in the set {x ∈
R / |x| ≥ |y|}.

Proposition 1.1. If f ∈ L1
Q(R) then tXQ(f) ∈ L1(R) and ‖tXQ(f)‖1 ≤ ‖f‖1,Q.

For every f ∈ L1
Q(R)

FQ = F ◦t XQ(f),(1.13)

where F is the usual Fourier transform defined by

F(f)(λ) =

∫
R
f(x)e−iλxdx.

2. Cowling-Price’s Theorem for the Q-Fourier-Dunkl Transform

Theorem 2.1. Let f be a measurable function on R such that∫
R

eapx
2

Qp(x)|f(x)|p

(1 + |x|)k
|x|2α+1dx <∞(2.1)

and ∫
R

ebqξ
2 |FQ(f)(ξ)|q

(1 + |ξ|)m
dξ <∞,(2.2)

for some constants a, b > 0, k > 0,m > 1 and 1 ≤ p, r ≤ +∞.

i) If ab > 1
4 , then f = 0 almost everywhere.
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ii) If ab = 1
4 , then f(x) = P (x)N(x, b) where P is a polynomial with

degP ≤ min{kp + 2α+1
p′ , m−1r }. Especially, if

k ≤ 2α+ 2 + pmin{k
p

+
2α+ 1

p′
,
m− 1

r
},

then f = 0 almost everywhere. Furthermore, if m ∈]1, 1 + r] and k > 2α+ 2,
then f is a constant multiple of N(., b).

iii) If ab < 1
4 , then for all δ ∈]b, 14a[ all functions of the form f(x) = P (x)N(x, δ)

satisfy (2.1) and (2.2).

Proof. It follows from (2.1) that f ∈ L1
Q and FQ(f)(ξ) exists for all ξ ∈ R.

Moreover, it has an entire holomorphic extension on C satisfying for some s > 0,

|FQ(f)(z)| ≤ Ce Imz
2

4a (1 + |Imz|)s.

By (1.1) we have for all z = ξ + iη ∈ C,

|FQ(f)(z)| ≤
∫
R
|f(x)||Λξ(x)||x|2α+1dx(2.3)

≤ e
η2

4a

∫
R

eax
2

Q(x)|f(x)|
(1 + |x|)

k
p

(1 + |x|)
k
p e−a(x−

η
2a )

2

|x|2α+1dx.(2.4)

By Hölder inequality we have

|FQ(f)(z)| ≤ e
η2

4a

(∫
R

epax
2

Q(x)p|f(x)|p

(1 + |x|)k
|x|2α+1dx

) 1
p (∫

R
(1 + |x|)

kp′
p e−ap

′(x− η
2a )

2

|x|2α+1dx

) 1
p′

according to (2.1) we get that

|FQ(f)(ξ + iη)| ≤ Ce
η2

4a

(∫
R
(1 + |x|)

kp′
p e−ap

′(x− η
2a )

2

|x|2α+1dx

) 1
p′

≤ Ce
η2

4a

(∫ ∞
0

(1 + |x|)
kp′
p +2α+1e−ap

′(x− η
2a )

2

dx

) 1
p′

≤ Ce
η2

4a (1 + |η|)
k
p+

2α+1
p′ .

If ab = 1
4 , then

|FQ(f)(ξ + iη)| ≤ Cebη
2

(1 + |η|)
k
p+

2α+1
p′ .

We put g(z) = ebz
2FQ(f)(z), then

|g(z)| ≤ Ceb|Rez|
2

(1 + |Imz|)
k
p+

2α+1
p′ .

It follows from (2.2) that ∫
R

|g(z)|r

(1 + |ξ|)m
dξ <∞.
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Lemma 2.1. Let h be an entire function on C such that

|h(z)| ≤ Cea|Rez|
2

(1 + |Imz|)l

for some l > 0, a > 0 and ∫
R

|h(x)|r

(1 + |x|)m
|P (x)|dx <∞

for some r ≥ 1, m > 1 and P is a polynomial with degree m. Then h is a polynomial
with degh ≤ min{l, m−M−1r } and if m ≤ r +M + 1, then h is a constant.

From this Lemma, g is a polynomial, we say Pb with degPb ≤ min{kp
′

p + 2α+1
p′

, m−1r }.
Then FQ(f)(x) = Pb(x)e−bx

2

then,

f(x) = Qb(x)N(x, b)

where degPb = degQb. Therefore, nonzero f satisfies (1.10) provided that

k > 2α+ 2 + pmin

{
kp
′

p
+

2α+ 1

p′
,
m− 1

q

}
.

