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Abstract. The Q-Fourier-Dunkl transform satisfies some uncertainty principles in a
similar way to the Euclidean Fourier transform. By using the heat kernel associated
to the Q-Fourier-Dunkl operator, we have established an analogue of Cowling-Price,
Miyachi and Morgan theorems on R by using the heat kernel associated to the Q-
Fourier-Dunkl transform.
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1. Introduction

There are many theorems which state that a function and its classical Fourier

transform on R cannot simultaneously be very small at infinity. This principle
has several versions which were proved by M.G. Cowling and J.F. Price [3] and
Miyachi [6]. In this paper, we will study an analogue of Cowling-Price’s theorem
and Miyachi’s theorem for the Q-Fourier-Dunkl transform. Many authors have
established the analogous of Cowling-Price’s theorem in other various setting of
harmonic analysis (see for instance [5]) The outline of the content of this paper is
as follows.
Section 2 is dedicated to some properties and results concerning the Q-Fourier-
Dunkl transform. In Section 3 we give an analogue of Cowling-Price’s theorem,
Miyachi’s theorem, and Morgan’s theorem for the Q-Fourier-Dunkl transform. Let
us now be more precise and describe our results. To do so, we need to introduce
some notations. Throughout this paper a > ’71 Notice that if a = ’71 then the
space is the classical Lebesgue one, we can follow in this case the procedures for
similar transforms, such as the Fourier transform (see for example [3, 6]).

(1.1) Q(x) = exp (— Am q(t)dt) , TeR
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where ¢ is a C*° real-valued odd function on R.

e L?(R) the class of measurable functions f on R for which || f||p,o < oo, where

I/

1
o= ([ W@Plap=t1ae) ", i 1<p <,
R

and || flloc,a = [[flloo = esssupzer|f ()]

o L7)(R) the class of measurable functions f on R for which || f[l,.q = [|Qf|lp,a <

0o, where @ is given by (1.1).

We consider the first singular differential-difference operator A defined on R

(1.2) Af(@) = F(2) + (a4 1 I@ = =D)

DI ) g

where ¢ is a C* real-valued odd function on R. For ¢ = 0 we regain the Dunkl
operator A, associated with reflection group Zs on R given by

Mof(@) = /(@) + (a4 5T DIED)

1.1. Q-Fourier-Dunkl Transform
The following statements are proved in [1]

Lemma 1.1. 1. For each A € C, the differential-difference equation
Au=1idu, u(0)=1
admits a unique C* solution on R, denoted by Uy, given by
(1.3) Ua(z) = Q(x)ea(irz),

where e, denotes the one-dimensional Dunkl kernel defined by

€a(2) = ](x(zz) + )ja-‘rl(z) (Z € (C),

z
2(a+1
and j, being the normalized spherical Bessel function of index a given by

= ()G

1.4 jo(2) =T 1 —_— 27 C).

(1.4 Jole) =Tla+ )3 SRy (0
2. Forallz e R, A€ C andn =0,1,... we have

(1.5 | () < Qe el M

In particular
(1.6) | Uy (2) |< Q(a)elt™ All=l,
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3. For allz € R, X € C, we have the Laplace type integral representation

1

(1.7) V(7)) = aaQ(x) [1(1 — %) 3 (1 + )M dt,
where a, = M
O VAl(a+3)

Definition 1.1. The Q-Fourier-Dunkl transform associated with A for a function
in LlQ (R) is defined by

(18) Falh)(N) = / @)\ (z)a%+ .

Theorem 1.1. 1. Let f € Ly(R) such that Fo(f) € LL(R). Then for allmost
x € R we have the inversion formula

F(2) (Q()? = ma / Fol 0T (@) A2,

where
1

Ma = 22@+1) (T(a + 1))2°

2. For every f € L2Q (R), we have the Plancherel formula
1@ (Q@)? ol s = m [ 1 NEIAPax

3. The Q-Fourier-Dunkl transform Fg extends uniquely to an isometric isomor-
phism from L (R) onto LZ(R).

The heat kernel N(z,s), x € R, s > 0, associated with the Q-Fourier-Dunkl trans-
form is given by

e 4s
" (25)°73Q(x)’

Some basic properties of N(z, s) are the following:

(1.9) N(z,8) =m,

b N(x,S)QQ(JZ) = ma/Re—SW\I’y(l‘)‘yFO‘J’ldy,

o Fo(N(.,8))(x) =e"%"".

we define the heat functions W;, [ € N as

(1.10) Q2 (x)Wi(z, s) = / Yl W, (@) [y dy
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(1.11) FoWi(.,s)) = ilyle=sv".

