
Abstract. This paper focuses on exploring the relationship between the essential ap-
proximate point spectrum (and the essential defect spectrum) of a sequence of closed
linear operators (Tn)n∈N acting on a Banach space X, and the corresponding spectra
of a linear operator T on X. We examine this relationship under both generalized
convergence and compact convergence conditions for the sequence (Tn)n∈N converging
to T .
Keywords: essential approximate point spectrum, essential defect spectrum, conver-
gence by the gap, convergence compactly.

1. Introduction

Let X be Banach space. By an operator T on X we mean a linear operator with
domain D(T ) ⊂ X, and a range R(T ) ⊂ X. N(T ) denote the null space of T , the
graph of T is the set defined by G(T ) := {(x, Tx) ∈ X ×X, for all x ∈ D(T )}. T is
said to be closed if it’s graph G(T ) is closed in the product space X×X. T is said to
be compact if, for every M a bounded subset of D(T ), T (M) ⊂ R(T ) is relatively
compact, so that T (M) is compact. We denote by C(X) the set of all closed,
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c⃝ 2024 by University of Nǐs, Serbia | Creative Commons License: CC BY-NC-ND

529

FACTA UNIVERSITATIS (NIŠ)
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densely defined linear operators onX, and let L(X) (respectively, K(X) ) denote the
Banach algebra of all bounded linear operators (respectively, the ideal of all compact
operators) onX. The nullity, α(T ), of T is defined as the dimension ofN(T ) and the
deficiency, β(T ), of T is defined as the codimension of R(T ) in X. For T ∈ C(X), we
let σ(T ), ρ(T ) respectively the spectrum, and the resolvent set of T . The reduced

minimum modulus γ(T ) of T is defined by γ(T ) := inf
{
∥Tx∥ : dist(x,N(T ) =

1, x ∈ D(T )
}
, we set γ(T ) = ∞ if T = 0. A useful classes of linear operators which

have extensive application in spectrum theory are those of:
The set of upper semi-Fredholm operators on X is defined by

Φ+(X) :=
{
T ∈ C(X) : α(T ) < ∞ and R(T ) is closed in X

}
.

The set of lower semi-Fredholm operators on X is defined by

Φ−(X) :=
{
T ∈ C(X) : β(T ) < ∞ and R(T ) is closed in X

}
.

The set of semi-Fredholm operators on X is defined by

Φ±(X) := Φ+(X) ∪ Φ−(X).

The set of Fredholm operators on X is defined by

Φ(X) := Φ+(X) ∩ Φ−(X).

For T ∈ Φ±(X), the number i(T ) = α(T )− β(T ) is called the index of T .

Let Φb(X), Φb
+(X) and Φb

−(X) denote the set Φ(X)∩L(X), Φ+(X)∩L(X) and
Φ−(X) ∩ L(X), respectively.
Moreover, the set of Frefholm perturbations on X is defined by

F(X) :=
{
F ∈ L(X) : T + F ∈ Φ(X); whenever T ∈ Φ(X)

}
,

the set of lower semi-Fredholm perturbations on X is defined by

F−(X) :=
{
F ∈ L(X) : T + F ∈ Φ−(X); whenever T ∈ Φ−(X)

}
,

and the set of upper semi-Fredholm perturbations on X is given by

F+(X) :=
{
F ∈ L(X) : T + F ∈ Φ+(X); whenever T ∈ Φ+(X)

}
.

Let Fb(X), Fb
+(X) and Fb

−(X) denote the set F(X) ∩ L(X), F+(X) ∩ L(X)
and F−(X) ∩ L(X), respectively.
Let we now recall definitions and notions of concepts which we are interested
throughout this study.
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Definition 1.1. Let X be Banach space. For each T ∈ C(X). We define

(i) The Weyl essential spectrum of the operator T by

σw(T ) :=
∩

K∈ K(X)

σ(A+K),

(ii) The essential approximate point spectrum of the operator T by

σeap(T ) :=
∩

K∈ K(X)

σap(T +K)

where, σap(T ) := {λ ∈ C : inf
∥x∥=1,x∈D(T )

∥λ− Tx∥ = 0)},

(iii) The essential defect spectrum of the operator T by

σeδ(T ) :=
∩

K∈ K(X)

σδ(T +K)

where, σδ(T ) := {λ ∈ C : λ− T is not surjective}.

