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QUASI STATISTICAL CONVERGENCE IN CONE METRIC
SPACES

Nihan Turan, Emrah Evren Kara and Merve Ilkhan

Abstract. The main purpose of this paper is to define a new type of statistical conver-
gence of sequences in a cone metric space and investigate the relations of these sequences
with some other sequences.
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1. Introduction and Preliminaries

The study of statistical convergence apparently goes back to Steinhaus [19] and
Fast [7]. This concept has been studied under different names in spaces such as topo-
logical spaces, cone metric spaces etc. (see, for example [5],[8],[9],[12],[13],[14],[18]).
Long-Guang and Xian [11] suggested the idea of a cone metric space. The main
difference with a metric is that a cone metric is valued in an ordering Banach space.
Later, several authors studied cone metric spaces and applied different names. This
concept takes a vital role in computer science, statistics and some other research
areas as well as general topology (see, for example [2],[2],[7],[11],[16]). The defini-
tion of statistical convergence and statistical boundedness of a sequence in a cone
metric space was studied by Kedian, Shou and Ying [13]. In [10], the authors
defined the concept of a quasi-statistical filter. Also it is known that statistical
convergence is related to Cesaro summability and strong-Cesaro summability (see,
for example [4],[3],[18]). Recently, Sakaoglu and Yurdakadim [15] defined the no-
tions of quasi-statistical convergence and strongly-Cesaro summability by relying
on [4], [3], [10] and [18], and they found some inclusion theorems between these
concepts. In the present paper, we introduce the quasi-statistical convergence and
quasi-statistical boundedness of a sequence on a cone metric space, and obtain some
theorems related to quasi-statistically convergent sequences. Later, we give the def-
inition of strongly-quasi summable sequences in a cone metric space and we also
investigate some theorems related to quasi-statistically convergent sequences and
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strongly—quasi summable sequences. Finally, we present some results related to
these theorems.

Throughout this paper, by N and R we denote the set of all positive integers
and the set of all real numbers, respectively. For a subset S of N, |S]| stands for the
cardinality of .S.

Definition 1.1. ([7]) Let S € N and S (m) = {i € S :i < m} for each m € N. If
the following limit exists, then
§(S) = lim 1S (m)|
m—oo  m
is called the asymptotic (or natural) density of S. It is clear that §(S) € [0, 1]. Also,
if 6(S) =1, then S is said to be statistically dense. It can be easily obtained that
J(N=S)=1-6(95) for each S CN.

Definition 1.2. ([8]) A sequence (z,,) in R is said to be statistically convergent
to a point x € R if for each € > 0,

1
lim —{i<m:|z; —z| >} =0

m—0o0 M

or equivalently

1
lim —{i<m:|z; —z|<e}=1.

m—o00Mm

Definition 1.3. ([1]) Let E be a real Banach space. A subset P of F is called a
cone if it satisfies the following conditions:

(1) P# @, P # {0} and P is closed.

(2) ar + by € P for all z,y € P and a,b € R with a,b > 0.

(3) If x € P and —z € P, then x =0 for all z,y € P.

A partial ordering 7 < 7 with respect to P is defined by + |y &< y —z € P.
Also,wemeanzr <y <z <y, z #Zyand x <<y < y—x € BT, where ET denotes
the interior of P; that is ET = {¢ € E:0 << c}. The cone P is called normal if
there is a number K > 0 such that for all z,y € F, 0 < z <y implies ||z| < K ||y]|.
The least positive number satisfying this inequality is called the normal constant of
P.

In this study, we always suppose that E is a Banach space, P is a cone in F
with BT # () and ” <7 is a partial ordering with respect to P.

Definition 1.4. ([17]) Let X be a non-empty set. Suppose the mapping d : X x
X — F satisfies

1. 0 <X d(z,y) for all z,y € X and d (x,y) = 0 if and only if x = y,
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2. d(z,y) =d(y,x) for all x,y € X,

3. d(z,y) 2d(z,2)+d(y,2) for all z,y,2 € X.

