FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. Vol. 33, No 4 (2018), 523–530 https://doi.org/10.22190/FUMI1804523O

SOME GEOMETRIC PROPERTIES OF WEIGHTED LEBESGUE SPACES $L^p_{on}(G)$

Oğuz Oğur

Abstract. In this paper, we deal with some geometric properties of weighted Lebesgue spaces $L^p_w(G)$, where G is locally compact Abelian group and w is a Beurling weight. Also, we study the uniformly convexity of the space $L^p(G) \cap L^r(G)$ with $1 < p, r < \infty$. **Keywords**: weighted Lebesgue space, geometric properties

1. Introduction

Throughout this paper, G is a locally compact Abelian group and dx is a Haar measure on G. If $1 \leq p < \infty$, then $L^p(G)$ will denote the space of functions f such that $|f|^p$ is integrable [2]. A Beurling weight on G is a measurable, locally bounded function w satisfying for each $x, y \in G$ the following two properties: $w(x) \geq 1$ and $w(x+y) \leq w(x).w(y)$. By the definition of w is deduced easily that wdx is a positive measure on G. We denote by $L^p_w(G)$, $1 \leq p < \infty$, the Banach spaces of equivalence classes of real valued measurable functions on G with the system of following norm

$$||f||_{p,w} = \left(\int\limits_G |f(x)|^p w(x) dx\right)^{\frac{1}{p}} < \infty.$$

The conjugate space of $L_{w}^{p}(G)$ is the $L_{w'}^{p'}(G)$, where $w'=w^{1-p'}$ and $\frac{1}{p}+\frac{1}{p'}=1$. It can be easily seen that $L_{w}^{p}(G)$ is a reflexive Banach space [3], [4], [8], [9].

A Banach space X is said to be *strictly convex* if $x, y \in X$ with ||x|| = ||y|| = 1 and $x \neq y$, then $|(1 - \lambda)x + \lambda y| < 1$ for all $\lambda \in (0, 1)$.

A Banach space X is said to be uniformly convex if for all $\varepsilon > 0$, there exists a positive number $\delta > 0$ such that the conditions

$$||x|| \le 1$$
, $||y|| \le 1$ and $||x - y|| \ge \varepsilon$ imply $\left\| \frac{x + y}{2} \right\| \le 1 - \delta$.

Received March 03, 2018; accepted July 07, 2018 2010 Mathematics Subject Classification. Primary 43A15; Secondary 46E30, 46B20

for all $x, y \in X$.

The number

$$\delta(\varepsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : \|x\| = \|y\| = 1, \ \|x-y\| \ge \varepsilon \right\}$$

is called the *modulus of convexity*. Note that if $\varepsilon_1 < \varepsilon_2$, then $\delta(\varepsilon_1) < \delta(\varepsilon_2)$ and $\delta(0) = 0$ since x = y if $\varepsilon = 0$ [1],[7].

We will need some auxiliary lemmas to prove that the spaces $L_w^p(G)$ are uniformly convex whenever 1 .

Let us first remind that the Minkowski inequality for the space $L^p_w(G),\ p\geq 1;$ If $f,g\in L^p_w(G),$ then

$$\left(\int\limits_{G}\left|f(x)+g(x)\right|^{p}w(x)dx\right)^{\frac{1}{p}}\leq\left(\int\limits_{G}\left|f(x)\right|^{p}w(x)dx\right)^{\frac{1}{p}}+\left(\int\limits_{G}\left|g(x)\right|^{p}w(x)dx\right)^{\frac{1}{p}}.$$

Lemma 1.1. Let $0 , we have <math>(a + b)^p \le a^p + b^p$ for all $a \ge 0$ and $b \ge 0$.

Lemma 1.2. If $p \ge 1$, then $(a+b)^p \le 2^{p-1} (a^p + b^p)$ for all positive numbers a and b.

2. Main Results

Theorem 2.1. The space $L_w^p(G)$ is convex whenever 0 .

Proof. Let $f,g\in L^p_w(G)$. We need to show that $tf+(1-t)g\in L^p_w(G)$ for $0\leq t\leq 1$. Let us consider this in two cases; $p\geq 1$ and 0< p<1.

