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ON DERIVATIONS SATISFYING CERTAIN IDENTITIES ON
RINGS AND ALGEBRAS

Gurninder S. Sandhu, Deepak Kumar, Didem K. Camci and Neget Aydin

Abstract. The present paper deals with the commutativity of an associative ring R
and a unital Banach Algebra A via derivations. Precisely, the study of multiplicative
(generalized)-derivations F' and G of semiprime (prime) ring R satisfying the identities
G(zy) £ [F(x),y] £ [z,y] € Z(R) and G(zy) + [z, F(y)] £ [z,y] € Z(R) has been carried
out. Moreover, we prove that a unital prime Banach algebra A admitting continuous
linear generalized derivations F' and G is commutative if for any integer n > 1 either
G((@y)") + [F(@"),y™) + [, 5" € Z(A) or G((wy)") — [F(a"),y"] - [a",y"] € Z(A).
Keywords. Banach algebra; Associative ring; Generalized derivations.

1. Multiplicative (generalized)-derivations on rings

Throughout this paper Z(R) stands for the center of an associative ring R.
Recall that if aRb = (0) (resp. aRa = (0)) implies either a = 0 or b = 0 (resp.
a = 0) then R is called a prime (resp. semi-prime) ring for all a,b € R. For a
positive integer n, a ring R is called n-torsion free if nz = 0 implies =z = 0 for all
x € R. The symbol [z,y], = [[x,y]n-1,y] represents the nth commutator where
[z,y]1 = [z,y] = 2y — yz. A mapping § : R — R satisfying d(a 4+ b) = §(a) + 6(b)
and d(ab) = §(a)b+ ad(b) for all a,b € R is called a derivation of R. The notion of
derivations has been generalized in many ways for instance local derivations, skew
derivations, (6, ¢)-derivations, Lie derivations, Jordan derivations, multiplicative
derivations etc. A set Ar(S) ={a € R : as = sa = 0 forall s € S} is called
the annihilator of a non-empty subset S of R. By a left centralizer, we mean an
additive mapping H : R — R such that H(zy) = H(z)y for all ,y € R. A mapping
f: R — R is called centralizing (resp. commuting) on R if [f(a),a] € Z(R) (resp.
[f(a),a] = 0) for all a € R. There has been a significant interest in the study of
centralizing and commuting mappings in associative rings (for example, see [5], [6]
, [18] and references therein ).
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Let us turn to the earlier investigation of multiplicative derivation and its gener-
alizations. A map § : R — R is called a multiplicative derivation of R if it satisfies
the Leibniz rule on R i.e.; 6(ab) = §(a)b+ ad(b) for all a,b € R. Of course these
mappings are not necessarily additive. The idea of such mappings was introduced
by Daif [8] inspired by the work of Martindale [17]. Further Goldmann and Semrl
[12] provided a complete study of these maps. The following example shows the
existence of multiplicative derivation; let R = C[0,1] be the ring of all continuous
real (or complex) valued functions and a map J : R — R defined as:

h(u)log|h(u)| if h(u)#0
o(n)(w) :{ 0 ’ if h(u) =0 }

It is easy to verify that the map d is not additive but it satisfies the Leibnitz’s rule.
Further, Daif and Tammam-El-Sayiad [10] amplified this notion of multiplicative
derivation to multiplicative generalized derivation as; A mapping D : R — R is said
to be a multiplicative generalized derivation if it is uniquely determined by a deriva-
tion § : R — R such that D(ab) = D(a)b+ ad(b) for all a,b € R. Recently, Dhara
and Ali [11] made a slight generalization in the definition of multiplicative gener-
alized derivation and hence introduced the notion of multiplicative (generalized)-
derivation. Accordingly, a mapping F : R — R (not necessarily additive) is called
multiplicative (generalized)-derivation associated with a map f : R — R (not nec-
essarily additive nor a derivation) if F(ab) = F(a)b+ af(b) for all a,b € R. Very
recently, Camci and Aydin [7] proved that if F' is a multiplicative (generalized)-
derivation of a semiprime ring associated with a map f, then f is a multiplicative
derivation. For our convenience, we denote a multiplicative (generalized)-derivation
as (F, f) throughout this paper. The multiplicative (generalized)-derivation looks
more appropriate than multiplicative generalized derivation as it covers both the
concept of multiplicative derivation and multiplicative left multiplier.