If m < r + 1, by Lemma 1 we have g as a constant and FQ(f)(x) = Ce−bx
2

and
f(x) = CN(x, b). If m > 1 and k > 2α + 2, these functions satisfy (2.1) and (2.2),
which proves (ii).

If ab > 1
4 , then we can find positive constants a1 and b1 such that a > a1 =

1
4b1

> 1
4b . Then f and FQ(f) also satisfy (2.2) with a and b replaced by a1 and

b1 respectively. Then FQ(f)(x) = Pb1(x)e−b1x
2

. FQ(f) cannot satisfy (2.2) unless
Pb1 = 0, which implies that f = 0, this proves (i). If ab < 1

4 , then for all δ ∈]b, 1
4a [,

the functions of the form f(x) = P (x)N(x, δ), where P is a polynomial on R, satisfy
(2.1) and (2.2). This proves (iii).

3. Mathematical Formulas

4. Miyachi’s Theorem for the Q-Fourier-Dunkl Transform

Theorem 4.1. Let f be a measurable function on R such that

eax
2

f ∈ LpQ(R) + LrQ(R)(4.1)

and ∫
R

log+ |FQ(f)(ξ)ebξ
2 |

λ
dξ <∞,(4.2)

for some constants a, b, λ > 0 and 1 ≤ p, r ≤ +∞.
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(i) if ab > 1
4 then f = 0 almost everywhere.

(ii) if ab = 1
4 then f = cN(., b) with |c| ≤ λ.

(iii) if ab > 1
4 then for all δ ∈]b, 14 [, all functions of the form f(x) = P (x)N(x, δ),

where P is a polynomial on R satisfy (2.1) and (2.2).

To prove this result, we need the following lemmas.

Lemma 4.1. [5] Let h be an entire function on C such that

|h(z)| ≤ AeB|Rez|
2

,

and ∫
R

log+ |h(y)|dy <∞,(4.3)

for some constants A and B. Then h is a constant.

Lemma 4.2. Let r ∈ [1,+∞], a > 0. Then for g ∈ LrQ(R) there exist c > 0 such
that

‖ eax
2 tXQ(e−ay

2

g) ‖r≤ c ‖ g ‖r,Q .

Proof. From the hypothesis, it follows that e−ay
2

belongs to L1
Q(R). Then by

Proposition 1.1, tXQ(e−ay
2

g) is defined almost everywhere on R. Here we consider
two cases:

i) If r ∈ [1,+∞[ then

‖ eax
2 tXQ(e−ay

2

g) ‖rr ≤
∫
R
earx

2

(

∫
R
Q(y)e−ay

2

|g(y)|dνx(y))rdx,

≤
∫
R
earx

2

(∫
R
|Q(y)g(y)|rdνx(y)

) r
r
(∫

R
e−ar

′y2dνx(y)

) r
r′

dx

where r′ is the conjugate exponent for r. Since∫
R
e−ry

2

dνx(y) = Ce−rx
2

,(4.4)

for r > 0 it follows from (4.4) that

‖ eax
2 tXQ(e−ay

2

g) ‖rr ≤ C

∫
R

tXQ(|g|r)(x)dx,

= C

∫
R
|g(x)|r|x|2α+1dx <∞.

ii) If r =∞ then it follows from (4.4) that

‖ eax
2 tXQ(e−ay

2

g) ‖r ≤ eax
2 tXQ(e−ay

2

)(x)‖g‖Q,∞
= C‖g‖Q,∞.
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Lemma 4.3. Let r, p ∈ [1,+∞] and let f be a measurable function on R such that

eax
2

f ∈ LpQ(R) + LrQ(R)(4.5)

for some a > 0. Then for all z ∈ C, the integral

FQ(f)(z) =

∫
R
f(x)Λz,Q(−x)|x|2α+1dx

is well defined. FQ(f)(z) is entire and there exists C > 0 such that for all ξ, η ∈ R,

|FQ(f)(ξ + iη)| ≤ Ce
η2

4a .(4.6)

Proof. From (5) and Hölder’s inequality we have the first assertion. For (4.6)
using (4.5) we have f ∈ L1

Q(R) and tXQ(f) ∈ L1(R). for all ξ, η ∈ R,

FQ(f)(ξ + iη) =

∫
R

tXQ(f)(x)e−ix(ξ+iη)dx

|FQ (f) (ξ + iη)| ≤ e
η2

4a

∫
R
eax

2 ∣∣tXQ (f) (x)
∣∣ e−ax2+xη− η

2

4a dx

≤ e
η2

4a

∫
R
eax

2 ∣∣tXQ (f) (x)
∣∣ e−a(x− η

2a )
2

dx.

