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Abstract. The objective of the present paper is to characterize quasi-conformally
flat and &-quasi-conformally flat almost Kenmotsu manifolds with (k, x)-nullity and
(k, p) -nullity distributions, respectively. Also we characterize almost Kenmotsu mani-
folds with vanishing extended quasi-conformal curvature tensor and extended &-quasi-
conformally flat almost Kenmotsu manifolds such that the characteristic vector field &
belongs to the (k, u)-nullity distribution.
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1. Introduction

Let M be a (2n + 1)-dimensional Riemannian manifold with metric g and let
T (M) be the Lie algebra of differentiable vector fields in M. The Ricci operator @
of (M, g) is defined by

(1.1) 9(QX,Y) = S(X,Y),
where S denotes the Ricci tensor of type (0,2) on M and X,Y € T'(M). The Weyl
conformal curvature tensor C' is defined by
1
C(X,Y)Z = R(X,Y)Z-3—IS(Y,Z)X — S(X,2)Y + (Y. 2)QX

(1.2) —9(X, 2)QY] + 3 [9(Y, 2)X — g(X, Z)Y],

n(2n —1)

for X,Y,Z € T(M), where R and r denote the Riemannian curvature tensor and
scalar curvature of M, respectively.
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For a (2n + 1)-dimensional Riemannian manifold, the quasi-conformal curvature
tensor C is given by

C(X,Y)Z = aR(X,Y)Z+bS(Y,2)X — S(X,2)Y + g(Y, Z)QX — g(X, Z)QY]

(1.3) %CF - [% +2b[g(Y, 2)X — g(X, Z2)Y],

where a and b are two scalars. The notion of quasi-conformal curvature tensor was
introduced by Yano and Sawaki [21]. If a = 1 and b = —51~, then the quasi-
conformal curvature tensor reduces to conformal curvature tensor.

A (2n + 1)-dimensional Riemannian manifold will be called a manifold of the
quasi-constant curvature if the Riemannian curvature tensor R of type (0, 4) satisfies
the condition

RX.Y,Z,W) = plg(Y,Z)g(X, W)~ g(X, Z)g(Y, W)]
+qlg(X, W)T ( JT(Z) = 9(X, 2)T(Y)T(W)
(1.4) +9(Y, 2)T(X)T(W) = g(Y, W)T(X)T(Z)],

where R(X,Y,Z, W) = g(R(X,Y)Z, W), p, q are scalars and there exists a unit
vector field p satisfying g(X, p) = T(X). The notion of the quasi-constant curvature
for Riemannian manfiolds was introduced by Chen and Yano [4].

At present, the study of nullity distributions is a very interesting topic on almost
contact metric manifolds. The notion of k-nullity distribution was introduced by
Gray [10] and Tanno [15] in the study of Riemannian manifolds (M, g), which is
defined for any p € M and k € R as follows:

(15)  Ny(k)={ZeT,M:R(X,Y)Z =k[g(Y, 2)X — g(X, Z)Y]},

for any X, Y € T,M, where T,M denotes the tangent vector space of M at any
point p € M and R denotes the Riemannian curvature tensor of type (1, 3). Blair,
Koufogiorgos and Papantonio [1] introduced the generalized notion of k-nullity dis-
tribution, named (k, u)-nullity distribution on a contact metric manifold (M?7+1,
o, &, 1, g), which is defined for any p € M and k, 1 € R as follows:

N,(k,p) = {Z € T,M : RIX.Y)Z = Klg(Y.Z)X - g(X,Z)Y]
(1.6) +ulg(Y, 2)h X — g(X, Z)hY]},
where h = £ £¢¢ and £ denotes the Lie differentiation.
In [7] Dileo and Pastore introduce the notion of (k, u)’-nullity distribution, an-

other generalized notion of k-nullity distribution, on an almost Kenmotsu manifold
(M?"+1 ¢, & n, g), which is defined for any p € M?"*! and k, u € R as follows:

Np(k,p) ={Z e T,M : R(X,Y)Z = k[g(Y,Z2)X —g(X,Z)Y]
(1.7) +ulg(Y, 2)0'X — g(X, Z)h'Y1},
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where b/ = ho ¢.