During the last two decades, the commutativity of associative rings with deriva-
tions have become one of the focus point of several authors and a significant work
has been done in this direction (for the references one can see [3], [5], [9], [13], [16],
[18], [19], [4] and references therein). In [13], Hongan proved that if d is a derivation
of a prime ring R such that d([z,y]) £ [x,y] € Z(R) for all x,y € I, where I is a
nonzero ideal of R, then R is commutative. Further, Qadri et al. [19] extended this
result by proving it for generalized derivations of prime rings. In [4], Ashraf et al.
explored the commutativity of prime rings that admit generalized derivations sat-
isfying several differential identities on appropriate subsets. Precisely, they proved
the following: Let R be a prime ring and I be a nonzero ideal of R. If R admits a
generalized derivation F' associated with a nonzero derivation d satisfying any one of
the identities: (i) F(xy)zy € Z(R); (i) F(zy) +xy € Z(R); (i) F(zy)yx € Z(R);
() F(zy) +yx € Z(R) for all xz,y € I, then R is commutative. Very recently, Ti-
wari et al. [22] discussed the commutativity of prime rings by studying the following
conditions: (i) G(zy) £ F(x)F(y)tay € Z(R); (ii) G(zy) £ F(y)F(x) L2y € Z(R);
(il) G(zy) £ F(2)F(y) £ yz € Z(R); (iv) G(ay) £ F(y)F(z) £ yz € Z(R); (v)
G(zy) £ F(y)F(z) £ [x,y] € Z(R) for all z,y € I, where I is a nonzero ideal of R
and F, G are the generalized derivation of R.
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Clearly, a generalized derivation is a multiplicative (generalized)- derivation but
the converse is not true. Thus, it would be a fact of interest to think about the
results of generalized derivations for multiplicative (generalized)-derivations. In this
direction, the initial results are due to Dhara and Ali [11], where they extended the
theorems of Ashraf et al. [4] to the class of multiplicative (generalized)-derivations
of semiprime rings. Moreover, Khan [14] studied the following differential identities:
(i) d(x) o F(y) £ (z oy) = 0; (ii) d(z) o F(y) + [, y] = 0; (iii) d(x) o F(y) = 0; (iv)
[d(z), F(y)] + [z,y] = 0; (v) [d(x), F(y)] £ (z o y) = 0; (vi) [d(x), F(y)] = 0 for all
x,y in an appropriate subset of a semiprime ring R and (F,d) the multiplicative
(generalized)-derivation of R. For a good cross section of this subject, we refer the
reader to [1], [15], [7], [20] and references therein. In this paper, our aim is to
explore the nature of multiplicative derivations acting on a semiprime rings. More
specifically, we investigate the following differential identities:

(i) Glay) £ [F(x),y] + [z, y] € Z(R);
(i) Gley) £ [z, F(y)] + [z, 9] € Z(R),
where (F,d) and (G, g) are the multiplicative (generalized)-derivations of a semiprime
ring R.
1.1. Preliminaries

To achieve our objectives, we make utilization of the following commutator identi-
ties: [z,yz] = y[z, 2] + [z, 9]z, [zy, 2] = x[y, 2] + [z, z]y. We also use the following
well known results:

Lemma 1.1. [[16] THEOREM 2. (11)] Let R be a prime ring and I be a nonzero
ideal of R. If there exist a derivation d of R such that z[[d(x),z],z] = 0 for all

x € I, then either d =0 or R is commutative.

Lemma 1.2. [[6] THEOREM 4.] Let R be a prime ring and I a nonzero left ideal
of R. If R admits a nonzero derivation d such that [d(z),z] € Z(R) for all z € I,
then R is commutative.

1.2. Main Results

Theorem 1.1. Let I be a nonzero ideal of a semiprime ring R. If (F, f) and (G, g)
are multiplicative (generalized)-derivations of R such that G(zy)+[F(z),y]x[z,y] €
Z(R) holds for all x,y € I, then [g(z),z] =0 and z[f(z),2z]2 =0 for all z € I.

Proof. By our hypothesis

(1.1) G(zy) + [F(z),y] £ [x,y] € Z(R) for all z,y € I.
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On replacing y by yz in (1.1), we get (G(zy) + [F(2),y] + [z,y])z + zyg(z) +
y[F(x), 2] £ y[z,z] € Z(R) for any z,y,z € I. On commuting with z and using
given hypothesis we obtain

(1.2) [zyg(2), 2] + [y[F(z), 2], 2] £ [y[z,2],2] =0 forall z,y,z € I.

Put zy in the place of y in (1.2) and we find

(1.3) [xzyg(2), z] + z[y[F (x), ], 2] £ z[y[x, 2], 2] =0 for all z,y,z € I.

Left multiply (1.2) by z and subtract from (1.3) to obtain

(1.4) [z, z]yg(z),z] =0 forall z,y,z € I.