From (4.5) we can deduce that there exists u ∈ LpQ(R) and v ∈ LrQ(R) such that

f(x) = e−ax
2

u (x) + e−ax
2

v (x) ,

by Lemma 4 we have∫
R
eax

2 ∣∣tXQ (f) (x)
∣∣ e−a(x− η

2a )
2

dx ≤ C
(
‖u‖p,Q + ‖v‖r,Q

)
<∞,

which proves the Lemma.

Proof of Theorem

� If ab > 1
4 . Let h be a function on C defined by

h(z) = e
z2

4aFQ (f) (z) .

h is entire function on C, it follows from (4.6) that

∀ξ ∈ R, ∀η ∈ R |h (ξ + iη)| ≤ Ce
ξ2

4a .(4.7)
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On the other hand, we have∫
R

log+ |h (y)| dy =

∫
R

log+

∣∣∣∣e y24aFQ (f) (y)

∣∣∣∣ dy
=

∫
R

log+

∣∣∣eby2FQ (f) (y)
∣∣∣

λ
λe(

1
4a−b)y

2

dy

≤
∫
R

log+

∣∣∣eby2FQ (f) (y)
∣∣∣

λ
dy +

∫
R
λe(

1
4a−b)y

2

dy

because log+(cd) ≤ log+(c) + d for all c, d > 0. Since ab > 1
4 , (2.2) implies

that ∫
R

log+ |h(y)|dy <∞.(4.8)

A combination of (4.7), (4.8) and Lemma 3 shows that h is a constant and

FQ (f) (y) = Ce−
1
4ay

2

.

Since ab > 1
4 , (2.2) holds whenever C = 0 and the injectivity of FQ implies

that f = 0 almost everywhere.

� If ab = 1
4 . We deduce from previous case that FQ(f) = Ce−

ξ2

4a . Then (2.2)
holds whenever |C| ≤ λ. Hence f = CN(., b) with |C| ≤ λ.

� If ab < 1
4 . If f is a given form, then FQ(f)(y) = Q(y)e−δy

2

for some Q.

In the contintion, we will give an analogue of Hardy’s theorem [?] for the Q-Fourier-
Dunkl transform.

Theorem 4.2. Hardy Let N ∈ N. Assume that f ∈ L2
Q(R) is such that

|f(x)| ≤Me−
1
4ax

2

a.e , ∀y ∈ R, |FQ(f)(y)| ≤M(1 + |y|)Ne−by
2

,(4.9)

for some constants a > 0, b > 0 and M > 0. Then,
i) If ab > 1

4 , then f = 0 a.e.
ii) If ab = 1

4 , then the function f is of the form

f(x) =
∑
|s|≤N

asWs(
1

4a
, x) a.e. , as ∈ C.

iii) If ab < 1
4 , there are infinitely many nonzero functions of f satisfying the condi-

tions (4.9).

Proof. The first condition of (4.9) implies that f ∈ L1
Q(R). So by Proposition

1.1, the function tXQ(f) is defined almost everywhere. By using the relation (1.13),
we deduce that for all x ∈ R,

|tXQ(f)(x)| ≤M0e
−ax2

,
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where M0 is a positive constant. So

|tXQ(f)(x)| ≤M0(1 + |x|)Ne−ax
2

,(4.10)

On the other hand from (1.13) and (4.9) we have for all x ∈ R,

|F(tXQ)(f)(y)| ≤M(1 + |y|)Ne−b|y|
2

,(4.11)

The relations (4.10) and (4.11) show that the conditions of Proposition 3.4 of [2],
p.36, are satisfied by the function tXQ(f). Thus we get:
i) If ab > 1

4 , tXQ(f) = 0 a.e. Using (1.13) we deduce

∀y ∈ R,FQ(f)(y) = F ◦ (tXQ)(f)(y) = 0.

Then by the injectivity of FQ we have f = 0 a.e.

ii) If ab = 1
4 , then tXQ(f)(x) = P (x)e−ax

2

, where P is a polynomial of degree lower
than N . Using this relation and (1.13), we deduce that

∀x ∈ R, FQ(f)(y) = F ◦t XQ(f)(y) = F(P (x)e−δx
2

)(y).

but

∀x ∈ R, F(P (x)e−δx
2

)(y) = S(y)e
−y2
4δ ,

with S a polynomial of degree lower than N .
Thus from (1.11), we obtain

∀x ∈ R, FQ(f)(y) = FQ

 ∑
|s|<N−1

2

asWs(
1

4δ
, .)