A differentiable (2n + 1)-dimensional manifold M is said to have a (¢,&,n)-
structure or an almost contact structure, if it admits a (1, 1) tensor field ¢, a char-
acteristic vector field £ and a 1-form 7 satisfying ([2],[3]),

(1.8) ¢’ =—-T+n®E nE) =1,

where I denotes the identity endomorphism. Here also ¢£ = 0 and n o ¢ = 0 hold;
both can be derived from (1.8) easily.
If a manifold M with a (¢, &, n)-structure admits a Riemannian metric g such that

9(¢X,9Y) = g(X,Y) = n(X)n(Y),

for any vector fields X, Y of T,M?"*! then M is said to be an almost contact
metric manifold. The fundamental 2-form ® on an almost contact metric mani-
fold is defined by ®(X,Y) = g(X,®Y) for any X, Y of T,M?"*1. The condition
for an almost contact metric manifold being normal is equivalent to the vanish-
ing of the (1,2)-type torsion tensor Ny, defined by Ny = [¢, @] + 2dn ® £, where
[¢, ¢] is the Nijenhuis torsion of ¢ [2]. Recently in ([7],[8],[9],[13],[14]), an almost
contact metric manifold such that 7 is closed and d® = 2n A ® are studied and
called almost Kenmotsu manifolds. Obviously, a normal almost Kenmotsu mani-
fold is a Kenmotsu manifold. Also, Kenmotsu manifolds can be characterized by
(Vx9)Y = g(¢X,Y)¢ — n(Y)pX, for any vector fields X,Y. It is well known [11]
that a Kenmotsu manifold M?"*! is locally a warped product I x ¢ N?" where
N?2" is a Kihler manifold, I is an open interval with coordinate ¢ and the warping
function f, defined by f = ce® for some positive constant c. Let us denote the
distribution orthogonal to & by D and defined by D = Ker(n) = Im(¢). In an
almost Kenmotsu manifold, since 7 is closed, D is an integrable distribution.

At each point p € M ,we have
TP(M) = ¢(TP(M)) & {gp}

where {£,} is 1-dimensional linear subspace of T),(M) generated by &,. Then the
Weyl conformal curvature tensor C' is a map:

C: TP(M) X Tp(M) x Tp(M) = ¢(T,(M)) © {€}

Three particular cases can be considered as follows:

(1) C: Tp(M) x T,(M) x T,(M) — {£}, that is, the projection of the image of C
in ¢(T,(M)) is zero .

(2) C:Tp(M) x T,(M) x Tp(M) — ¢(Tp(M)), that is, the projection of the image
of C in {&} is zero.

(3) C : T(M) X Tp(M)xT,(M) — {&}, that is, when C is restricted to ¢(T},(M)) x
¢(Tp(M)), the projection of the image of C in ¢(T,(M)) is zero, which is equivalent
to p2C(¢X, Y )pZ = 0.
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Definition 1.1. [22] A contact metric manifold (M?"*! ¢, £, n,9) is said to be
&-conformally flat if the linear operator C'(X,Y) is an endomorphism of ¢(T(M)),
that is, if

C(X,Y)o(T(M)) C ¢(T(M)).

Then it follows immediately that

Proposition 1.1. [22] On a contact metric manifold (M?"1 ¢, & n,g) , the fol-
lowing conditions are equivalent.

(a) M2+ is &-conformally flat,
(b) n(C(X,Y)Z) =0,
(c) *C(X,Y)Z = —C(X,Y)Z,
(d) C(X,Y)§=0,

where X,Y,Z € T(M).