Replacing 2 by «t in (1.4) and we get

(1.5) [x[t, z]yg(2), 2] + [[z, z]tyg(z), 2] =0 for all z,y, z,t € I.

Put y = ty in (1.4) and subtract from (1.5), we get 0 = [z[t, z]yg(2), 2] = «[[t, 2]y
9(2), 2] + [z, Z|[t, z]yg(z) for any z,y, z,t € I. Using (1.4), we obtain

(1.6) [z, 2][t, z]yg(z) =0 for all x,y,z,t € I.

Substituting tk for ¢ in (1.6) in order to get

(1.7) [z, 2|t[k, zlyg(2) + [z, 2][t, z]kyg(z) =0 for all z,y,z,t,k € I.
Replace y by ky in (1.6) and subtract from (1.7), we obtain

(1.8) [z, 2]tlk, zJyg(z) =0 for all z,y,z,t,k € I.

Put z = z¢(z) in (1.8) and we have

(1.9) z[g(2), 2]tlk, zJyg(z) + [z, z]g(2)t[k, zJyg(z) =0 for all z,y, z,t,k € I.
Replace t by g(z)t in (1.8) and subtract from (1.9) to get

(1.10) x[g(z), z]tlk, z]lyg(z) = 0 for all =y, z, ¢,k € I.

Putting kg(z) for k in (1.10) and we find

(L.11)z[g(2), 2]tk[g(2), z]lyg(2)+x[g(2), 2]t[k, z]g(2)yg(z) =0 for all x,y, z,t, k € I.
Replace y by ¢g(z)y in (1.10) and subtract from (1.11), we have

(1.12) zg(2), 2]tk[g(2), z]lyg(z) =0 for all z,y,z,t, k € I.
Substitute k = g(z)zk in (1.12) and we obtain

(1.13) xlg(2), 2tg(2)zk[g(2), zlyg(z) =0 for all z,y,2,t,k € I.
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Replacing ¢ by tzg(z) in (1.12) to get
(1.14) xlg(2), 2ltzg(2)k[g(2), zlyg(z) =0 for all z,y,2,t,k € I.

Subtract (1.13) and (1.14), we get z[g(2), z]t[g(2), z]k[g(2), z]yg(z) = 0 for all
x,y,z,t,k € I. Tt implies that x[g(z), z]t[g(2), z]k[g(2), z]y[g(2),z] = 0 for all
z,y,2,t,k € I. In particular, (I[g(z), 2])* = (0) for all z € I. Since R is semiprime
ring, so we must have I[g(z),z] = (0) for all w € I. Therefore, semiprimeness of I
yields that [g(z),2] =0 for all z € I.

Now, substitute y = yz in (1.2), we get
(1.15)  [zyzg(2), 2] + [yz[F(x), 2], z] £ [yz[z,2],2] =0 for all z,y,z € I.

Right multiply (1.2) by z and subtract from (1.15) and using the fact that [g(z), 2] =
0, we get
(1L16)  [l[F(),2), 2] 2] % [yllws 2], 2], 2] = 0 for all 2,2 € 1.

Replace = by zz in (1.16) in order to obtain

(1.17) WllF (), 2, 2], 2]z + [yl[=f (2), 2], 2], 2] £ [yl[z, 2], 2], 2]2 = O,

for all z,y, 2z € I. Right multiply (1.16) by 2z and subtract from (1.17), we get
(1.18) Wlzf(z),2],2],2] =0 forall x,y,z € I.

Replace y by [zf(2), 2]y in (1.18) and we find [z f(2), z][y[[zf(2), 2], 2], 2] + [z f (2),
z), zlyl[x f(2), 2], 2] = 0 for any z,y, 2z € I. Using (1.18), we get [[zf(2), 2], z]y[[z
f(2),2],2] =0forall z,y,z € I. That is, (I[[xf(2), z],2])? = 0 but R is a semiprime
ring so we must have I[[zf(2), z], z] = for each x, z € I. Semiprimeness of I implies
that [[zf(2),z],z] = 0 for all x,z € I. In particular, we obtain z[f(z), z]s = 0 for
all z € I, as desired. O

In Theorem 1.1, substitute G = —G and g = —g we get the following theorem:

Theorem 1.2. Let I be a nonzero ideal of a semiprime ring R. If (F, f) and (G, g)
are multiplicative (generalized)-derivations of R such that G(xy)—[F(x),y]£[z,y] €
Z(R) holds for all x,y € I, then [g(2),2] =0 and z[f(z),z]2 =0 for all z € I.

Corollary 1.1. Let I be a nonzero ideal of a prime ring R. If (F, f) and (G, g) are
multiplicative generalized derivations of R such that G(zy)£[F (), y]x[z,y] € Z(R)
holds for all x,y € I, then either f =0 =g or R is commutative.