It’s clear that, for T ∈ C(X), it holds σw(T ) := σeap(T )∪ σeδ(T ). The essential ap-
proximate point spectrum was introduced by V. Rakočević in [10], and the essential
defect spectrum was introduced by C. Schmoeger in [14].

A characterization of the essential approximate point spectrum, and the essential
defect spectrum by means of upper and lower semi-Fredholm operators is given by
the following proposition

Proposition 1.1. [4, Proposition 3.1] Let T ∈ C(X), then

(i) λ /∈ σeap(T ) if, and only if, λ− T ∈ Φ+(X) and i(λ− T ) ≤ 0.

(ii) λ /∈ σeδ(T ) if, and only if, λ− T ∈ Φ−(X) and i(λ− T ) ≥ 0.

We organize our paper as follows: The next section is a preliminaries, where
we review some of the concepts and properties that concern us in our study. In
section 3 we present our main results to investigate the essential approximate point
spectrum and the essential defect spectrum of a sequence of linear operators Tn on
Banach space X, where Tn converges in the generalized sense, and the same when
Tn converges compactly.

2. Preliminaries

In this section we gather some notations and results of each of convergence in
generalized sense and the convergence compactly, that we need to prove our results
later.
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2.1. The convergence in the generalized sense

While the distance between two bounded linear operators can be defined as the norm
of their difference, the distance between to unbounded linear operators has to be
measured in a different ways. One possibility is to use the gap between their graphs,
which leads to the notion of convergence in the generalized sense, which essentially
represents the convergence between their graphs. This concept of convergence can
be found in the literature (see [5])

Definition 2.1. The gap between two linear subspaces M and N of a normed
space X is defined by

δ̂(M,N) := max
{
δ(M,N), δ(N,M)

}
where

δ(M,N) :=

{
sup∥x∥=1 dist(x,N), if M ̸= {0}
0, otherwise

.

From the Definition 2.1, it follows that δ(M,N) = 0 if, and only if, M ⊂ N.

The set of all closed linear subspaces of X equipped with the distance δ̂(·, ·) forms
a metric space, and a sequence of closed linear subspaces Mn converges to M if
δ̂(Mn,M) → 0. The gap between two closed subspaces was introduced in Hilbert
space by M.G. Krein and M. A. Krasnoselkii in [6]. This notion was later extended
to arbitrary Banach spaces in a paper by M. G. Krein, M. A. Krasnoselski, and D.
P. Milman in [7].
If T,S ∈ C(X), their graphs G(T ), G(S) are closed linear subspaces in the product
space X × X. Thus the distance between T and S can be measured by the ”gap”
between the closed linear subspaces G(T ), G(S).

Definition 2.2. Let X be a Banach space, and let T , S be two closed linear
operators on X. Let us define

δ(T, S) = δ
(
G(T ), G(S)

)
and δ̂(T, S) = δ̂

(
G(T ), G(S)

)
.

δ̂
(
T, S

)
is called the gap between S and T .

The next theorem contains some basic properties of the gap between two closed
linear operators

Theorem 2.1. [5, Chapter IV Section 2] Let T and S be two closed densely de-
fined linear operators. Then, we have:

(i) If S and T are one-to-one, then δ(S, T ) = δ(S−1, T−1) and δ̂(S, T ) = δ̂(S−1, T−1).

(ii) Let A ∈ L(X). Then δ̂(A+ S,A+ T ) ≤ 2(1 + ∥A∥2)δ̂(S, T ).
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(iii) Let T be Fredholm operator (respectively semi-Fredholm operator). If δ̂(T, S) <

γ(T )(1 + [γ(T )]2)
−1
2 , then S is Fredholm operator (respectively semi-Fredholm op-

erator ), α(S) ≤ α(T ) and β(S) ≤ β(T ). Furthermore, there exists b > 0 such that

δ̂(T, S) < b, which implies i(S) = i(T ).

