FACTA UNIVERSITATIS (NIŠ)

INSERTION OF A CONTRA-CONTINUOUS FUNCTION BETWEEN TWO COMPARABLE CONTRA- α -CONTINUOUS (CONTRA-C-CONTINUOUS) FUNCTIONS *

Majid Mirmiran and Binesh Naderi

Abstract. Necessary and sufficient conditions in terms of lower cut sets are given for the insertion of a contra-continuous function between two comparable real-valued functions on topological spaces on which the kernel of sets is open.

Keywords: Insertion, Strong binary relation, C-open set, Semi-preopen set, α -open set, Contra-continuous function, Lower cut set.

1. Introduction

The concept of a C-open set in a topological space was introduced by E. Hatir, T. Noiri and S. Yksel in [12]. The authors define a set S to be a C-open set if $S = U \cap A$, where U is open and A is semi-preclosed. A set S is a C-closed set if its complement (denoted by S^c) is a C-open set or equivalently if $S = U \cup A$, where U is closed and A is semi-preopen. The authors show that a subset of a topological space is open if and only if it is an α -open set and a C-open set or equivalently a subset of a topological space is closed if and only if it is an α -closed set and a C-closed set. This enables them to provide the following decomposition of continuity: a function is continuous if and only if it is α -continuous and C-continuous or equivalently a function is contra-continuous if and only if it is contra- α -continuous and contra-C-continuous.

Recall that a subset A of a topological space (X,τ) is called α -open if A is the difference of an open and a nowhere dense subset of X. A set A is called α -closed if its complement is α -open or equivalently if A is the union of a closed and a nowhere dense set. Sets which are dense in some regular closed subspace are called semi-preopen or β -open. A set is semi-preclosed or β -closed if its complement is

Received March 14, 2018; accepted January 08, 2019

 $^{2010\} Mathematics\ Subject\ Classification.$ Primary 54C08, 54C10, 54C50; Secondary 26A15, 54C30.

^{*}This work was supported by University of Isfahan and Centre of Excellence for Mathematics (University of Isfahan).

semi-preopen or β -open.

In [7] it was shown that a set A is β -open if and only if $A \subseteq Cl(Int(Cl(A)))$. A generalized class of closed sets was considered by Maki in [19]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ -sets [19].

Recall that a real-valued function f defined on a topological space X is called A-continuous [23] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [4, 11]. In the recent literature many topologists have focused their research in the direction of investigating different types of generalized continuity.

J. Dontchev in [5] introduced a new class of mappings called contra-continuity.S. Jafari and T. Noiri in [13, 14] exhibited and studied among others a new weaker form of this class of mappings called contra- α -continuous. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1, 3, 8, 9, 10, 22].

Hence, a real-valued function f defined on a topological space X is called *contra-continuous* (resp. *contra-C-continuous* , *contra-\alpha-continuous*) if the preimage of every open subset of $\mathbb R$ is closed (resp. C-closed , α -closed) in X[5].

Results of Katětov [15, 16] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient conditions for the insertion of a contra-continuous function between two comparable real-valued functions on such topological spaces that Λ -sets or kernel of sets are open [19].

If g and f are real-valued functions defined on a space X, we write $g \leq f$ (resp. g < f) in case $g(x) \leq f(x)$ (resp. g(x) < f(x)) for all x in X.

The following definitions are modifications of conditions considered in [17].

A property P, defined relative to a real-valued function on a topological space, is a cc-property provided that any constant function has property P and provided that the sum of a function with property P and any contra-continuous function also has property P. If P_1 and P_2 are cc-properties, the following terminology is used:(i) A space X has the weak cc-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f, g$ has property P_1 and f has property P_2 , then there exists a contra-continuous function h such that $g \leq h \leq f$.(ii) A space X has the cc-insertion property for (P_1, P_2) if and only if for any functions gand f on X such that g < f, g has property P_1 and f has property P_2 , then there exists a contra-continuous function h such that q < h < f.(iii) A space X has the strong cc-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f, g$ has property P_1 and f has property P_2 , then there exists a contra-continuous function h such that $g \leq h \leq f$ and if g(x) < f(x) for any x in X, then g(x) < h(x) < f(x).(iv) A space X has the weakly cc-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that g < f, g has property P_1 , f has property P_2 and f-g has property P_2 , then there exists a

contra-continuous function h such that g < h < f.