Proof. Observe that in Theorem 1.1 and 1.2, if R is prime and f, g are derivations of
R, by Lemma 1.1 and Lemma 1.2 the equations z[[f(z),2],z] = 0 and [g(z),z] =0

for all z € I respectively implies that either f =0 = g or R is commutative. O

In Corollary 1.1, substitute G F I; for G we get the following result:
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Corollary 1.2. Let I be a nonzero ideal of a prime ring R. If (F, f) and (G, g) are
multiplicative generalized derivations of R such that G(zy) £ [F(z),y] Lyz € Z(R)
holds for all x,y € I, then either f =0 =g or R is commutative.

In Corollary 1.2, substitute F' + I; for F we get the following result:

Corollary 1.3. Let I be a nonzero ideal of a prime ring R. If (F, f) and (G, g) are
multiplicative generalized derivations of R such that G(zy) £ [F(z),y] £zy € Z(R)
holds for all x,y € I, then either f =0 =g or R is commutative.

Theorem 1.3. Let I be a nonzero ideal of a semiprime ring R. If (F, f) and (G, g)
are multiplicative (generalized)-derivations of R such that G(zy)+ [z, F(y)|x[z,y] €
Z(R) holds for all x,y € I, then [g(2), 2] = —[f(2), 2] for all z € I.

Proof. Let us assume that
(1.19) G(zy) + [z, F(y)] £ [x,y] € Z(R) for all z,y € I.

Put y = yz in (1.19) and we find (G(zy) + [z, F(y)] =[x, y]) 2+ zyg(z) + F(y)[z, 2] +
[z,yf(2)] £ ylx, 2] € Z(R) for all z,y,z € I. On commuting with z and using our
hypothesis, we obtain

(1.20) [zyg(2), 2] + [F(y)[2, 2], 2] + [z, yf (2)], 2] £ [y[e, 2], 2] = O,

for all z,y, 2z € I. Replacing = by zz in (1.20), we get

(1.21) [z2yg(2), 2]+ [F (y)[, 2], 2lo4{[2, y [ (2)], 2]z +[2]z, w £ (2)], 2] £ [y[=, 2], 2] 2 =0,

for all x,y,z € I. Right multiply (1.20) by z and subtract from (1.21), we find
[z][z,y9(2)], 2] + [x[z,yf(2)], 2] = 0 where z,y, z € I. That is

(1.22) [z[z,y(9(2) + f(2))],2] =0 forall z,y,z € I.

On substituting ry in the place of y, where r € R in (1.22), we get

(1.23) [zr]z,y(9(2) + £ (2))], 2] + [z, 7y (9(2) + f(2)), 2] = 0,

for all x,y,z € I, r € R. Replacing by zr in (1.22) and subtract from (1.23), we
get
(1.24) [z, r|y(g(z) + f(2)),2] =0 forall z,y,z€ I,r € R.

Put sz in the place of z, where s € R in (1.24) in order to find s[z[z,r]y(g(z) +
f(2)), 2] + [s, z]z[z, rly(g(z) + f(2)) =0 for all z,y,z € I and r,s € R. Eq. (1.24)
reduces it to

(1.25) [s, z]z[r, 2ly(g(z) + f(2)) =0 forall x,y,z€ I,r,s € R.
Replace y by yz in (1.25), we get

(1.26) [s, z)z[r, zlyz(g(2) + f(2)) =0 for all z,y,z € I,r,s € R.
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Right multiply (1.25) by z and subtract from (1.26), we get [s, z]z[r, z]y[(g(2)
f(2)),z] = 0 for each x,y,z € I and r,s € R. In particular, we have (I[(g(z)
f(2)),2])® = (0) for all z € I. Since R is semiprime ring, so we must have I[(g(2)
f(2)),2] = (0) for all z € I. Therefore, [(g(z) + f(2)),2] € IN Ar(I) = (0) for any
z € I. Hence [g(z),z] = —[f(2), 2] for all z € I, as desired. O

In Theorem 1.3, substitute G = —G and g = —g we get the following theorem:

Theorem 1.4. Let I be a nonzero ideal of a semiprime ring R. If (F, f) and (G, g)
are multiplicative (generalized)-derivations of R such that G(xy)—[z, F(y)|£[z,y] €
Z(R) holds for all x,y € I, then [g(2),z] = [f(2),z] for all z € I.

Corollary 1.4. Let R be a prime ring. If (F,f) and (G,g) are multiplicative
generalized derivations of R such that G(zy) — [z, F(y)] £ [z,y] € Z(R) holds for
all z,y € R then either g = f or R is commutative.