(iv) Let T ∈ L(X). If S ∈ C(X) and δ̂(T, S) ≤
[
1 + ∥T∥2

]− 1
2

, then S is bounded

operator (so that D(S) is closed).

A complete discussion of all the above definitions and properties may be found in
T. Kato [5]. For the case of closable linear operators, the authors A. Ammar, and
A. Jeribi have introduced in [1] the following definitions and results

Definition 2.3. Let S and T be two closable operators. We define the gap between
T and S by δ(T, S) = δ(T , S) and δ̂(T, S) = δ̂(T , S).

Definition 2.4. Let (Tn)n∈N be a sequence of closable linear operators on X and
let T be a closable linear operator on X. (Tn)n∈N is said to converge in the gener-

alized sense to T , written Tn
g−→ T , if δ̂(Tn, T ) converges to 0 when n → ∞.

It should be remarked that the notion of generalized convergence introduced above
for closed and closable operators can be thought as a generalization of convergence
in norm for linear operators that may be unbounded. Moreover, an important
passageway between these two notions is developed in the following theorem

Theorem 2.2. [1, Theorem 2.3] Let (Tn)n∈N be a sequence of closable linear op-
erators on X and let T be a closable linear operator on X.

(i) Tn
g−→ T , if, and only if, Tn + S

g−→ T + S, for all S ∈ L(X).

(ii) Let T ∈ L(X). Tn
g−→ T if, and only if, Tn ∈ L(X) for sufficiently larger n

and Tn converges to T .

(iii) Let Tn
g−→ T . Then, T−1 exists and T−1 ∈ L(Y ), if, and only if, T−1

n exists
and T−1

n ∈ L(X) for sufficiently large n and T−1
n converges to T−1.

.

2.2. The convergence compactly

Definition 2.5. Let (Tn)n∈N be a sequence of bounded linear operators mapping

on X, (Tn)n∈N is said to be converge to zero compactly, written Tn
c−→ 0, if for

all x ∈ X, Tnx → 0 and (Tnxn)n is relatively compact for every bounded sequence
(xn)n ⊂ X.
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Theorem 2.3. [2, Theorem 4] Let Kn be a sequence of bounded linear operators

such that Kn
c−→ 0, and let T be a closed linear operator. If T is a semi-Fredholm

operator, there exists n0 ∈ N such that for all n ≥ n0,

(i) (T +Kn) is semi-Fredholm,
(ii) α(T +Kn) < α(T ),
(iii) β(T +Kn) < β(T ), and
(iv) i(T +Kn) = i(T ).

Definition 2.6. Let (Tn)n∈N be a sequence of bounded linear operators mapping
on X and let T ∈ L(X), (Tn)n∈N is said to be converge to T compactly, written

Tn
c−→ T if, and only if, Tn − T converges to zero compactly.

Proposition 2.1. [1, Proposition 3.1] Let (Tn)n∈N be a sequence of bounded linear
operators which converges compactly to a bounded operator T . Then,

(i) if Tn ∈ Fb(X), then T ∈ Fb(X),

(ii) if Tn ∈ Fb
+(X), then T ∈ Fb

+(X), and

(iii) if Tn ∈ Fb
−(X), then T ∈ Fb

−(X).

.

3. Main results

The first main result is embodied in the following theorem, when we discuss and
study the essential approximate point spectrum and the essential defect spectrum
of a sequence of closed linear operators perturbed by a bounded operator, and
converges in the generalized sense to a closed linear operator in a Banach space

Theorem 3.1. Let X be Banach space, Let (Tn)n∈N be a sequence of closed linear
operators converges in the generalized sense in C(X) to a closed linear operator T ,
and let B a bounded linear operator mapping on X such that ρ(T + B) ̸= Ø. If
λ0 ∈ ρ(T +B), then

(i) There exists n0 ∈ N such that, for every n ≥ n0, we have

(3.1) σeap(Tn +B − λ0) ⊆ σeap(T +B − λ0) + U ,

and

(3.2) σeδ(Tn +B − λ0) ⊆ σeδ(T +B − λ0) + U ,

when U ⊂ C an open containing 0. In particular, for all n ≥ n0
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(3.3)

δ
(
σeap(Tn+B−λ0), σeap(T+B−λ0)

)
= δ

(
σeδ(Tn+B−λ0), σeδ(T+B−λ0)

)
= 0.