In this paper, for a topological space whose Λ -sets or kernel of sets are open, is given a sufficient condition for the weak cc-insertion property. Also for a space with the weak cc-insertion property, we give a necessary and sufficient condition for the space to have the cc-insertion property. Several insertion theorems are obtained as corollaries of these results.

2. The Main Result

Before giving a sufficient condition for the insertability of a contra-continuous function, the necessary definitions and terminology are stated.

Definition 2.1. Let A be a subset of a topological space (X, τ) . We define the subsets A^{Λ} and A^{V} as follows:

```
A^{\Lambda} = \cap \{O : O \supseteq A, O \in (X, \tau)\} and A^{V} = \cup \{F : F \subseteq A, F^{c} \in (X, \tau)\}. In [6, 18, 21], A^{\Lambda} is called the kernel of A.
```

The family of all α -open, α -closed, C-open and C-closed will be denoted by $\alpha O(X, \tau)$, $\alpha C(X, \tau)$, $CO(X, \tau)$ and $CC(X, \tau)$, respectively.

We define the subsets $\alpha(A^{\Lambda})$, $\alpha(A^{V})$, $C(A^{\Lambda})$ and $C(A^{V})$ as follows:

```
\alpha(A^{\Lambda}) = \bigcap \{ O : O \supseteq A, O \in \alpha O(X, \tau) \},\
```

$$\alpha(A^V) = \bigcup \{F : F \subseteq A, F \in \alpha C(X, \tau)\},\$$

$$C(A^{\Lambda}) = \cap \{O : O \supseteq A, O \in CO(X, \tau)\}$$
 and

$$C(A^V) = \bigcup \{F : F \subseteq A, F \in CC(X, \tau)\}.$$

 $\alpha(A^{\Lambda})$ (resp. $C(A^{\Lambda})$) is called the $\alpha - kernel$ (resp. C - kernel) of A.

The following first two definitions are modifications of conditions considered in [15, 16].

Definition 2.2. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S. **Definition 2.3.** A binary relation ρ in the power set P(X) of a topological space X is called a *strong binary relation* in P(X) in case ρ satisfies each of the following conditions:

- 1) If $A_i \rho B_j$ for any $i \in \{1, ..., m\}$ and for any $j \in \{1, ..., n\}$, then there exists a set C in P(X) such that $A_i \rho C$ and $C \rho B_j$ for any $i \in \{1, ..., m\}$ and any $j \in \{1, ..., n\}$.
- 2) If $A \subseteq B$, then $A \bar{\rho} B$.
- 3) If $A \rho B$, then $A^{\Lambda} \subseteq B$ and $A \subseteq B^{V}$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X : f(x) < \ell\} \subseteq A(f,\ell) \subseteq \{x \in X : f(x) \le \ell\}$ for a real number ℓ , then $A(f,\ell)$ is called a *lower indefinite cut set* in the domain of f at the level ℓ .

We now give the following main result:

Theorem 2.1. Let g and f be real-valued functions on the topological space X, in which kernel sets are open, with $g \leq f$. If there exists a strong binary relation ρ on

the power set of X and if there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1)$ ρ $A(g,t_2)$, then there exists a contra-continuous function h defined on X such that $g \le h \le f$.

Proof. Let g and f be real-valued functions defined on the X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1)$ ρ $A(g,t_2)$.