Proof. From Theorem 1.4 we have, [(—g+ f)(2), 2] = 0 for all z € R. We know that
sum of two derivations is a derivation so Posner’s second theorem [18] yields that
either ¢ = f or R is commutative. O

Corollary 1.5. Let R be a prime ring with a nonzero ideal I. Suppose that (F, f)
and (G, g) are multiplicative generalized derivations of R. If G(ay)—[z, F(y)|tyx €
Z(R) holds for all z,y € I then either f = g or R is commutative.

Proof. Tt is easy to check that if G is a multiplicative (generalized)-derivation on
R associated with a map g, then (G F 1) is also a multiplicative (generalized)-
derivation on R associated with map g. On replacing G by (GF I4) in Theorem 1.4,
we obtain that [(—g + f)(z), z] = 0 for the situation G(zy) — [F(z),y] Fyx € Z(R)
for all z,y € I. If we assume that F' and G are multiplicative generalized derivations
associated with non-zero derivations f and g respectively same conclusion i.e.; (—g+
f) is commuting on I holds. Hence, Lemma 1.2 implies that either f = g or R is
commutative. []

In Corollary 1.5, substitute F' £ Iy for F' we get the following results:

Corollary 1.6. Let I be a nonzero ideal of a prime ring R. If (F, f) and (G, g) are
multiplicative generalized derivations of R such that G(zy) — [z, F(y)] 2y € Z(R)
holds for all x,y € I, then either f = g or R is commutative.

Theorem 1.5. Let I be a nonzero ideal of a semiprime ring R. If (F, f) and (G, g)
are multiplicative (generalized)-derivations of R and H is a left centralizer of R such
that G(zy) + [F(z),y] £ H(zy) € Z(R) holds for all x,y € I, then [g(2),2] =0 and
z[f(2),2]2=0 for all z € 1.
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Proof. By the hypothesis, we have
(1.27) G(zy) + [F(z),y] £ H(xy) € Z(R) for all z,y € I.

Taking yz instead of y with z € I in (1.27), we get (G(zy) + [F(x),y] £ H(zy))z +
xyg(z) + y[F(z),z] € Z(R) for all z,y,z € I. On commuting with z and using the
hypothesis, we get

(1.28) [zyg(2), z] + [y[F(x),2],2] =0 for all z,y,z € I.
Replacing y by zy in (1.28), so we have

(1.29) [zzyg(2), z] + 2[y[F(x),2],2] =0 for all z,y,2 € I.
Left multiply (1.28) by z and subtract from (1.29), we obtain
(1.30) [z, zlyg(2), 2] =0 for all x,y,z € I.

So, same equation with the (1.4) was obtained. Similar proof shows that [g(z), z] =
0, for all z € I. If we replace y by yz in (1.28), we get

(1.31) [zyzg(2), z] + [yz[F(x),2],2] =0 for all x,y,z € I.

Right multiply (1.28) by z and subtract from (1.31) and using the [g(z), z] = 0, we
get
(1.32) W[[F(x),z],2],2z] =0 forall z,y,z €l

Replace = by zz and using (1.32), we have
(1.33) ([yllxf(2),2],2]),2] =0 for all z,y,z € I.

So, same equation with the (1.18) has obtained. Similar operations applied after
this shows that z[[f(z),z],z] =0forall z € I. O

In Theorem 1.5, substitute G = —G and g = —g we get the following theorem.

Theorem 1.6. Let I be a nonzero ideal of a semiprime ring R. If (F, f) and (G, g)
are multiplicative (generalized)-derivations of R and H is a left centralizer of R such
that G(zy) — [F(x),y] £ H(xy) € Z(R) holds for all z,y € I, then [g(2),2] =0 and
z[f(2),2]2 =10 for all z € I.

Corollary 1.7. Let I be a nonzero ideal of a prime ring R. If (F, f) and (G, g)
are multiplicative generalized derivations of R such that G(xy)x[F(x),y|+ H(zy) €
Z(R) holds for all z,y € I, then either f =0 =g or R is commutative.

By using the similar technique, we obtain the following results. For the sake of
brevity, we omit the proofs here.
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Theorem 1.7. Let I be a nonzero ideal of a semiprime ring R. If (F, f) and (G, g)
are multiplicative (generalized)-derivations and H is a left centralizer of R such that
G(zy) + [z, F(y)] £ H(zy) € Z(R) holds for all z,y € I, then [g(2), 2] = —[f(2), 2]
forall z € I.

In Theorem 1.7, substitute G = —G and g = —g we get the following theorem.