Case $p \geq 1$. By lemma 2 and the Minkowski inequality, we have

$$\begin{split} \int_{G} |tf(x) + (1-t)g(x)|^{p} \, w(x) dx &= \int_{G} \left| (tf(x) + (1-t)g(x)) \, (w(x))^{\frac{1}{p}} \right|^{p} dx \\ &= \left[\left(\int_{G} \left| (tf(x) + (1-t)g(x)) \, (w(x))^{\frac{1}{p}} \right|^{p} dx \right)^{\frac{1}{p}} \right]^{p} \\ &\leq \left[\left(\int_{G} \left| (tf(x)) \, (w(x))^{\frac{1}{p}} \right|^{p} dx \right)^{\frac{1}{p}} \right]^{p} \\ &+ \left(\int_{G} \left| ((1-t)g(x)) \, (w(x))^{\frac{1}{p}} \right|^{p} dx \right)^{\frac{1}{p}} \right]^{p} \\ &\leq 2^{p-1} \left[\int_{G} \left| (tf(x)) \, (w(x))^{\frac{1}{p}} \right|^{p} dx \right] \\ &+ \int_{G} \left| ((1-t)g(x)) \, (w(x))^{\frac{1}{p}} \right|^{p} dx \right] \\ &= 2^{p-1} \left[\left| t \right|^{p} \int_{G} |f(x)|^{p} w(x) dx \right. \\ &+ \left| 1 - t \right|^{p} \int_{G} |g(x)|^{p} w(x) dx \right] \\ &= 2^{p-1} \left(\left| t \right|^{p} \|f\|_{p,w}^{p} + |1 - t|^{p} \|g\|_{p,w}^{p} \right) \\ &< \infty \end{split}$$

which shows that $tf + (1-t)g \in L_w^p(G)$ for $p \ge 1$.

Case $0 . Let <math>f, g \in L^p_w(G)$ and $t \in [0, 1]$. By lemma 1, we get

$$\int_{G} |tf(x) + (1-t)g(x)|^{p} w(x)dx = \int_{G} \left| (tf(x) + (1-t)g(x)) (w(x))^{\frac{1}{p}} \right|^{p} dx
\leq \int_{G} \left| (tf(x)) (w(x))^{\frac{1}{p}} \right|^{p} dx + \int_{G} \left| ((1-t)g(x)) (w(x))^{\frac{1}{p}} \right|^{p} dx
= |t|^{p} ||f||_{p,w}^{p} + |1-t|^{p} ||g||_{p,w}^{p}
< \infty.$$

This completes the proof. \Box

Theorem 2.2. The space $L_w^p(G)$, 1 , is strictly convex.

Proof. Let $f, g \in L^p_w(G)$ with $f \neq g$, $||f||_{p,w} = 1$, $||g||_{p,w} = 1$ and 0 < t < 1. Then, by strictly convexity of $L^p(G)$ we have

$$\|(1-t)f + tg\|_{p,w} = \left(\int_{G} \left| ((1-t)f(x) + tg(x)) (w(x))^{\frac{1}{p}} \right|^{p} dx \right)^{\frac{1}{p}}$$

$$= \left\| ((1-t)f + tg) w^{\frac{1}{p}} \right\|_{p}$$

$$< 1.$$

Lemma 2.1. Let $2 \le p < \infty$ and $a, b \in \mathbb{R}$, then we have

$$|a+b|^p + |a-b|^p \le 2^{p-1} (|a|^p + |b|^p).$$

|5|.

Lemma 2.2. Let $2 \le p < \infty$. For any $f, g \in L_p$, we have

$$||f + g||_p^p + ||f - g||_p^p \le 2^{p-1} \left(||f||_p^p + ||g||_p^p \right)$$

[6].

We will also need the following inequality.