Define functions F and G mapping the rational numbers $\mathbb Q$ into the power set of X by F(t) = A(f,t) and G(t) = A(g,t). If t_1 and t_2 are any elements of $\mathbb Q$ with $t_1 < t_2$, then $F(t_1) \ \bar{\rho} \ F(t_2), G(t_1) \ \bar{\rho} \ G(t_2)$, and $F(t_1) \ \rho \ G(t_2)$. By Lemmas 1 and 2 of [16] it follows that there exists a function H mapping $\mathbb Q$ into the power set of X such that if t_1 and t_2 are any rational numbers with $t_1 < t_2$, then $F(t_1) \ \rho \ H(t_2), H(t_1) \ \rho \ H(t_2)$ and $H(t_1) \ \rho \ G(t_2)$.

For any x in X, let $h(x) = \inf\{t \in \mathbb{Q} : x \in H(t)\}.$

We first verify that $g \leq h \leq f$: If x is in H(t) then x is in G(t') for any t' > t; since x is in G(t') = A(g,t') implies that $g(x) \leq t'$, it follows that $g(x) \leq t$. Hence $g \leq h$. If x is not in H(t), then x is not in F(t') for any t' < t; since x is not in F(t') = A(f,t') implies that f(x) > t', it follows that $f(x) \geq t$. Hence $h \leq f$.

Also, for any rational numbers t_1 and t_2 with $t_1 < t_2$, we have $h^{-1}(t_1, t_2) = H(t_2)^V \setminus H(t_1)^{\Lambda}$. Hence $h^{-1}(t_1, t_2)$ is closed in X, i.e., h is a contra-continuous function on X.

The above proof used the technique of theorem 1 in [15].

Theorem 2.2. Let P_1 and P_2 be cc-property and X be a space that satisfies the weak cc-insertion property for (P_1, P_2) . Also assume that g and f are functions on X such that g < f, g has property P_1 and f has property P_2 . The space X has the cc-insertion property for (P_1, P_2) if and only if there exist lower cut sets $A(f - g, 3^{-n+1})$ and there exists a decreasing sequence $\{D_n\}$ of subsets of X with empty intersection and such that for each $n, X \setminus D_n$ and $A(f - g, 3^{-n+1})$ are completely separated by contra-continuous functions.

Proof. Theorem 2.1 of [20].

3. Applications

The abbreviations $c\alpha c$ and cCc are used for contra- α -continuous and contra-C-continuous, respectively.

Before stating the consequences of theorems 2.1, 2.2, we suppose that X is a topological space whose kernel sets are open.

Corollary 3.1. If for each pair of disjoint α -open (resp. C-open) sets G_1, G_2 of X, there exist closed sets F_1 and F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then X has the weak cc-insertion property for $(c\alpha c, c\alpha c)$ (resp. (cCc, cCc)).

Proof. Let g and f be real-valued functions defined on X, such that f and g are $c\alpha c$ (resp. cCc), and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case

 $\alpha(A^{\Lambda}) \subseteq \alpha(B^V)$ (resp. $C(A^{\Lambda}) \subseteq C(B^V)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f, t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g, t_2);$$

since $\{x \in X : f(x) \leq t_1\}$ is an α -open (resp. C-open) set and since $\{x \in X : g(x) < t_2\}$ is an α -closed (resp. C-closed) set, it follows that $\alpha(A(f,t_1)^{\Lambda}) \subseteq \alpha(A(g,t_2)^V)$ (resp. $C(A(f,t_1)^{\Lambda}) \subseteq C(A(g,t_2)^V)$). Hence $t_1 < t_2$ implies that $A(f,t_1) \rho A(g,t_2)$. The proof follows from Theorem 2.1.

Corollary 3.2. If for each pair of disjoint α -open (resp. C-open) sets G_1, G_2 , there exist closed sets F_1 and F_2 such that $G_1 \subseteq F_1$, $G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then every contra- α -continuous (resp. contra-C-continuous) function is contra-continuous.