(ii) There exists ε > 0, and n0 ∈ N, such that, for all S ∈ B(X), and ∥S∥ < ε, we
have

σeap(Tn +B + S − λ0) ⊆ σeap(T +B − λ0) + U , for all n ≥ n0,

and

σeδ(Tn +B + S − λ0) ⊆ σeδ(T +B − λ0) + U , for all n ≥ n0.

In particular, for all n ≥ n0

(3.4)

δ
(
σeap(Tn+B+S−λ0), σeap(T+B−λ0)

)
= δ

(
σeδ(Tn+B+S−λ0), σeδ(T+B−λ0)

)
= 0.

Proof. For (i), before proof, we make some preliminary observations. Since Tn
g−→

T , then by Theorem 2.2 (i), (Tn +B − λ0)
g−→ (T +B−λ0), furthermore, we have

(T +B − λ0)
−1 ∈ L(X), which implies according to Theorem 2.2 (iii), that λ0 ∈

ρ(Tn+B) for a sufficiently large n and (Tn +B − λ0)
−1

converges to (T +B − λ0)
−1

.
We recall that the essential approximate point spectrum of a bounded linear op-
erator is compact, but this property is not valid for the case of unbounded op-
erators, for this reason, using the compactness of σeap(T + B − λ0)

−1 because

(T +B − λ0)
−1

is bounded, as a first step, we will prove the existence of n0 ∈ N,
such that for all n ≥ n0, we have

(3.5) σeap(Tn +B − λ0)
−1 ⊆ σeap(T +B − λ0)

−1 + U .

The proof by contradiction. Suppose that (3.5) does not hold. Then, by studying
a subsequence (if necessary) we may assume that, for each n there exists λn ∈
σeap(Tn+B−λ0)

−1 such that λn /∈ σeap(T +B−λ0)
−1+U . Since (λn) is bounded,

we may assume that lim
n→+∞

λn = λ, which implies that λ ̸∈ σeap(T +B−λ0)
−1+U .

Since 0 ∈ U then we have λ ̸∈ σeap(T +B−λ0)
−1. Therefore λ− (T +B−λ0)

−1 ∈
Φb

+(X) and i
(
λ − (T + B − λ0)

−1
)
≤ 0. As

(
λn − (Tn + B − λ0)

−1
)
converges to(

λ− (T +B − λ0)
−1

)
, we deduce that

δ̂
(
λn − (Tn +B − λ0)

−1, λ− (T +B − λ0)
−1

)
→ 0 when n → ∞.

Let δ = γ
(
λ − (T + B − λ0)

−1
)
> 0, then there exists n0 ∈ N such that, for all

n ≥ n0 we have δ̂
(
λn − (Tn + B − λ0)

−1, λ − (T + B − λ0)
−1) ≤ δ√

1+δ2
. By using
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Theorem 2.1 (iv) we infer that λn − (Tn +B−λ0)
−1 ∈ Φ+(X). Furthermore, there

exists b > 0 such that

δ̂
(
λn − (Tn +B − λ0)

−1, λ− (T +B − λ0)
−1

)
< b,

which implies i
(
λn − (Tn + B − λ0)

−1
)
= i

(
λ − (T + B − λ0)

−1
)
≤ 0. Then we

obtain λn /∈ σeap

(
(Tn + B − λ0)

−1
)
, which is a contradiction. Hence (3.5) holds.

Now, we assume that λ ∈ σeap(Tn +B − λ0) then
1

λ
∈ σeap

(
(Tn +B − λ0)

−1
)
. By

using the inclusion (3.5), we have
1

λ
∈ σeap

(
(T +B−λ0)

−1
)
+U . which implies that

1

λ
∈ σeap

(
(T+B−λ0)

−1
)
because 0 ∈ U , now we claim that λ ∈ σeap(T+B−λ0)+U .