Lemma 2.3. For $2 \le p < \infty$ and any $f, g \in L^p_w(G)$, we have

$$||f+g||_{p,w}^p + ||f-g||_{p,w}^p \le 2^{p-1} \left(||f||_{p,w}^p + ||g||_{p,w}^p \right).$$

Proof. Let $f, g \in L_w^p(G)$. Then $fw^{\frac{1}{p}}, gw^{\frac{1}{p}} \in L_p$. By lemma 4, we get

$$\begin{split} \|f+g\|_{p,w}^p + \|f-g\|_{p,w}^p & = & \left\|fw^{\frac{1}{p}} + gw^{\frac{1}{p}}\right\|_p^p + \left\|fw^{\frac{1}{p}} - gw^{\frac{1}{p}}\right\|_p^p \\ & \leq & 2^{p-1}\left(\left\|fw^{\frac{1}{p}}\right\|_p^p + \left\|gw^{\frac{1}{p}}\right\|_p^p\right) \\ & = & 2^{p-1}\left(\|f\|_{p,w}^p + \|g\|_{p,w}^p\right). \end{split}$$

Theorem 2.3. $L_w^p(G)$ is uniformly convex for $2 \le p < \infty$.

Proof. Let $f, g \in L^p_w(G)$ with $||f||_{p,w} \le 1$, $||g||_{p,w} \le 1$ and $||f - g||_{p,w} \ge \varepsilon$. Then, we have

$$||f+g||_{p,w}^p \le 2^{p-1} \left(||f||_{p,w}^p + ||g||_{p,w}^p \right) - ||f-g||_{p,w}^p$$

which implies that

$$||f + g||_{p,w}^p \le 2^{p-1} \cdot 2 - \varepsilon^p$$

= $2^p \left(1 - \left(\frac{\varepsilon}{2}\right)^p\right)$.

Therefore, we get

$$\left\| \frac{f+g}{2} \right\|_{p,w}^p \le 1 - \left(\frac{\varepsilon}{2}\right)^p.$$

That is, $\delta(\varepsilon) = 1 - \left(1 - \left(\frac{\varepsilon}{2}\right)^p\right)^{\frac{1}{p}}$ and this is known to be exact. \square

Lemma 2.4. (The Minkowski inequality for $p \in (0,1)$) Let 0 and let <math>f and g be positive functions in $L_p(G)$, then $f + g \in L_p(G)$ and

$$||f+g||_p \ge ||f||_p + ||g||_p$$
.

Lemma 2.5. If $1 and <math>q = \frac{p}{p-1}$, then

$$|a+b|^{q} + |a-b|^{q} \le 2(|a|^{p} + |b|^{p})^{q-1}$$

for all real numbers a and b [6].

Lemma 2.6. Let $1 and <math>q = \frac{p}{p-1}$. For any $f, g \in L^p(G)$, we have

$$||f + g||_p^q + ||f - g||_p^q \le 2 (||f||_p^p + ||g||_p^p)^{q-1}.$$

Theorem 2.4. Let $1 and let <math>q = \frac{p}{p-1}$. For any $f, g \in L_w^p(G)$, we have

$$||f + g||_{p,w}^q + ||f - g||_{p,w}^q \le 2 \left(||f||_{p,w}^p + ||g||_{p,w}^p \right)^{q-1}.$$

Proof. First notice that

$$||f||_{p,w}^{q} = \left(\left(\int_{G} |f(x)|^{p} w(x) dx \right)^{\frac{1}{p}} \right)^{q}$$

$$= \left(\int_{G} |f(x)|^{p} w(x) dx \right)^{\frac{1}{p-1}}$$

$$= \left(\int_{G} |f(x)|^{q(p-1)} w(x) dx \right)^{\frac{1}{p-1}}$$

$$= |||f|^{q}||_{p-1,w}.$$

Let $f, g \in L_w^p(G)$. By the Minkowski inequality for 0 < r < 1, we have

$$(1) \qquad \left(\int\limits_{G}\left|F(x)+G(x)\right|^{r}dx\right)^{\frac{1}{r}} \geq \left(\int\limits_{G}\left|F(x)\right|^{r}dx\right)^{\frac{1}{r}} + \left(\int\limits_{G}\left|G(x)\right|^{r}dx\right)^{\frac{1}{r}}.$$