Then d is called a cone metric on X, (X, d) is called a cone metric space.

Definition 1.5. ([11]) A sequence (z,,) in a cone metric space (X, d) is said to be
convergent to x € X if for every ¢ € E there exists a natural number N such that
d(zn,z) << cfor alln > N.

Definition 1.6. ([13]) A sequence (z,,) in a cone metric space (X, d) is said to be
statistically convergent to x € X if for every c € ET

1
lim — [{k <n:d(xp,z) <<c}| =1

n—,oomn

It is denoted by st- lim x,, = x.
n—oo

Definition 1.7. ([13]) A sequence (z,) in a cone metric space (X, d) is said to be
statistically bounded if there exist o € X and ¢ € E* such that

1
lim — [{k <n:d(ap,a) Zc} =1

n—,oon

Definition 1.8. ([15]) Let s = (s,) be a sequence of positive real numbers such
that

(1.1) lims,, = co and limsups—" < 0.
n n n

The quasi density of a subset K C N with respect to the sequence s = (s,) is
defined by

1
0s (K)= lim —{k<n:keK}.
n—00 S,
A sequence (z,,) in R is called quasi-statistical convergent to x provided that for
every € > 0 the set K. = {k € N : |z, — x| > €} has quasi-density zero. It is denoted
by stg-lim, e 2 = 2.

Throughout the study, we assume that s = (s,) and ¢t = (¢,) are sequences of
positive real numbers satisfying the conditions in (1.1).

Definition 1.9. ([15]) A sequence (z,,) in R is said to be strongly quasi-summable
toz € Rif

1 n
lim —Z |z — x| = 0.
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2. Main Results

In this section, we first define the quasi-statistical convergence of a sequence in
a cone metric space. Later, we give some results related to this concept.

Definition 2.1. A sequence (x,,) in a cone metric space (X, d) is said to be quasi-
statistical convergent to a point x € X if for every ¢ € E* we have

1
lim — [{k <n:d(zg,z) <<c} =1

n—00 Sy,

or equivalently
1
lim — [{k <n:c=d(xp,2)}| =0.

n—00 8§,

We denote it by st, — lim x,, = x. If we take (s,,) = (n), then we obtain that (z,)
n—00

is statistical convergent.

Theorem 2.1. Let (zy,) be a sequence in a cone metric space (X,d). If (z,) is
convergent to x € X, then it is quasi-statistical convergent to x.
Proof. Let lim x, = x. Then, for every ¢ € ET there exists ng € N such that
n—roo

d (zn,x) << c for every n > ng. It follows that

1
Sk <nie=daa)) < 2
Sn

n

which means lim,, oo = [{k < n:c < d(xk,x)}| = 0. Hence, (z,,) is quasi-statistical
convergent to x. [.

The converse of the previous theorem does not hold which can be seen from the
following example.

Example 2.1. Let £ = R, P = [0,00) and X = R. Consider X with usual metric
d(z,y) = |z — y|. Let s, = n®*%. Define a sequence (z,) as follows:

[0, n#m’forallmeN
=9 n, n=m?for some m € N

It is obvious that (x) is not convergent. On the other hand, it is quasi-statistical conver-
gent to 0. Indeed, given any c € ET, we obtain the inclusion

{n:c=d(xn,0)} C{n:n=m’meN}.
Hence we conclude that

lim i|{k:§*rz:cjd(xk,0)}| lim i|{Ic§n:k:zn”fﬂnGNH

n—o0 Sp n—0o0 Sp

= lim — [|[vn|] =o0.

n—00 Sp

IN
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Theorem 2.2. Let (z,) be a sequence in a cone metric space (X,d). If (x,) is
quasi-statistical convergent to x € X, then it is statistical convergent to x.