Almost Kenmotsu manifolds have been studied by several authors such as Dileo
and Pastore ([7]-]9]), Wang and Liu ([16]-[20]), De and Mandal([5], [6], [12]) and
many others. In the present paper we like to study quasi-conformal curvature tensor
of almost Kenmotsu manifolds with (k, ) and (k, u)’-nullity distributions, respec-
tively. Also, we discuss vanishing extended quasi-conformal curvature tensor in an
almost Kenmotsu manifold and extended &-quasi-conformally flat almost Kenmotsu
manifolds with (k, u)-nullity distribution.

The paper is organized as follows:

In Section 2, we give a brief account on almost Kenmotsu manifolds with £ belonging
to the (k, p)-nullity distribution and ¢ belonging to the (k, p)’-nullity distribution.
Section 3 deals with quasi-conformally flat and £-quasi-conformally flat almost Ken-
motsu manifolds with the characteristic vector field £ belonging to the (k, p)-nullity
distribution. As a consequence of the main result, we obtain several corollaries. Sec-
tion 4 is devoted to the study of quasi-conformally flat almost Kenmotsu manifolds
with the characteristic vector field ¢ belonging to the (k, u)’-nullity distribution.
In the final section, we discuss vanishing extended quasi-conformal curvature ten-
sor in an almost Kenmotsu manifold and extended &-quasi-conformally flat almost
Kenmotsu manifolds with (k, p)-nullity distribution.

2. Almost Kenmotsu manifolds

Let M?"*! be an almost Kenmotsu manifold. We denote by h = %.,55(;5 and [ =
R(-,£)€ on M?"1. The tensor fields [ and h are symmetric operators and satisfy
the following relations [13]:

(2.1) he =0, 1€ =0, tr(h) =0, tr(h¢) =0, hé + ¢h =0,

(2.2) Vx§ =X —n(X)§ - ohX(= Ve = 0),
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(2.3) Pl — 1= 2(h* — ¢°),
24)R(X,Y)E = n(X)(Y = ohY) = n(Y)(X — 6hX) + (Vy¢h) X — (Vxoh)Y,

for any vector fields X,Y. The (1,1)-type symmetric tensor field ’ = ho ¢ is
anti-commuting with ¢ and h'¢ = 0. Also it is clear that ([7], [18])

(2.5) h=0sh =0, h?=(k+1)¢*(< h? = (k+1)¢?).

3. Quasi-conformally flat almost Kenmotsu manifolds with ¢
belonging to the (k, u)-nullity distribution

In this section we study quasi-conformally flat and £-quasi-conformally flat almost
Kenmotsu manifolds with ¢ belonging to the (k, u)-nullity distribution.
From (1.6) we obtain

(3.1) R(X,Y)E = k[n(Y)X = n(X)Y] + pn(Y)hX —n(X)hY],

where k, u € R. Before proving our main results in this section we first state the
following:

Lemma 3.1. [7] Let M*" "1 be an almost Kenmotsu manifold of dimension (2n +
1). Suppose that the characteristic vector field & belonging to the (k, p)-nullity dis-
tribution. Then k = —1, h =0 and M?"*! is locally a wrapped product of an open
interval and an almost Kdhler manifold.

In view of Lemma 3.1 it follows from the equation (3.1),

(3.2) R(X,Y)E = n(X)Y — n(Y)X,
(3.3) R(E,X)Y = —g(X, V)& +n(Y)X,
(3.4) S(X,€) = —2nm(X),

(3.5) Q¢ = —2n¢,

for any vector fields X,Y on M?2n+1,

Theorem 3.1. An almost Kenmotsu manifold M1 with & belonging to the
(k, w)-nullity distribution is quasi-conformally flat if and only if the manifold is
locally isometric to the hyperbolic space H?"+1(—1).

Proof: Let us first consider the manifold M?"*! which is quasi-conformally flat,
that is,
(3.6) C(X,Y)Z =0,
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for any vector fields X,Y, Z on M?"+1,
From (1.3) we have
~ b
RX.Y,Z,W) = —[S(X,2)g(Y, W)= 5(Y, 2)g(X, W)
+S(Y,W)g(X,Z) — S(X,W)g(Y, Z)]

— [ ][y, 2)g(X, W) — g(X, Z)g(Y, W)].