Theorem 1.8. Let I be a nonzero ideal of a semiprime ring R. If (F, f) and (G, g)
are multiplicative (generalized)-derivations and H is a left centralizer of R such that
G(zy) — [z, F(y)] £ H(zy) € Z(R) holds for all x,y € I, then [g(2),z] = [f(2), 2]
forall z € 1.

Corollary 1.8. Let I be a nonzero ideal of a prime ring R. If (F, f) and (G, g)
are multiplicative generalized derivations of R such that G(xy) — [z, F(y)| £ H(zy) €
Z(R) holds for all z,y € I, then either f = g or R is commutative.

2. Generalized derivations on Banach algebras

In order to extend the scope of this work, we discuss the commutativity of unital
prime Banach algebras with derivations which is directly motivated by the work of
Yood [23] and Ali [2]. Since we have already proved that (as in Corollary 1.1 and 1.4)
if constraints G(zy) + [F(x),y] + [z,y] € Z(R) and G(zy) — [z, F(y)] — [z,y] € Z(R)
hold on a prime ring R where F' and G are generalized derivations associated with
non-zero non-equal derivations f and g respectively, then R is commutative. For
an integer n > 1, it is natural to consider the constraints: 1. either G((xy)"™) +
[F@m),y"] + [a,y7] € Z(R) or G(ay)") + [y, F@™)] + [y",2"] € Z(R) and 2.
G((wy)™) + (2", F(y")|+[a",y"] € Z(R) or G(ay)")+ [z, F(y™)] +[z",y"] € Z(R)
on Banach Algebra.

2.1. Preliminaries

Lemma 2.1. [[23]]Let A is a Banach algebra and M be a closed linear subspace
of A. If p(t) = ait + ast® + ... + a,t™ be a polynomial in real variable t over A such
that p(t) € M, then each a; € M.

Lemma 2.2. [OPEN PROBLEM 1, [21]] Let A be a unital prime Banach algebra
with non-trivial center Z(A). If d: A — A be a derivation of A, then d(e) € Z(A).

Proof. Let 0 # ¢ € Z(A). It is easy to check that d(c) € Z(A). That means for
all a € A, 0 = [d(c),a] = [d(ce),a] = [d(c)e,a] + [cd(e),a] = c[d(e),a]. Therefore,
cAld(e),b] = (0) for all b € A. Since ¢ # 0, we get d(e) € Z(A). O

Lemma 2.3. [THEOREM 2, [18]] A prime ring R admitting a non-zero centraliz-
ing derivation is commutative.
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Lemma 2.4. Let A be a unital prime algebra and F : A — A be a generalized
derivation associated with o derivation f such that [F(x),z] € Z(A) for all x € A,
F(e) € Z(A) and f(F(e)) #0. Then A is commutative.

Proof. By hypothesis, for each © € A, [F(z),z] € Z(A). Linearizing this relation
in order to obtain [F(z),y] + [F(y),z] € Z(A). Replace = by zF(e) we obtain
([F(z),y] + [F(y),z])F(e) + [z,y] f(F(e)) € Z(A). As Z(A) is a linear subspace of
A, we left with [z,y]f(F(e)) € Z(A). Since f(F(e)) # 0, we have [z,y] € Z(A).
That means, 0 = [[y,z],2] = [Iy(x), 2] for all z,y,z € A, where I, is an inner
derivation of A. Hence, Lemma 2.3 completes the proof. O

2.2. Main Results

Theorem 2.1. Let F;G : A — A are continuous linear generalized derivations
of a unital prime Banach Algebra A associated with non-zero continuous linear
derivations f,g : A — A respectively such that F(e) € Z(A) and f(F(e)) # 0.
Suppose that G((zy)") + [P(z"), 5] + [z, y"] € Z(A) or G((zy)") — [F(z"), y"] -
[z, y"] € Z(A) for all x € Py and y € P2, where P1, Py are open sets in A and
n=n(x,y) > 1 1is an integer. Then A is commutative.

Proof. Firstly, we set ¢1(x,y,n)=G((xy)") + [F(z™),y"] + [=™,y"] and ¢2(z, vy,
n)=G((zy)") + [y", F(z™)] + [y",z"]. By our hypothesis, ¢1(z,y,n) € Z(A) and
¢p2(x,y,n) € Z(A) for all z € P; and y € P,. For an arbitrary fixed element x € P,
we construct a set £, ={y € A: ¢1(x,y,n) ¢ Z(A), d2(x,y,n) ¢ Z(A)}. We claim
that E,, is open. For this, we choose a sequence < s, > in Ef that converges to
s and prove that s € ES. By our assumption, s; € ES i.e. ¢1(x,s,,n) € Z(A) or
¢2(x, sg,n) € Z(A). On making k arbitrarily large, the continuity of G implies that
p1(x,s,n) € Z(A) or ¢2(z,s,n) € Z(A). That means, s € ES. Hence, E,, is open.
By the Baire Category theorem; if every E,, is dense, then so is their intersection,
which contradicts the existence of P». Therefore, there must exist a positive integer
m = m(x) > 1 such that E,, is not dense. Let P be a nonzero open set in ES,
such that ¢1(z,y,m) € Z(A) or ¢a(z,y,m) € Z(A) for all y € P;. Take qp € Ps
and w € A for sufficiently small real t, qo + tw € P3. Therefore, we have