Sn

Proof. Let sty- lim x, = x and M = sup2. Then, for every ¢ € E*, we have
n—oo n

lim L [{k <n:c=d(zx)}| = 0. The statistical convergence of the sequence
n—oo n

(xy,) follows from the following inequality

Lith<nie<d@non <Xtk <n:c<d@,n)l.
n S

n

O

The converse of the previous theorem does not hold which can be seen from the
following example.

Example 2.2. Let X =R, E=R* P={(z,y) € E:z,y>0},X =Randd: XxX —

E be the cone metric defined by d (z,y) = (Jz — y|, a|z — y|), where & > 0 is a constant.

Assume that the sequence (s5) satisfies lims—‘/ﬁ = oo0. We can choose a subsequence (snp)
n Sn

such that Sn, > 1 for each p € N. Consider the sequence (z,) defined by

sn, n=m2and sne{snp :pGN}
Tn = 1, n:mzandsn¢{snp:p€N} (m € N)
0, otherwise.

Then, we have
($n,asn), mn= m? and s, € {snp :p€ N}
d(zn,0) = (1), n=m?and s, ¢ {sn, :pEN} (meN)
(0,0), otherwise.

It is easy to see that (xn) is statistical convergent to zero. Now, we show that (z,) is not
quasi-statistical convergent to zero; that is,

lim i|{k§n:cjd(1’k70)}|7§0'

n—00 Sp
For ¢ = (1,a) € E* and n € N, we have
{k<n:c=xd(z,0)} =|{k<n:k=m’meN}

and

(2.1) k< nie S a0} = — (V- ),

n

where 0 < r,, < 1. If we take the limit of (2.1) as n — oo, we conclude that (z,) is not
quasi-statistical convergent to zero.

Consequently, we have the following diagram:

convergent = quasi-statistical convergent = statistical convergent
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Theorem 2.3. Assume that

(2.2) h=inf2" > 0.

n n

If a sequence (xy) in a cone metric space (X,d) is statistical convergent to x € X,
then it is quasi-statistical convergent to x.

Proof. The proof follows from the inequality
1 1
- {k<n:c=<d(xg, L)} > hs_ Hk <n:c=<d(xg,L)}.
.

Corollary 2.1. Assume that the sequence (s,,) satisfies (2.2). Then, () is sta-
tistical convergent to x if and only if (x,) is quasi-statistical convergent to x.

Theorem 2.4. If (z,,) is quasi-statistical convergent to x in a cone metric space
(X,d), then there is a sequence (yn) which is convergent to x and quasi-statistical
null sequence (z,) such that x, =y, + 2, for all n € N.

Proof. Let sty — lim x, = x. If the terms of the sequence (z,) is constant
n—oo

after a certain stage, then the proof is trivial. Otherwise given any ¢ € ET, we
can find an increasing sequence of positive integers (IN;) such that Ny = 0 and

L Hk <n:$= d(xk,ac)}‘ < % forallm > N; (j =1,2,...). Let us define (yx) and

Sn

(zr) as follows:

zk,=0 and yr=wxg; if Ng <k < Ny,
2z, =0 and yi =uwxk; ifd(zg,x) << %, N; <k < Nji1,
zk=x —x and yr = x; if?jd(mk,x), N; <k < Nji.

It is easy to see that zj, = yr+2y for all k € N. Now, we show that (yy) is convergent
to x. Given any ¢ € E™, choose j € N such that ? << c.

It < = d(zg,x) for k > Nj;, then d(yg,x) = d(z,z) = 0.
J

If d (zk, ) << % for k> Nj, then d (yk, ) = d (x, x) << § << c. Hence, it follows
that klim Yk = .
—00

To show that (zx) is quasi-statistical null sequence; it is enough to prove that

1
lim — [{k <n:z # 0} =0.

n—00 Sy,
For ¢ € E, it is clear that the inclusion

{k<n:c=2d(z,0)} C{k<n:z #0}
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holds for all n € N. Thus, we have
{k<n:c=xd(z,0)} < {k<n:z #0}.