(3:7) +a(2n+ 1) 2n

Putting Z = £ in the above equation and using (3.2) and (3.4) we get
n(X)g(Y, W) —=n(Y)g(X, W) = 2[—2nn(X)g(Y, W)+ 2nn(Y)g(X, W)
+S(Yv W)U(X) - S(X7 W)ﬁ(y)]

+m[% +20][g(X, W)n(Y)

(3.8) —g(Y, W)n(X)].

Putting Y = £ in the above equation we obtain after simplification

(3.9) S(X, W) = ag(X, W) + Bn(X)n(W),
where o = §[222 4 —E s[4 4 20] + 1] and § = §[—228 — L[ 4 2b] - 1].
Therefore, we have o + 8 = —2n.

Now using the above relation, (3.9) implies
(3.10) r=2n(a—1).

In [7], Dileo and Pastore proved that in an almost Kenmotsu manifold with &
belonging to the (k, u)-nullity distribution the sectional curvature K(X,§) = —1.
From this we get in an almost Kenmotsu manifold with £ belonging to the (k, u)-
nullity distribution the scalar curvature r = —2n(2n + 1). Using this value of r we
obtain from (3.10), & = —2n. This implies 5 = 0.

Hence (3.9) reduces to

(3.11) S(X, W) = —2ng(X,W).

From (3.7) we obtain

aR(X,Y)Z = —b[S(Y,Z2)X — S(X,2)Y +g(Y, 2)QX — g(X, Z)QY]
(3.12) +2n—11[% +20][g(Y, 2)X — g(X, Z)Y].

Using the value of r and (3.11) in (3.12) yields
(3.13) R(X,Y)Z = —[g(Y, Z2)X — g(X, Z2)Y],

which implies that the manifold is locally isometric to the hyperbolic space H2"+1(—1).
Conversely, suppose that the manifold is locally isometric to the hyperbolic space
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H2"+1(—1). That is, (3.13) holds.
Contracting X in (3.13) yields

(3.14) S(Y,Z)=—-2ng(Y, Z).

Hence (3.13) and (3.14) together implies C(X,Y)Z = 0. That is, the manifold is
quasi-conformally flat.
Hence the theorem is proved.

Now, ifa =1 and b = —ﬁ, then the quasi-conformal curvature tensor reduces
to conformal curvature tensor. Hence we can state the following:

Corollary 3.1. An almost Kenmotsu manifold with £ belonging to the (k,u)-
nullity distribution is conformally flat if and only if the manifold is locally isometric
to the hyperbolic space H*"T1(—1).

The above corollary has been proved by De and Mandal [5].

Theorem 3.2. An almost Kenmotsu manifold with & belonging to the (k, u)- nul-
lity distribution is &-quasi-conformally flat if and only if the manifold is an Einstein
manifold.

Proof: Let us consider a manifold that is £&-quasi-conformally flat. That is,
CX,Y)E =0,
which implies
aR(X,Y)§ = —b[S(Y,§)X - S(X, )Y +g(Y,§)QX — g(X,§)QY]
(3.15) +5gl5 + (Y. X — g(X, Y],

2n+1
Using (3.2) and (3.4) and r = —2n(2n + 1) we get from the above equation
(3.16) n(Y)QX —n(X)QY = —2n[n(Y)X —n(X)Y],

Putting Y = £ in the above equation we obtain

(3.17) QX = —2nX,

which implies S(X,Y) = —2ng(X,Y). That is, the manifold is Einstein.
Conversely, assume that the manifold is Einstein. Then there exists a scalar A such
that

(3.18) S(X,Y) = Ag(X,Y).