The intertwining operators associated with a Q-Fourier-Dunkl transform on the real
line is given by

Xolf)(w) = asQla) [ flta)(1 =) Hat,
its dual is given by
(112) "Xo(HW)a = da fysp, f@)Q@)sgn(@)@® — y2)°~} (x + y)da

!X can be written as

Xo(f)(y) = aa / F@)Q()dvy (2),

where
1
3

dVy(JS) = aaX{|x\z|y|}59”(93)(x2 - y2)a_ (x + y)dx

and X{|z|>|y]} denote the characteristic function with support in the set {z ¢
R/ |z = [yl}.

Proposition 1.1. If f € L5(R) then *Xq(f) € L'(R) and |'Xq(f)llr < [[fl1.0-

For every f € L;(R)
(1.13) Fo = Fol Xo(f),

where F is the usual Fourier transform defined by

F(H) = / f(@)e P,

2. Cowling-Price’s Theorem for the Q-Fourier-Dunkl Transform

Theorem 2.1. Let f be a measurable function on R such that

P QP ()| f (@) 50
(2.1) /R A )t |z dr < oo
and
e | Fo (£)()]7
(2.2) /R O+ e)m d€ < oo,

for some constants a,b >0, k>0,m>1 and 1 < p,r < 4oc.

i) If ab > %, then f =0 almost everywhere.
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i) If ab= 1, then f(z) = P(z)N(z,b) where P is a polynomial with
degP < min{% + %, mT_l} Especially, if

20+1 m— 1}

p, ’ r )

then f =0 almost everywhere. Furthermore, if m €]1,1+r] and k > 2a + 2,
then f is a constant multiple of N(.,b).

k
kE<2a+ 24 pmin{— +
p

iii) If ab < 1, then for all § €]b, 1a[ all functions of the form f(z) = P(z)N(z, )
satisfy (2.1) and (2.2).

Proof. Tt follows from (2.1) that f € L, and Fo(f)(€) exists for all £ € R.
Moreover, it has an entire holomorphic extension on C satisfying for some s > 0,

Imz2

|Fo(f)(2)| < Cemaa (14 [Imz|)°.
By (1.1) we have for all z = ¢ +in € C,

(2.3) [Fo(N(2)| < /R|f(x)|lAf(x)llx\2“+ldx

n? eaIZQ(x”f(x)l k —a(.’zc—l)2 2a+1
2.4 < g% ———————(1+ |z|)re 2a) | dx.
(2.4) Lo e "

By Hoélder inequality we have

1
ol

n2 pas” P P % kp’ ’ n \2 P
FolN))] < et ( i |$|2a+1dx> ([ ¥ oot gosias)

according to (2.1) we get that

.
7

FolPE+in) < cek ( [a+ |x|>’“5wp'<z£@>"‘x|2a“dx>p
R

n2 Rl k-p' 2 1 i n \2 #
< Cea / (1 + |z|) > T2t temar (@=22)" gy
0
2 k 2a+1
< Cedr (L)t

If ab = 1, then
¢ | 2a+1

Folf)( +in| < Ceb (1 + In) 5357
We put g(z) = " Fo(f)(2), then

2041

19(2)] < CRe (14 [Tmz])»*55

HClap
/R<1+ e =

It follows from (2.2) that
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Lemma 2.1. Let h be an entire function on C such that
|h(2)] < CelRe=F (1 4 | Imz|)

for somel >0, a >0 and

M@
Lt e Pl <

for somer > 1, m > 1 and P is a polynomial with degree m. Then h is a polynomial
with degh < min{l, '"%M_l} and if m <r+ M + 1, then h is a constant.

From this Lemma, g is a polynomial, we say P, with degP, < mz’n{%-km;ij"l, mT—l}

Then Fo(f)(x) = Pb(ac)e_bmz then,

f(x) = Qu(x)N (z,b)

where degP, = deg@p. Therefore, nonzero f satisfies (1.10) provided that

kp' 20+1 m—1
k> 2a+ 2+ pmin i—&— a—/i— ,L .
p p q

If m < r+1, by Lemma 1 we have g as a constant and Fq(f)(z) = Ce " and
f(z) = CN(z,b). If m > 1 and k > 2a + 2, these functions satisfy (2.1) and (2.2),
which proves (ii).