Given any d > 0 there is a j € N such that % < 6. If Nj <k < Njiq, we have

¢

)|

|{k§n:zk#0}|=‘{k§n:j

Thus, we have

1 1 1 1
—Hk<n:z, #0} < — {kgn:gjd(xk,:v)}‘<—<—,<(5
Sn Sn v v Wi

for N, < k < Ny41 and v > j which concludes the proof. .

The following result is an immediate consequence of the previous theorem.

Corollary 2.2. If (z,,) is quasi-statistical convergent to x, then it has a subse-
quence (ypn) which is convergent to x.

Definition 2.2. A sequence (x,,) in a cone metric space (X, d) is said to be quasi-
statistical Cauchy if for every ¢ € E* there exists ng € N such that

1
lim — {k <n:d(zg,xn,) <<c}| =1

n—00 Sy,

or equivalently

1
lim — [{k <n:c=d(ap,zn,)} = 0.

n—00 Sy,

Theorem 2.5. Let (x,) be a sequence in a cone metric space (X,d). If (z,) is a
Cauchy sequence, then it is a quasi-statistical Cauchy sequence.

Proof. Let (z,) be a Cauchy sequence. Then, for every ¢ € ET there exists
ng € N such that d (2, zm,) << ¢ for every n,m > ng. It follows that

1
Ik <n:esd(mn )l <
Sn Sn
which means lim,, i Hk <n:c=<d(xg,Tn,)}| = 0. Hence, (z,) is quasi-statistical
Cauchy. 0O

The sequence given in Example 2.1 is also a quasi-statistical Cauchy sequence
which is not a Cauchy sequence.

Theorem 2.6. Let (x,) be a sequence in a cone metric space (X,d). If (z,) is a
quasi-statistical Cauchy sequence, then it is a statistical Cauchy sequence.
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Proof. Let (x,) be a quasi-statistical Cauchy sequence. Then, for every ¢ € ET
there exists ng € N such that lim X |[{k <n:c = d(zx,zn,)}| = 0. Thus we have
n—oo °n

1 n 1
Sk <n:e=d(@rang)l = 2 |{{k<n:c=d(@p )
n n Snp

1
< Ks_ Hk<n:c=<d(zg,Tn )},

n

where K = sup,, 2=. This implies that (x,) is a statistical Cauchy sequence in
X. O

Consequently, we have the following diagram:

Cauchy = quasi-statistical Cauchy =- statistical Cauchy

Definition 2.3. A sequence (x,,) in a cone metric space (X, d) is said to be quasi-
statistical bounded if there exist « € X and ¢ € ET such that

1
lim — [{k <n:c=d(zp,a)}| =0.

n—00 S,

Theorem 2.7. If (x,) is quasi-statistical bounded sequence in a cone metric space
(X,d), then it is statistical bounded.

Proof. Let (x,,) be a quasi-statistical bounded sequence, o € X and H = sup==.
n

Since the inequality
1 H
—H{k<n:c=xd(xg o)} <—Hk<n:c=2d(zpa)}
n Sn

holds, the proof follows immediately. .

Lemma 2.1. Let P be a normal cone with normal constant K. The following
statements hold for sequences (x,) and (y,) in a cone metric space (X, d).

1. sty — lim o, =2 & sty — lim d(z,,2) =0
n—oo n—00

2. If sty— lim x,, = x and sty — lim y,, =y, then sty— lim d(z,,y,) = d (z,y).
n—00 n—o0 n—00

Proof. (1) Suppose that st, — lim z,, = z. Then, for every ¢ € E*, we have
n—oo

1
lim — [{k <n:d(zg,z) << c}| =1

n—00 S,

Given any € > 0, choose ¢ € E™ such that K ||¢|| < . Suppose that k € N satisfies
d (zk,x) <= c. Since P is a normal cone with normal constant K, we can write