In an almost Kenmotsu manifold with (k, x)-nullity distribution, the scalar curva-
ture r = —2n(2n + 1). This implies A = —2n. Now

C(X,Y)Z = aR(X,Y)Z+bS(Y,2)X — S(X,2)Y + g(Y, Z)QX — g(X, Z)QY]

(3.19) - 2n:- - [% +28][g(Y, Z)X — g(X, Z2)Y].
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Using (3.18) we get

(3.20) C(X,Y)Z = aoRX,Y)Z+ (9(Y,2)X —g(X,2)Y)].
Putting Z = £ in the above equation and using (3.2) we obtain

C(X,Y)E=0,

which implies that the manifold is £-quasi-conformally flat.

Ifa=1and b= —ﬁ, then the quasi-conformal curvature tensor reduces to
conformal curvature tensor.
Thus we are in a position to state the following:

Corollary 3.2. An almost Kenmotsu manifold with (k,u)-nullity distribution is
&-conformally flat if and only if it is Einstein.

4. Quasi-conformally flat almost Kenmotsu manifolds with &
belonging to the (k, ;) -nullity distribution

In this section we study &-quasi-conformally flat almost Kenmotsu manifolds with
¢ belonging to the (k, p)’-nullity distribution. Let X € D be the eigen vector of b’
corresponding to the eigen value . Then from (2.5) it is clear that \> = —(k + 1),
a constant. Therefore k¥ < —1 and A = +v/—k — 1. We denote by [A]" and [—)]’
the corresponding eigenspaces related to the non-zero eigen value A and —\ of i/,
respectively. Before presenting our main theorem we recall some results:

Lemma 4.1. (Prop. 4.1 and Prop. 4.3 of [7]) Let (M*"*1 ¢ & 1, g) be an almost
Kenmotsu manifold such that £ belongs to the (k, u)'-nullity distribution and h' # 0.
Then k < —1, u = —2 and Spec (h') = {0, A\, =}, with 0 as a simple eigen value
and A = /—k — 1. The distributions [§] ® [N and [§] ® [-A] are integrable with
totally geodesic leaves. The distributions [A] and [—A]" are integrable with totally
umbilical leaves. Furthermore, the sectional curvatures are given by the following:

(a) K(X,6)=k—2X\if X € [\ and
K(X, &) =k+2\if X € [-)],

]
(b) K(X,Y)=k—2)\if X,Y € [\
KX, Y)=k+2Xif XY € [- )] and
KX, Y)=—(k+2) f X e[\, Y e [-)],

(c) M?"*! has a constant negative scalar curvature r = 2n(k — 2n).

Lemma 4.2. (Lemma 3 of [16]) Let (M?"*1 ¢,&,n,9) be an almost Kenmotsu
manifold with & belonging to the (k,p) -nullity distribution . If h' # 0 , then the
Ricci operator Q of M?™1 is given by

(4.1) Q= —2nid+2n(k+ 1)n® & — 2nh'.

Moreover, the scalar curvature of M*" ! is 2n(k — 2n).
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From (1.7) we have,
(42)  RX,Y)§=kR(Y)X —n(X)Y] + pn(Y)R'X = n(X)R'Y],
where k, p € R. Also we get from (4.2)
(4.3)  R(&X)Y =k[g(X,Y)E —n(Y)X]+ ulg(h'X,Y)E —n(Y)h'X].
Contracting X in (4.2), we have

(4.4) S(Y, €) = 2nkn(Y).

Moreover, in an almost Kenmotsu manifold with (k, u)-nullity distribution

(4.5) V€ =X —n(X)E+ WX

and

(4.6) (Vxn)Y = g(X,Y) —n(X)n(Y) + g('X,Y)
holds.

Theorem 4.1. A (2n+1)-dimensional(n > 1) quasi-conformally flat almost Ken-
motsu manifold with & belonging to the (k, u) -nullity distribution is either confor-
mally flat or of a quasi-constant curvature.