If ab > i, then we can find positive constants a; and b; such that a > a; =
ﬁ > 7= Then f and Fg(f) also satisfy (23) with @ and b replaced by a; and
b1 respectively. Then Fq(f)(x) = Py, (x)e=1%". Fo(f) cannot satisfy (2.2) unless
P,, = 0, which implies that f = 0, this proves (i). If ab < 1, then for all § €]b, .-,
the functions of the form f(z) = P(x)N(z,d), where P is a polynomial on R, satisfy
(2.1) and (2.2). This proves (iii). O

3. Mathematical Formulas

4. Miyachi’s Theorem for the Q-Fourier-Dunkl Transform

Theorem 4.1. Let f be a measurable function on R such that

(4.1) ¢’ f € LB (R) + L (R)
and e
R

for some constants a,b,A >0 and 1 < p,r < +o0.
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(i) if ab > % then f =0 almost everywhere.
(it) if ab =% then f = cN(.,b) with |c| < A.
(iii) if ab > 1 then for all § €]b, [, all functions of the form f(z) = P(z)N(z,6),

where P is a polynomial on R satisfy (2.1) and (2.2).
To prove this result, we need the following lemmas.
Lemma 4.1. [5] Let h be an entire function on C such that
[h(z)] < AePIResl”,
and
(4.3 [ tox* Iy < .

for some constants A and B. Then h is a constant.

Lemma 4.2. Letr € [1,+0c],a > 0. Then for g € Liy(R) there exist ¢ > 0 such
that , )
e *Xqle™™ g)l.<cl g

raQ -
Proof. From the hypothesis, it follows that e~ belongs to Lb(R). Then by

Proposition 1.1, X (e‘“y2 g) is defined almost everywhere on R. Here we consider
two cases:

i) If r € [1,4o00[ then

az? t —ay2 r arz? —ay2 r
| e X g) |1 < / e </R Q) lg(y)|dvs (y))" da,

/R e’ ( /R Q(y)g(y)rdvm(y)>

where 77 is the conjugate exponent for r. Since

s13

IN

(4.4) / enyQde(y) = 0677,12,
R

for r > 0 it follows from (4.4) that

2 7(12 T r
e Kol g) I < € [ Xo(al) @)

C/ lg(2)|"|z|** T de < oc.
R

ii) If r = oo then it follows from (4.4) that

2 —ay? 2 —ay®
e "Xl g) | < e Kol ™ )(@) gl
Cllgle.eo-

(/R e_arly2dvz(y))

x
g

dx
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O
Lemma 4.3. Letr,p € [1,+00] and let f be a measurable function on R such that
(4.5) ¢’ f € LB (R) + L) (R)
for some a > 0. Then for all z € C, the integral
FolN(2) = [ @ q(=ole*+da
is well defined. Fq(f)(z) is entire and there exists C > 0 such that for all , n € R,

(4.6) Fo(f)(E +in)| < Ce¥e.

Proof.  From (5) and Holder’s inequality we have the first assertion. For (4.6)
using (4.5) we have f € L (R) and *Xq(f) € L'(R). for all £, n € R,

fca(f)(ffﬂ'n)z/]R X o (f)(x)e”EHM gy

Fo( (il < ek [ e X () @]

n

& /]R 1 Xo (/) (@)] e (=) da.

IN

From (4.5) we can deduce that there exists u € Ly)(R) and v € Lg,(R) such that

fl@) =" u(@) + e v (),

by Lemma 4 we have

/R e |'Xq (f) (@) e~ (=) dw < € (Jlull, g + 1],.) < oo,

which proves the Lemma. [

Proof of Theorem
o If ab > %. Let A be a function on C defined by
22
h(z) = et Fq (f) (2).
h is entire function on C, it follows from (4.6) that

(4.7) VEER, V€ R | (€ +in)| < Cela.
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On the other hand, we have

/log+|h(y)ldy = /log+
R R

- [ " o (1) (v)] N
R

¢t Fo (f) <y>\ dy

A
e Fo () ()]
< /10g+ —dy—i—/)\e(ﬁ*b)ygdy

R A R
because log (cd) < log, (c) +d for all ¢, d > 0. Since ab > 1, (2.2) implies
that
(4.8) / log™ |A(y)|dy < oo.