1 (zy, @) || < K [le]| <e.
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Consequently, we obtain

1 1

(k< n:d(on ) << el < — [{k <n: d (o) <e)l.
Hence, we conclude that

1
lim — [{k <n:|d(zg,2)|| <e} =1

n—00 Sy,
which means st, — lim d(z,,z) =0.
n—roo

Conversely, suppose that st; — lim d (2, 2) = 0. Then for every & > 0, we have
n—oo

1
lim — [{k <n:||d(zg,2)| <e} =1.

n—00 Sy,

Given any ¢ € ET, we can find an € > 0 such that c—a € E* for all a € E
with |a|| < e. Hence, if we choose k¥ € N such that ||d(zg,z)| < &, then we
obtain d(zx,z) << ¢ which implies that the inclusion {k : ||d(zy,z)|| < e} C {k:
d(zy,x) << c} holds. It follows that

1 1
. {k <n:|d(zg 2] <e} < o {k <n:d(zp,x) <<c}|.

Thus, we conclude that lim - [{k < n:d(zk,x) << c}| =1 and so sty— lim z,, =
T n—oo °n n—00

(2) Suppose sty — lim x, = = and st; — lim y, = y. Given any € > 0, choose
n—o0 n—00

¢ € E* such that ||| < &5 For k € N with d(ax, 2) << ¢ and d(y,y) << ¢,

we have ||d(z,yx) — d(z,y)|| < € from the proof of Lemma 5 in [11]. Hence, the
inclusion

{F = lld(@r, yr) — d(z,y)ll = e} C {k e 2 d(zy, @)} ULk e < d(yk,y)}

holds. It follows that

.1
lim — [{k <n:||d(zy,yr) — d(z,y)|| = €} =0

n—008,
which means that st; — lim d (z,,yn) =d(z,y). O
n—oo

Remark 2.1. Note that P does not need to be a normal cone to prove the sufficiency
condition in 1 of Lemma 2.1. That is; if st; — lim d(zn,2) = 0 in a cone metric space
n— o0

(X,d), then we have sty — lim z, = x.
n— o0

Theorem 2.8. Let (x,) and (yn) be two sequences in a cone metric space (X, d).
If sty— lim y, =y and d (xn,y) =X d(Yn,y) for every n € N, then st,— lim z, =y.
n—oo n—oo
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Proof. Suppose that st; — lim y, =y and d (zn,y) = d (yn,y) for every n € N.
n—oo
The proof follows from the fact that

1 1
— k< d(py) 2l < — (k< nid(ony) = .

n

O

Definition 2.4. A sequence (z,) in a cone metric space (X,d) is said to be
strongly quasi-summable to x, if

N
nlggog; ld (x, )] = 0

holds.

We will use Nj and Sj for the set of all strongly quasi-summable sequences and
all quasi-statistical convergent sequences, respectively. That is,

s IR
Ny = {(:vn) : nlgr;o; ; ld (zx,z)|| = 0 for some :v}
and

1
Sy = {(xn) : lim — |[{k <n:c=Xd(zg,x)} =0 for some z € R and for all ¢ € E+}

n—00 Sy,

If we take t = (t,) instead of s = (s,,), we will write N/ and S} instead of N} and
S, respectively.

Theorem 2.9. Let s, < t, for every n € N. If a sequence (x,) in a cone metric
space (X, d) is quasi-statistical convergent to x with respect to s = (sy,), then (zy)
sequence is quasi-statistical convergent to x with respect to t = (t,).

Proof. Suppose that for every c € ET wehave lim L [{k < n:c=<d(zy,2)} =
n—oo °n
0. Since s, < t,, holds for every n € N, we have the inequality

1 1

—Hk<n:c=d(z,x)} > . Hk <n:c=xd(zg,z)}.
n n

Letting n — oo in both sides of the above inequality, we obtain that the sequence

(x) is quasi-statistical convergent to x with respect to t = (¢,). .