Since $1 , we have <math>0 < \frac{p}{q} < 1$. Let us define $F(x) = \left| (f(x) + g(x)) w(x)^{\frac{1}{p}} \right|^q$ and $G(x) = \left| (f(x) - g(x)) w(x)^{\frac{1}{p}} \right|^q$. By lemma 7, we get

$$\left(\int_{G} \left| (f(x) + g(x)) w(x)^{\frac{1}{p}} \right|^{p} dx \right)^{\frac{q}{p}} + \left(\int_{G} \left| (f(x) - g(x)) w(x)^{\frac{1}{p}} \right|^{p} dx \right)^{\frac{q}{p}} \\
\leq \left[\int_{G} \left| \left| (f(x) + g(x)) w(x)^{\frac{1}{p}} \right|^{q} + \left| (f(x) - g(x)) w(x)^{\frac{1}{p}} \right|^{q} \right|^{\frac{p}{q}} dx \right]^{\frac{q}{p}} \\
= \left[\int_{G} \left| \left| f(x) w(x)^{\frac{1}{p}} + g(x) w(x)^{\frac{1}{p}} \right|^{q} + \left| f(x) w(x)^{\frac{1}{p}} - g(x) w(x)^{\frac{1}{p}} \right|^{q} \right|^{\frac{p}{q}} dx \right]^{\frac{q}{p}} \\
\leq \left[\int_{G} \left(2 \left(\left| f(x) w(x)^{\frac{1}{p}} \right|^{p} + \left| g(x) w(x)^{\frac{1}{p}} \right|^{p} \right)^{q-1} \right)^{\frac{p}{q}} dx \right]^{\frac{q}{p}} \\
= 2 \left[\int_{G} \left(\left| f(x) w(x)^{\frac{1}{p}} \right|^{p} + \left| g(x) w(x)^{\frac{1}{p}} \right|^{p} \right) dx \right]^{\frac{q}{p}} \\
= 2 \left[\int_{G} \left(\left| f(x) w(x) \right|^{\frac{1}{p}} \right|^{p} + \left| g(x) w(x)^{\frac{1}{p}} \right|^{p} \right) dx \right]^{\frac{q}{p}} \\
= 2 \left[\int_{G} \left(\left| f(x) w(x) \right|^{\frac{1}{p}} \right|^{p} + \left| g(x) w(x) \right|^{\frac{1}{p}} \right)^{\frac{q}{p}} dx \right]^{\frac{q}{p}} \\
= 2 \left[\int_{G} \left(\left| f(x) w(x) \right|^{\frac{1}{p}} \right|^{p} + \left| g(x) w(x) \right|^{\frac{1}{p}} dx \right]^{\frac{q}{p}} dx \right]^{\frac{q}{p}} dx \right]^{\frac{q}{p}}$$

Thus, we obtain

$$||f + g||_{p,w}^q + ||f - g||_{p,w}^q \le 2 \left(||f||_{p,w}^p + ||g||_{p,w}^p \right)^{q-1}.$$

Theorem 2.5. The space $L_w^p(G)$ is uniformly convex for 1 .

Proof. Let $f, g \in L^p_w(G)$, $1 , with <math>||f||_{p,w} \le 1$, $||g||_{p,w} \le 1$ and $||f - g||_{p,w} \ge \varepsilon$. Then, by the theorem 4, we have

$$\begin{split} \|f + g\|_{p,w}^{q} & \leq & 2\left(\|f\|_{p,w}^{p} + \|g\|_{p,w}^{p}\right)^{q-1} - \|f - g\|_{p,w}^{q} \\ & \leq & 2 \cdot 2^{q-1} - \varepsilon^{q} \\ & = & 2^{q} \left(1 - \left(\frac{\varepsilon}{2}\right)^{q}\right). \end{split}$$

Hence, we get

$$\left\| \frac{f+g}{2} \right\|_{p,w} \le \left(1 - \left(\frac{\varepsilon}{2} \right)^q \right)^{\frac{1}{q}} < 1 - \delta$$

where
$$\delta(\varepsilon) = 1 - \left(1 - \left(\frac{\varepsilon}{2}\right)^q\right)^{\frac{1}{q}}$$
. \square

Let us define $B_{p,r} = L^p(G) \cap L^r(G)$ with $1 < p, r < \infty$. It is known that $B_{p,r}$ is a normed space with the norm

$$||f||_{p,r} = \max \{||f||_p, ||f||_r\}$$

[7].