Proof. Let f be a real-valued contra- α -continuous (resp. contra-C-continuous) function defined on X. Set g = f, then by Corollary 3.1, there exists a contra-continuous function h such that g = h = f.

Corollary 3.3. If for each pair of disjoint α -open (resp. C-open) sets G_1, G_2 of X, there exist closed sets F_1 and F_2 of X such that $G_1 \subseteq F_1$, $G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then X has the strong cc-insertion property for $(c\alpha c, c\alpha c)$ (resp. (cCc, cCc)).

Proof. Let g and f be real-valued functions defined on the X, such that f and g are $c\alpha c$ (resp. cCc), and $g \leq f$. Set h = (f+g)/2, thus $g \leq h \leq f$ and if g(x) < f(x) for any x in X, then g(x) < h(x) < f(x). Also, by Corollary 3.2, since g and f are contra-continuous functions hence h is a contra-continuous function. Corollary 3.4. If for each pair of disjoint subsets G_1, G_2 of X, such that G_1 is α -open and G_2 is C-open, there exist closed subsets F_1 and F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then X have the weak cc-insertion property for $(c\alpha c, cCc)$ and $(cCc, c\alpha c)$.

Proof. Let g and f be real-valued functions defined on X, such that g is $c\alpha c$ (resp. cCc) and f is cCc (resp. $c\alpha c$), with $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $C(A^{\Lambda}) \subseteq \alpha(B^V)$ (resp. $\alpha(A^{\Lambda}) \subseteq C(B^V)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of $\mathbb Q$ with $t_1 < t_2$, then

$$A(f, t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g, t_2);$$

since $\{x \in X : f(x) \le t_1\}$ is a C-open (resp. α -open) set and since $\{x \in X : g(x) < t_2\}$ is an α -closed (resp. C-closed) set, it follows that $C(A(f,t_1)^{\Lambda}) \subseteq \alpha(A(g,t_2)^V)$ (resp. $\alpha(A(f,t_1)^{\Lambda}) \subseteq C(A(g,t_2)^V)$). Hence $t_1 < t_2$ implies that $A(f,t_1) \ \rho \ A(g,t_2)$. The proof follows from Theorem 2.1. \blacksquare

Before stating consequences of Theorem 2.2, we state and prove the necessary lemmas

Lemma 3.1. The following conditions on the space X are equivalent:

(i) For each pair of disjoint subsets G_1, G_2 of X, such that G_1 is α -open and G_2 is C-open, there exist closed subsets F_1, F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$.

(ii) If G is a C-open (resp. α -open) subset of X which is contained in an α -closed (resp. C-closed) subset F of X, then there exists a closed subset H of X such that $G \subseteq H \subseteq H^{\Lambda} \subseteq F$.

Proof. (i) \Rightarrow (ii) Suppose that $G \subseteq F$, where G and F are C-open (resp. α -open) and α -closed (resp. C-closed) subsets of X, respectively. Hence, F^c is an α -open (resp. C-open) and $G \cap F^c = \emptyset$.

By (i) there exists two disjoint closed subsets F_1, F_2 such that $G \subseteq F_1$ and $F^c \subseteq F_2$. But

$$F^c \subset F_2 \Rightarrow F_2^c \subset F$$

and

$$F_1 \cap F_2 = \varnothing \Rightarrow F_1 \subseteq F_2^c$$

hence

$$G \subseteq F_1 \subseteq F_2^c \subseteq F$$

and since F_2^c is an open subset containing F_1 , we conclude that $F_1^{\Lambda} \subseteq F_2^c$, i.e.,

$$G \subseteq F_1 \subseteq F_1^{\Lambda} \subseteq F$$
.

By setting $H = F_1$, condition (ii) holds.

(ii) \Rightarrow (i) Suppose that G_1, G_2 are two disjoint subsets of X, such that G_1 is α -open and G_2 is C-open.