Now, we consider the sequence (z,) in Example 2.2 and if we take ¢, = n and
sp = n'/*, then we observe that the sequence () is quasi-statistical convergent
to zero with respect to the sequence t = (¢,) but the sequence (z,) is not quasi-
statistical convergent to zero with respect to the sequence s = (s,). Thus, the
following result can given as a consequence of this theorem.
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Corollary 2.3. Let s, <t, for everyn € N. Then, the inclusion Sy C S; strictly
holds.

Theorem 2.10. Let s,, < &, for everyn € N. If a sequence (x,,) in a cone metric
space (X, d) is strongly quasi-summable to x with respect to s = (sp), then the
sequence (xy,) is quasi-statistical convergent to x with respect to t = (t,,).

Proof. Let lim X 3 ||d(zy,2)| = 0. By using the fact that

Sld@ea)ll= > ld@wa)l+ Y ld@ka)| = el{k<n:ld (@) > e}
k=1 k=1 k=1
ld(ar.2)) 2 ld(ar )l <e

and s, <t, for every n € N, we obtain

11 & 1
== lld(ax,2)| > ks nld(zg,2)] 2 €}
=1 n

€ 5n £

Since the limit of the left side equals to zero, we have st; — lim d(z,,x) = 0 with
n—r oo
respect to t = (t,). From Remark 2.1, we conclude that st, — lim x,, = z with
n—oo
respect to t = (t,). O.

The converse of this theorem is not always true.

Example 2.3. Let E=R*> P={(z,y) € E:2,y>0},X=Randd: X x X — F be
the cone metric defined by d (x,y) = (|x — y|, |z — y|). Consider the sequence (x,) defined
by
1, n=m?
In = { 07 n # m2 m € N

Let (sn) = (ni) and (tn) = (n). We have

d(xn,O):{ m €N

n=m
. n#m?
Hence, given any ¢ € E™ and n € N, we obtain
1 1 2
t—|{k§n:d(mk70) -<-<c}|2t—‘{k§n:n;£m H-

Since the limit of the right side equals 1, we conclude that the sequence (z,) is quasi-
statistical convergent to zero with respect to t = (t»).

Now, we will show that the sequence (x,) is not strongly quasi-summable to zero with
respect to s = (sp). It is clear that

V2, k=m’

0 k £ m? meN

a0l = {
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Then, we obtain that

Z||d(1:k70)|| = OHk:Sn:k;ém2 for allmEN}’

Jr

\/§|{k§n:k:m2 forsomemeNH
0. (n = [[vn[]) + V2 ([|va[])

and so
g D0 =t VR () =

Consequently, we find that

lim —ZHd Zk, 0)]| # 0.

n—00 Sy

which means the sequence (z,) is not strongly quasi-summable to zero with respect to
s=(sn).

Corollary 2.4. Let s, < t, for every n € N. The inclusion Nj C Sé, strictly
holds.

Theorem 2.11. Let s,, < &, for everyn € N. If a sequence (x,,) in a cone metric
space (X, d) is strongly quasi-summable to x with respect to s = (sp), then the
sequence (xy,) is strongly quasi-summable sequence to x with respect to t = (t,,).

Proof.  Suppose that the sequence (z,,) is strongly quasi-summable to z with
respect to s = (s,,). Then, we have

lim — Z Ild (xg,
n—00 8,

From the fact that s, <t, for every n € N, we have the following inequality
1 n
—Z ld (z, 2)|| = —led Th, @
n =

Hence, we conclude that lim ti 2;1 |d (z,2)|]| =0. O

n—oo

But the converse of this theorem is not always true. To observe this, consider
the sequences (z,), s = (sp) and ¢t = (t,) defined in Example 2.3. It can be shown
that (z,) € N! and (x,) ¢ N7. Thus, the following corollary can be given as a
result of this theorem.

Corollary 2.5. Let s, < t, for every n € N. The inclusion N; C N};, strictly
holds.
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