(2.1) o1 (z, qo + tw, m) € Z(A)
(2.2) ba(z, go +tw,m) € Z(A)

One of these relations must hold for infinitely many real ¢. If (2.1) holds, the
corresponding binomial expansion is a polynomial in ¢. In the light Lemma 2.1,
each coefficient of the polynomial must be in Z(A). On taking the coefficients of
t™, we get ¢1(xz,w,m) € Z(A). Similarly, if (2.2) holds, ¢2(x,w,m) € Z(A). That
means, for given x € P; there exist an integer m = m(z) > 1 such that for each
w € A either ¢1(z,w,m) € Z(A) or ¢o(x,w,m) € Z(A).
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Next, let y € A be an arbitrary element. Now we want to show that there exists
an integer r > 1 depending on y such that for each u € A, either ¢ (u,y,r) € Z(A)
or ¢o(u,y,r) € Z(A). Fix y € A and for each integer p(y) > 1, we consider a
set V, = {v e Ad: ¢gi(v,y,p) ¢ Z(A),p2(v,y,p) ¢ Z(A)}. It is easy to see that
V, is open. The application of the Baire category theorem forces that there exists
an integer r = r(y) > 1 such that V;. is not dense in A. Let P; be a non-empty
open subset of V¢ such that either ¢1(x,y,r) € Z(A) or ¢a(z,y,r) € Z(A) for all
x € Py. Take zg € Py and u € A then zg + tu € Py for all sufficiently small real
t and either ¢1(zo + tu,y,r) € Z(A) or ¢o(xo + tu,y,r) € Z(A) for all u € A and
xo € Py. Applying the same argument, we obtain that either ¢1(u,y,r) € Z(A) or
¢p2(u,y,r) € Z(A) for all u € A.

Now, we construct a set T; = {y € A : ¢1(w,y,5) € Z(A) or ¢2(w,y,j) €
Z(A) for all w € A}. By our above arguments it is clear that UT; = A and each
T} is closed i.e.; each T} is open. Again by the Baire category theorem, if each
T is dense, then their intersection is also dense, which is again a contradiction to
the existence of P,. Thus there must exist an integer [ > 1 such that T} contains
a non-empty open set Ps and either ¢1(w,yo,1) € Z(A) or ¢1(w,yo,l) € Z(A) for
all yg € Ps. If yg € P; and z € A then yy + tz € P5 for all sufficiently small
real t. Therefore, either ¢1(w,yo + t2,1) € Z(A) or ¢o(w,yo + tz,1) € Z(A) for all
w,z € A and yyg € Ps. By repeating the same argument as earlier, we get either
d1(w, 2,1) € Z(A) or ¢pa(w, z,1) € Z(A) for all w,z € A and an integer | > 1.

As we assumed A a prime Banach algebra with unity and from what that just
has been shown, we obtain either ¢1(e + tx,y,n) € Z(A) or ¢a(e +tx,y,n) € Z(A)
for all z,y € A. Explicitly, we have either G(((e+tx)y)™)+[F((e+tx)™),y"]+[(e+
t2)", 5" € Z(A) or G((e +tx)y)™) + ™, Fl(e +t2)")] + [y (e + t2)") € Z(A) for
all z,y € A. The expansions of these expressions are the polynomials in ¢. Using
Lemma 2.1 and taking the coefficients of ¢, we get either G(nzy™) + [F(nz),y"] +
[nz,y"] € Z(A) or G(nzy™) + [y", F(nz)] + [y", nz] € Z(A) for all z,y € A. Note
that nzy” = zy™ + S0 y'ay™ " = zy" + Q where Q = Y7~ ' y'xy" . Therefore,
we have either

(2.3) G(zy" + Q) + n[F(z),y"] + nlz,y"] € Z(A)
(2.4) G(zy" + Q) + nly™, F(z)] + nly™, z] € Z(A)

for all z,y € A. Taking y(e + tx) in the place of (e + tx)y and note that ny"x =
y"z + Q, we find either