In fact, let us assume that λ /∈ σeap(T +B − λ0) + U . The fact that 0 ∈ U implies

that λ ̸∈ σeap(T + B − λ0) and so,
1

λ
̸∈ σeap

(
(Tn + B − λ0)

−1
)
which is a con-

tradiction. So λ ∈ σeap(T + B − λ0) + U . This implies that (3.1) holds. Since U
is an arbitrary neighborhood of 0 and by using (3.1) we get σeap(Tn +B − λ0) ⊆
σeap(T +B − λ0), for all n ≥ n0, hence δ

(
σeap(Tn +B − λ0), σeap(T +B − λ0)

)
=

δ
(
σeap(Tn +B − λ0), σeap(T +B − λ0)

)
= 0, for all n ≥ n0. With the same pro-

cession as we do for (3.1), and using Proposition 1.1 (ii), the inclusion (3.2) yields.
Therefore, (i) holds.

(ii) Since S is bounded, it’s clear by using Theorem 2.2 (i), that the operators
sequence An = (Tn +B + S − λ0) converges in the generalized sense to the operator
A = (T +B + S − λ0), then we need, for applying (i), to prove that ρ(T + B) ⊂
ρ(T+B+S). Let λ0 ∈ ρ(T+B), for S ∈ L(X) such that ∥S∥ <

1

∥(T +B − λ0)−1∥
=

ε1, we have ∥S(T +B − λ0)
−1∥ < 1, which gives that

(
I + S(T +B − λ0)

−1
)−1

exists and bounded, when the existence is given by the convergence of the Neumann

serie
∑∞

k=0

(
− S(T +B − λ0)

−1
)k
, and the boundedness is immediately from the

inequality

∥
(
I + S(T +B − λ0)

−1
)−1∥ <

1

1− ∥S∥∥(T +B − λ0)−1∥
,

which implies that the operator(
(T +B − λ0) + S

)−1
= (T +B − λ0)

−1
(
I + S(T +B − λ0)

−1
)−1

exists and bounded, then 0 ∈ ρ(T + B + S − λ0). Now applying (i) to An

and A, we deduce that there exists n0 ∈ N, such that σeap(Tn +B + S − λ0) ⊆
σeap(T +B + S − λ0) + U , for all n ≥ n0, and U ⊂ C is an open contain-
ing 0, we will prove that σeap(T +B + S − λ0)⊆σeap(T +B − λ0), by contradic-
tion. Let λ ̸∈ σeap(T +B − λ0), then

(
λ − (T +B − λ0)

)
∈ Φ+(X) and i

(
λ −

(T +B − λ0)
)
≤ 0. From [5, Chapter IV. Theoreme 5.22, p 236], we deduce that
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there exists ε2 > 0 such that for ∥S∥ < ε2, one has
(
λ− (T +B+S−λ0)

)
∈ ϕ+(X)

and i
(
λ − (T + B + S − λ0)

)
= i

(
λ − (T + B − λ0)

)
≤ 0. This implies that

λ ̸∈ σeap(T +B + S − λ0). Then by transitivity

σeap(Tn +B + S − λ0) ⊆ σeap(T +B − λ0)

From what has been mentioned and if we take ε = min(ε1, ε2), then for all ∥S∥ < ε,
there exists n0 ∈ N such that σeap(Tn +B + S − λ0) ⊆ σeap(T +B − λ0) + U , for
all n ≥ n0. With the same procedure of the previous prove, the inclusion concerned
in σeδ yields. Since U is an arbitrary neighborhood of the origin then we have

δ
(
σeap(Tn + S +B − λ0), σeap(T +B + S − λ0)

)
= 0. Therefore, (ii) holds.

A particular case is obtained From Theorem 3.1, if we replace B by 0, and λ0 by 0,
which requires that 0 ∈ ρ(T ), then we have the following corollary

Corollary 3.1. Let (Tn)n∈N be a sequence of closed linear operators and T a closed

operator such that (Tn)
g−→ T , we suppose that 0 ∈ ρ(T ) then,

(i) If U ⊂ C is open and 0 ∈ U , then there exists n0 ∈ N such that, for every n ≥ n0,
we have

(3.6) σeap(Tn) ⊆ σeap(T ) + U .

and

(3.7) σeδ(Tn) ⊆ σeδ(T ) + U .