Proof: Let us assume that the manifold M?2"*! is quasi-conformally flat, that is,

(4.7) C(X,Y)Z =0,

for any vector fields X,Y, Z on M2+,
From (1.3) we have

aR(X,Y,Z,W) = b[S(X,2)g(Y,W)—S(Y,Z)g(X,W)
—I—S(Y, W)Q(Xv Z) - S(Xv W)g(Y, Z)]

L[ 4 2)[g(Y, 2)g(X, W) — (X, Z)g(Y, W)].

(48) + (2n+1)2n

Putting Z = ¢ in the above equation and using (4.2) and (4.4) we have
ak[n(Y)g(X, W) = n(X)g(Y, W)l + ap[n(Y)g(h'X, W) — n(X)g(h'Y, W)]
= b[2nkn(X)g(Y, W) = 2nkn(Y)g(X, W) = n(Y)S(X, W) +n(X)S(Y, W)

( Y,
(4.9) ey + 2O W) = n(X)g (Y W),
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Putting Y = £ in the above equation and using (4.4) we get after simplifying

r a ak
X = [-2nk+ —-——[— +2b] — —|g(X
SXW) = [kt g la 28] = Fla(X, W)
r a ak ap
4.1 dnk — ————[— +2b] + —n(X — Zg(h'X .
(410) Hink = g e 2+ TIn0n) - Lo X W)
Let us denote
T a ak
(4.11) A——2nk+b(2n+1)[%+2]—T
and
T a ak
Then, we see that
(4.13) A+ B =2nk.

Putting X = W = ¢; in (4.10), where {e;} is an orthonormal basis of the tangent
space at each point of the manifold and taking summation over i, i = 1,2,3...., (2n+
1), we get

(4.14) r=A@2n+1)+ B.
From (4.13) and (4.14) we get

.,
(4.15) A=~k

From (4.11) and (4.15), it follows that

r a ak r
—mk+ —[— + 2] — — = — —
nht b(2n +1) [211 ] b 2n
The above relation gives
(4.16) (a+2nb—0b)(r —2nk(2n+1)) =0.

Hence, either a 4+ 2nb—b =0 or r = 2nk(2n + 1).

Let us suppose that a + 2nb — b = 0. Then we see that b = —5-*=. Hence,
from (1.3), it follows that C'(X,Y)Z = aC(X,Y)Z, where C(X,Y)Z is the Weyl
conformal curvature tensor. So, in this case, the quasi-conformally flat manifold is

conformally flat.
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Now, if » = 2nk(2n + 1), then from (4.10) we obtain
(4.17) S(X, W) = 2nkg(X, W) — %g(h'X, W).
Using (4.17) in (4.8) yields

R(X,Y,Z,W) = klg(Y,2)9(X, W)~ g(X, Z)g(Y,W)]
—ulg(h' X, Z)g(Y, W) — g(R'Y, Z)g(X, W)
(4.18) +g(R'Y,W)g(X, Z) — g(h' X, W)g(Y, Z)].

From (4.1) and (4.17), it follows that

(4.19) g(W X, W) = 1[g(X, W) — n(X)n(W)],
where | = 2:5(_22? = —"Z(f::lrbl), by Lemma 4.1.

Using (4.19) in (4.18) we get

R(vavsz) = p[g(Y,Z)g(X,W)—g(X,Z)g(Y,W)]
+qlg(X, Wn(Y)n(Z) — g(X, Z)n(Y )n(W)
(4.20) +9(Y, Z)n(X)n(W) — g(Y, W)n(X)n(Z)],

where p = k — 4] and ¢ = 2.
This completes the proof.

5. Extended quasi-conformal curvature tensor of an almost Kenmotsu
manifold with (k, u)-nullity distribution

In this section we study vanishing extended quasi-conformal curvature tensor and
extended £-quasi-conformally flat almost Kenmotsu manifolds with £ belonging to
(k, p)-nullity distribution.