(2.5) Gly"z+ Q) +n[F{y"),z] + nly™, z] € Z(A)
(2.6) Gly"z + Q) +nlz, F(y")] + nlz,y"] € Z(A)

for all z,y € A. Thus one of the pair of equations (2.3)-(2.5),(2.3)-(2.6),(2.4)-(2.5)
and (2.4)-(2.6) must hold on A. On subtracting these pairs we get either

(2.7) Glz,y"] + n[(F —iq)(x), (F +iq)(y™)] + 2nlz,y"] € Z(A)



96 G. S. Sandhu, D. Kumar, D. K. Camci and N. Aydin

(2.8) Glz, y"] = n[(F —ia)(x), (F +ia)(y")] — 2n[z, y"] € Z(A)
(2.9) Gla, y"] £ n[(F —ia)(2), (F —ia)(y")] € Z(A)

holds for all z,y € A where i4 is the identity map. Firstly, we consider G[z, y"] +
n[(F—iq)(x), (F+iq)(y™)]+2n[z,y"] € Z(A) for all z,y € A. Replacing y by e+ty
in this relation. Using Lemma 2.1 and collecting the coeflicients of ¢, we find that
Glz,y) + n[(F —iq)(x), (F +iq)(y)] + 2n[z,y] € Z(A) where x,y varies over A. It is
easy to check that F' —i4 and F' + ¢4 are continuous linear generalized derivations
associated with nonzero continuous linear derivations f. Set F'—iy = H and F+ig =
K . For each x,y € A, we have G[z, y|+n[H (z), K (y)]|+2n[z,y] € Z(A). Substitute
yF(e) for y in the last expression, we get (Glz,y] +n[H (z), K(y)] + 2n[z, y]) F(e) +
[z, y]g(F(e)) + n[H(x),y]f(F(e)) € Z(A) where z,y € A. Since Z(A) is a linear
subspace of A, last relation reduces to [z,y]g(F(e)) +n[H (x),y]f(F(e)) € Z(A) for
all x,y € A. In particular, put z = y , we have with n[H(z),z]f(F(e)) € Z(A)
where z,y € A. Since 0 # f(F(e)) € Z(A), we have n[H(z),z| € Z(A). That is,
for each x € A, [H(x),z] € Z(A). By Lemma 2.4, A is commutative.

In the same way, we can prove the same conclusion for the equation (2.8) and
(2.9). O

Theorem 2.2. Let F,G : A — A are continuous linear generalized derivations of
a unital prime Banach Algebra A associated with nonzero continuous linear deriva-
tions f,g : A — A respectively such that F(e) € Z(A) and f(F(e)) # 0. Suppose
that G((zy)") + &, F(y")] + [o7, y"] € Z(A) or G((zy)") — [o", F(y")] - [a", y"] €
Z(A) for allx € P, and y € Py, where Py, Py are open sets in A andn = n(z,y) > 1
is an integer. Then A is commutative.

Proof. By following the same argument with some necessary variations as in The-
orem 2.1, we find either

(2.10) Glz,y"] + n[(F +iq)(z), (F + iq)(y™)] + 2n[z,y"] € Z(A)
(2.11) Glz,y"| — n[(F +ia)(z), (F +ia)(y")] — 2n[z,y"] € Z(A)
(2.12) Glz,y"| + n[(F —ia)(z), (F —ia)(y")] € Z(A)

for all z,y € A and an integer n > 1. Again from Theorem 2.1 we can get the
desired outcomes. [

Theorem 2.3. Let F,G : A — A are continuous linear generalized derivations of
a unital prime Banach Algebra A associated with nonzero continuous linear deriva-
tions f,g : A — A respectively such that F(e) € Z(A) and f(F(e)) # 0. Suppose
that G((zy)") + [F(«"), F(y")] + [2",y"] € Z(A) or G((zy)") — [F(a"), F(y")] -
[z, y"] € Z(A) for all x € Py and y € P2, where P1, Py are open sets in A and
n=n(x,y) > 1 1is an integer. Then A is commutative.
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Proof. By following the same argument with some necessary variations as in The-
orem 2.1, we find either

(2.13) Glz,y"] + 2n[F (z), F(y")] + 2n[z,y"] € Z(A)
(2.14) Glz,y"] = 2n[F(z), F(y")] — 2n[z,y"] € Z(A)
(();.15) Glz,y"] € Z(A)

for all ,y € A and an integer n > 1. Let us consider for each z,y € A, G[z,y"] €
Z(A). This situation is the same as in [Eq. (15), [21]], hence the conclusion follows.
For the remaining identities, by applying the same procedure as in Theorem 2.1,
we can get the required results. [
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