In particular, for all n ≥ n0

(3.8) δ
(
σeap(Tn), σeap(T )

)
= δ

(
σeδ(Tn), σeδ(T )

)
= 0,

In the next theorem we discuss the essential approximate point spectrum and the
essential defect spectrum of a sequence of linear operators converges compactly

Theorem 3.2. Let (Tn)n∈N be a sequence in L(X) and let T be a bounded linear
operator on X.

(i) If Tn converges to T compactly, U ⊆ C is open and 0 ∈ U , then there exists
n0 ∈ N such that, for every n ≥ n0

(3.9) σeap(Tn) ⊆ σeap(T ) + U ,

and

(3.10) σeδ(Tn) ⊆ σeδ(T ) + U .
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(ii) If Tn converges to zero compactly then there exists n0 ∈ N, such that for every
n ≥ n0

(3.11) σeap(T + Tn) ⊆ σeap(T ),

and

(3.12) σeδ(T + Tn) ⊆ σeδ(T ).

Proof. (i) The proof by contradiction. Assume that the inclusion is fails. Then
by passing to a subsequence (if necessary) it may be assumed that, for each n,
there exists λn ∈ σeap(Tn) such that λn /∈ σeap(Tn) + U , since λn is bounded, we
suppose (if necessary pass to a subsequence) that lim

n→+∞
λn = λ, which implies that

λ /∈ σeap(T ) + U . Using the fact that 0 ∈ U , we have λ /∈ σeap(T ). Therefore

(λ−T ) ∈ Φ+(X), and i(λ−T ) ≤ 0. As (λn−Tn)− (λ−T )
c−→ 0, which implies by

Theorem 2.3 (i) and (iv) that (λn − Tn) ∈ Φ+(X), and i(λn − Tn) = i(λ− T ) ≤ 0,
then λn /∈ σeap(Tn), which is a contradiction, hence the inclusion (3.9) holds. The
statement for the essential defect spectrum can be proved similarly.

(ii) We have T is bounded, and Tn
c−→ 0, then for λ /∈ σeap(T ), λ−T ∈ Φb

+(X), and

i(λ− T ) ≤ 0. Since Tn
c−→ 0, then if we apply Theorem 2.3 (i) and (iv) we obtain

that there exists n0 ∈ N, such that for all n > n0, (λ− T )− Tn =
(
λ− (T + Tn)

)
∈

Φ+(X), and i(λ− T ) = i
(
λ− (T + Tn)

)
≤ 0, which implies that λ /∈ σeap(Tn), then

the inclusion (3.11) is valid. For the inclusion (3.12) the proof is similarly.

From the above result we deduce the following consequence concerned on a sequence
of closed linear operators

Corollary 3.2. Let T be a closed linear operator and let (Tn)n∈N be a sequence of
closed linear operators on X, such that ρ(Tn) ∩ ρ(T ) ̸= ϕ, let η ∈ ρ(Tn) ∩ ρ(T ),
if (Tn − η)−1 − (T − η)−1 converges to zero compactly then there exists n0 ∈ N such
that, for all n ≥ n0

(3.13) σeap(Tn − η) ⊆ σeap(T − η),

and

(3.14) σeδ(Tn − η) ⊆ σeδ(T − η).

Proof. If we put Kn = (Tn − η)−1 − (T − η)−1, we have Kn
c−→ 0, and (Tn −

η)−1 = (T − η)−1 + Kn, by using the inclusions (3.11) and (3.12) respectively,
we infer that σeap

(
(Tn − η)−1

)
= σeap

(
(T − η)−1 +Kn

)
⊆ σeap

(
(T − η)−1

)
, and

σeδ

(
(Tn − η)−1

)
= σeδ

(
(T − η)−1 +Kn

)
⊆ σeδ

(
(T − η)−1

)
. Then σeap(Tn − η) ⊆

σeap(T − η), and σeδ(Tn − η) ⊆ σeδ(T − η).
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