The extended form of quasi-conformal curvature tensor can be written as

CX,Y)Z = aR(X,Y)Z+b[S(Y,Z2)X — S(X,2)Y + (Y, 2)QX — g(X, Z)QY]

_ 2n7°+ - [% +2b][g(Y, Z)X — g(X, Z)Y]

(5.1) —n(X)C(&,Y)Z —n(Y)C(X,6)Z —n(Z)C(X,Y)E.

Theorem 5.1. In an almost Kenmotsu manifold with & belonging to (k, u)-nullity
distribution, the extended quasi-conformal curvature tensor vanishes if and only if
the manifold is locally isometric to the hyperbolic space H2"T1(—1).

Proof: Putting Y = Z = ¢ and supposing that the extended quasi-conformal tensor
vanishes, we get from (5.1)

aR(X, )E +b[S(E, )X — S(X, )& + QX —n(X)QE] + (a + 4nb) (X — (X))
(5.2) —n(X)C(E, 8¢ — C(X,§)¢§ — C(X,§)¢ = 0.



266 D. Dey and P. Majhi

Now, using (3.4) and (3.5) the above equation reduces to
(5.3) bQX = —2nbX + 20(X, €)E.
Now, Using (3.2), (3.4) and (3.5) we obtain

(5.4) C(X,6)¢ = 2nbX 4 bQX.
Putting the value of C'(X,€)¢ in (5.3) we get

(5.5) QX = —2nX,

which implies

(5.6) S(X,Y) = —2ng(X,Y).

This shows that the manifold is Einstein. Since, the extended quasi-conformal
curvature tensor vanishes, we have from (5.1)

aR(X,Y)Z = -b[S(Y,2)X — S(X,2)Y + g(Y, Z2)QX — ¢(X, Z)QY]
—(a+4nb)[g(Y,2)X — g(X, Z)Y]
(5.7) +0(X)C(E,Y)Z +n(Y)C(X, ) Z +n(Z)C(X,Y)E.
Now, making use of (3.3), (3.4), (3.5) and (5.5) we obtain
CE,Y)Z =0, C(X,6)Z =0.
Again since the manifold is Einstein, we have from Theorem 3.2
C(X,Y)E=0.
Putting these values in (5.7) and using (5.6) we get
(5.8) R(X,Y)Z = —[g(Y, 2)X — g(X, Z)Y].

This implies that the manifold is locally isometric to the hyperbolic space H?"1(—1).

Conversely, suppose that the manifold is locally isometric to the hyperbolic space
H27+1(—1). That is, (5.8) holds.
Contracting X in (5.8) yields

(5.9) S(Y,Z)=—-2ng(Y, Z).
Now, as shown earlier in this theorem
C,Y)Z=C(X,6)Z=C(X,Y)E=0.
Then, making use of (5.8), (5.9) and the above values, we obtain from (5.1) that

Co(X,Y)Z =0.

Hence the theorem is proved.
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Theorem 5.2. An almost Kenmotsu manifold with & belonging to the (k, u)-nullity
distribution is extended &-quasi-conformally flat if and only if the manifold is Fin-
stein.

Proof: Suppose Co(X,Y)¢ = 0 and putting Y = £, we get from (5.1)

aR(X,€)¢ +VIS(E, )X — S(X, ) + QX —n(X)QE] + (a+ 4nb)(X - 5(X)¢)
(5.10) —n(X)C(§,€)¢ - C(X.§)¢ = (X, )¢ = 0.

Now, using (3.4) and (3.5) the above equation reduces to
(5.11) bQX = —2nbX + 20(X, €)E.
Now, Using (3.2), (3.4) and (3.5) we obtain

(5.12) C(X,6)¢ = 2nbX 4+ bQX.
Putting the value of C'(X,€)¢ in (5.11) we get

(5.13) QX = —2nX,

which implies that the manifold is Einstein.
Conversely, if the manifold is Einstein then obviously C,(X,Y)¢ = 0.
Hence the theorem is established.
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