 (y).

The injectivity of the transform FQ implies

f(x) =
∑
|s|≤N

asWs(
1

4a
, x) a.e.

iii) If ab < 1
4 , let t ∈]a, 1

4b [ and f(x) = C
e−tx

2

Q(x)
for some real constant C, these

functions satisfy the conditions (4.9).
In the next part, we will give an analogue of Morgan’s theorem [7] for the Q-

Fourier-Dunkl transform.

Theorem 4.3. Morgan Let 1 < p < 2 and r be the conjugate exponent of p. As-
sume that f ∈ L2

Q(R) satisfies∫
R
e
ap

p |x|
p

|f(x)||x|2α+1dx < +∞, and
∫
R
e
br

r |y|
r

|FQ(f)(y)|dy < +∞,(4.12)

for some constants a > 0, b > 0.

Then if ab > | cos(pπ2 )|
1
p , we have f = 0 a.e.
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Proof. The first condition of (4.12) implies that f ∈ L1
Q(R). So by Proposition

1.1, the function tXQ(f) is defined almost everywhere. By using the relation (4.12)
and Proposition 1.1, we deduce that:∫

R
|tXQ(f)(x)|e

ap

p |x|
p

dx ≤
∫
R
e
ap

p |x|
p

|f(x)||x|2α+1dx < +∞.

So ∫
R
|tXQ(f)(x)|e

ap

p |x|
p

dx < +∞(4.13)

On the other hand, from (1.13) and (4.12) we have:∫
R
e
bq

q |y|
q

|FQ(f)(y)|dy =

∫
R
e
bq

q |y|
q

|F(tXQ)(f)(y)|dy < +∞.(4.14)

The relations (4.13) and (4.14) are the conditions of Theorem 1.4, p.26 of [2], which

are satisfied by the function tXQ(f). Thus we deduce that if ab > | cos(pπ2 )|
1
p we

have tXQ(f) = 0 a.e. Using the same proof as in the end of Theorem 4, we have
obtained f(y) = 0. a.e. y ∈ R.

Acknowledgments The authors are deeply indebted to the reviewers for pro-
viding constructive comments and helps in improving the contents of this article.

REFERENCES

1. E. A. Al Zahrani and M. A. Mourou: The Continuous Wavelet Trans-
form Associated with a Dunkl Type Operator on the Real Line. Advances in Pure
Mathematics. 3(2013), 443–450.

2. A. Bonami and B. Demange and P. Jaming: Hermite functions and uncer-
tainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat.
Iberoamericana 19 (2002), 22–35.

3. M. G. Cowling and J. F. Price: Generalizations of Heisenberg inequality, Lec-
ture Notes in Math. 992. Springer, Berlin (1983), 443–449.

4. G. H. Hardy: A theorem concerning Fourier transform. J. London Math. Soc. 8
(1933), 227–231.

5. H. Mejjaoli, and M. Salhi: Uncertainty principles for the Weinstein transform,
Czechoslovak Mathematical Journal, 61 (136) (2011), 941–974.

6. A. Miyachi: A generalization of theorem of Hardy, Harmonic Analysis Seminar
held at Izunagaoka, Shizuoka-Ken, Japon (1997), 44–51.

7. G. W. Morgan: A note on Fourier transforms. J. London Math. Soc. 9 (1934),
188-192.

Achak Azzedine

Faculty of Science Aı̈n Chock

Department of Mathematics and Informatics



54 A. Achak, R. Daher , N. Safouane and EL. Loualid

University of Hassan II, Casablanca 20100, Morocco

achakachak@hotmail.fr

Radouan Daher

Faculty of Science Aı̈n Chock

Department of Mathematics and Informatics

University of Hassan II, Casablanca 20100, Morocco

r.daher@fsac.ac.ma

Najat Safouane

Faculty of Science Aı̈n Chock

Department of Mathematics and Informatics

University of Hassan II, Casablanca 20100, Morocco

safouanenajat@live.fr

El Mehdi Loualid

Faculty of Science Aı̈n Chock

Department of Mathematics and Informatics

University of Hassan II, Casablanca 20100, Morocco

mehdi.loualid@gmail.com