R

A combination of (4.7), (4.8) and Lemma 3 shows that h is a constant and

Fo(f)(y)=Cewav.

Since ab > %, (2.2) holds whenever C' = 0 and the injectivity of F¢ implies
that f = 0 almost everywhere.

2
o If ab = 1. We deduce from previous case that Fq(f) = Ce~f%a. Then (2.2)
holds whenever |C] < A. Hence f = CN(.,b) with |C| < A.

o Ifab < %. If f is a given form, then Fo(f)(y) = Q(y)ef‘sy2 for some Q.

In the contintion, we will give an analogue of Hardy’s theorem [?] for the Q-Fourier-
Dunkl transform.

Theorem 4.2. Hardy Let N € N. Assume that f € L2Q(R) is such that

(4.9)  |f(@)| < Me 5" ae, Yy e R, |Fo(f)(y)] < M1+ [y))Ne ",

for some constants a >0, b >0 and M > 0. Then,
i) If ab > i, then f =0 a.e.
i) If ab = %, then the function f is of the form

L

flz) = Z asW9(4a

ls|<N

,x) a.e. , as € C.

iii) If ab < i, there are infinitely many nonzero functions of f satisfying the condi-
tions (4.9).

Proof. The first condition of (4.9) implies that f € Lég (R). So by Proposition
1.1, the function *X¢(f) is defined almost everywhere. By using the relation (1.13),
we deduce that for all x € R,

" Xo(f)(@)] < Moe™ ",
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where M) is a positive constant. So

(4.10) " Xo(f)(@)] < Mo(1+ |2])Nem",

On the other hand from (1.13) and (4.9) we have for all z € R,
(4.11) IF(CXQ) ()W) < M(1+ [y])Ve "W,

The relations (4.10) and (4.11) show that the conditions of Proposition 3.4 of [2],
p.36, are satisfied by the function *X¢(f). Thus we get:
i) If ab > %, 'Xq(f) = 0 a.e. Using (1.13) we deduce

vy € R, Fo(f)(y) = F o ("Xo)(f)(y) = 0.

Then by the injectivity of Fg we have f =0 a.e.
ii) If ab = 1, then *X¢(f)(z) = P(x)e"“”2, where P is a polynomial of degree lower
than N. Using this relation and (1.13), we deduce that

Vo € R, Fo(f)(y) = F o Xq(f)(y) = F(P(x)e 5" )(y).
but

Vo € R, F(P(z)e %" )(y) = S(y)e T,

with S a polynomial of degree lower than N.
Thus from (1.11), we obtain

Ve eR, Fo(y)=Fo | >, asWs(%,.) (¥).

N-1
Is|<=3

The injectivity of the transform Fg implies

flz) = Z asWs(im) a.e.
[s|<N

—ta?

i) If ab < 1, let t €]a, 5[ and f(z) = C;(az)

for some real constant C', these

functions satisfy the conditions (4.9).
In the next part, we will give an analogue of Morgan’s theorem [7] for the Q-
Fourier-Dunkl transform.

Theorem 4.3. Morgan Let 1 < p < 2 and r be the conjugate exponent of p. As-
sume that f € L3 (R) satisfies

(4.12) /Re%lwmf(z)ﬂzﬁaﬂdz < +o00, and Ae¥ly\r|fQ(f)(y)|dy< +00,

for some constants a > 0, b > 0.
1
Then if ab > | cos(57)|7, we have f =0 a.e.



An analogue of Cowling-price’s theorem for the Q-Fourier-Dunkl transform 53

Proof. The first condition of (4.12) implies that f € L}Q (R). So by Proposition
1.1, the function X (f) is defined almost everywhere. By using the relation (4.12)
and Proposition 1.1, we deduce that:

/ 1 Xo(f)(@)|e 7 do < / 51717 £ ()| |22+ da < +oo.
R R

So
(4.13) / I Xo(f)(@)le 1 do < +oc
R

On the other hand, from (1.13) and (4.12) we have:

(4.14) Ae%'y'qlfQ(f)(y)ldy: Ae%‘y'q\f(tXQ)(f)(y)ldy < oo

The relations (4.13) and (4.14) are the conditions of Theorem 1.4, p.26 of [2], which
are satisfied by the function *X¢g(f). Thus we deduce that if ab > |COS(%)|% we
have ‘Xg(f) = 0 a.e. Using the same proof as in the end of Theorem 4, we have
obtained f(y) =0. ae. yeR. O
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