Theorem 2.6. The space $B_{p,r}$ is uniformly convex space for $1 < p, r < \infty$.

Proof. Let $f, g \in B_{p,r}$ with $||f||_{p,r} \le 1$, $||g||_{p,r} \le 1$ and $||f - g||_{p,r} \ge \varepsilon$. By definition of the space $B_{p,r}$, we have $f, g \in L^p(G)$ and $f, g \in L^r(G)$. Assume that

$$||f+g||_{p,r} = \max \left\{ ||f+g||_p, ||f+g||_r \right\} = ||f+g||_p.$$

By assumption, we have $||f + g||_r \le ||f + g||_p$.

Let 1 < p, r < 2. By lemma 8, we have

$$||f+g||_p^q \le 2\left(||f||_p^p + ||g||_p^p\right)^{q-1} - ||f-g||_p^q$$

where $q = \frac{p}{p-1}$. Then, we get

$$||f + g||_{p,r}^{q} = ||f + g||_{p}^{q} \le 2 \left(||f||_{p}^{p} + ||g||_{p}^{p} \right)^{q-1} - ||f - g||_{p}^{q}$$

$$\le 2 \cdot 2^{q-1} - \varepsilon^{q}$$

$$= 2^{q} \left(1 - \left(\frac{\varepsilon}{2} \right)^{q} \right)$$

which gives $\left\| \frac{f+g}{2} \right\|_{p,r} \leq \left(1 - \left(\frac{\varepsilon}{2}\right)^q\right)^{\frac{1}{q}}$. By choosing

 $\delta(\varepsilon) = 1 - \left(1 - \left(\frac{\varepsilon}{2}\right)^q\right)^{\frac{1}{q}}$, the proof is completed for 1 < p, r < 2. If $2 \le p, r < \infty$, then we have, by lemma 4,

$$\begin{split} \|f + g\|_{p,r}^p &= \|f + g\|_p^p \le 2^{p-1} \left(\|f\|_p^p + \|g\|_p^p \right) - \|f - g\|_p^p \\ &\le 2^p \left(1 - \left(\frac{\varepsilon}{2} \right)^p \right) \end{split}$$

and we get $\left\| \frac{f+g}{2} \right\|_{p,r} \le \left(1 - \left(\frac{\varepsilon}{2}\right)^p\right)^{\frac{1}{p}}$. If we choose $\delta(\varepsilon) = 1 - \left(1 - \left(\frac{\varepsilon}{2}\right)^p\right)^{\frac{1}{p}}$, the proof is completed. \square

REFERENCES

- 1. R. P. AGARWAL.; D. O'REGAN; D. R. SAHU: Fixed Point Theory for Lipschitzian-type Mappings with Applications. Vol 6, Springer, 2009.
- 2. E. HEWIT AND K. A. Ross: Abstract Harmonic Analysis. Vol 1, Springer-Verlag, Berlin, 1993.
- 3. H. RIETER; J. D. STEGEMAN: Classical Harmonic Analysis and Locally Compact Groups. London Mathematical Society, New Series, 22, Oxford Sci. Publ., 2000.
- 4. B. SAĞIR B. AND C. DUYAR: A note on Multipliers of Weighted Lebesgue Spaces. Thai J. Math., In press.
- R. R. Boas: Some Uniformly Convex Spaces. Bull. Amer. Math. Soc., Vol 46, 4 (1940), 304-311.
- J. A. CLARKSON: Uniformly Convex Spaces. Transactions of This Society, Vol 40, (1936), 396-414.
- 7. R. E. CASTILLO AND H. RAFERIO: An Introductory Course in Lebesgue Spaces.CMS Books in Mathematics, 2016.
- 8. G. I. Gaudry: Multipliers of Weighted Lebesgue and Measure Spaces. Proc. London Math. Soc., Vol 19, (1969), 327-340.
- 9. A. Bourouihiya: Beurling Weighted Spaces, Product-Convolution Operators and the Tensor Product of Frames. PhD Thesis, University of Maryland, 2006.

Oğuz Oğur Faculty of Education Department of Elementary Mathematics 28200 Giresun, Turkey oguz.ogur@giresun.edu.tr