This implies that $G_2 \subseteq G_1^c$ and G_1^c is an α -closed subset of X. Hence by (ii) there exists a closed set H such that $G_2 \subseteq H \subseteq H^{\Lambda} \subseteq G_1^c$.

$$H \subseteq H^{\Lambda} \Rightarrow H \cap (H^{\Lambda})^c = \varnothing$$

and

$$H^{\Lambda} \subseteq G_1^c \Rightarrow G_1 \subseteq (H^{\Lambda})^c$$
.

Furthermore, $(H^{\Lambda})^c$ is a closed subset of X. Hence $G_2 \subseteq H, G_1 \subseteq (H^{\Lambda})^c$ and $H \cap (H^{\Lambda})^c = \emptyset$. This means that condition (i) holds.

Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets G_1, G_2 of X, where G_1 is α -open and G_2 is C-open, can be separated by closed subsets of X then there exists a contra-continuous function $h: X \to [0,1]$ such that $h(G_2) = \{0\}$ and $h(G_1) = \{1\}$.

Proof. Suppose G_1 and G_2 are two disjoint subsets of X, where G_1 is α -open and G_2 is C-open. Since $G_1 \cap G_2 = \emptyset$, hence $G_2 \subseteq G_1^c$. In particular, since G_1^c is an α -closed subset of X containing the C-open subset G_2 of X, by Lemma 3.1, there exists a closed subset $H_{1/2}$ such that

$$G_2 \subseteq H_{1/2} \subseteq H_{1/2}^{\Lambda} \subseteq G_1^c$$
.

Note that $H_{1/2}$ is also an α -closed subset of X and contains G_2 , and G_1^c is an α -closed subset of X and contains the C-open subset $H_{1/2}^{\Lambda}$ of X. Hence, by Lemma 3.1, there exists closed subsets $H_{1/4}$ and $H_{3/4}$ such that

$$G_2 \subseteq H_{1/4} \subseteq H_{1/4}^{\Lambda} \subseteq H_{1/2} \subseteq H_{1/2}^{\Lambda} \subseteq H_{3/4} \subseteq H_{3/4}^{\Lambda} \subseteq G_1^c.$$

By continuing this method for every $t \in D$, where $D \subseteq [0,1]$ is the set of rational numbers that their denominators are exponents of 2, we obtain closed subsets H_t with the property that if $t_1, t_2 \in D$ and $t_1 < t_2$, then $H_{t_1} \subseteq H_{t_2}$. We define the function h on X by $h(x) = \inf\{t : x \in H_t\}$ for $x \notin G_1$ and h(x) = 1 for $x \in G_1$. Note that for every $x \in X, 0 \le h(x) \le 1$, i.e., h maps X into [0,1]. Also, we note that for any $t \in D, G_2 \subseteq H_t$; hence $h(G_2) = \{0\}$. Furthermore, by definition, $h(G_1) = \{1\}$. It remains only to prove that h is a contra-continuous function on X. For every $\alpha \in \mathbb{R}$, we have if $\alpha < 0$ then $\{x \in X : h(x) < \alpha\} = \emptyset$ and if $0 < \alpha$ then $\{x \in X : h(x) < \alpha\} = \bigcup \{H_t : t < \alpha\}$, hence, they are closed subsets of X. Similarly, if $\alpha < 0$ then $\{x \in X : h(x) > \alpha\} = X$ and if $0 \le \alpha$ then $\{x \in X : h(x) > \alpha\} = \bigcup \{(H_t^{\Lambda})^c : t > \alpha\}$ hence, every of them is a closed subset. Consequently h is a contra-continuous function.

Lemma 3.3. Suppose that X is a topological space such that every two disjoint C-open and α -open subsets of X can be separated by closed subsets of X. The following conditions are equivalent:

- (i) Every countable convering of C-closed (resp. α -closed) subsets of X has a refinement consisting of α -closed (resp. C-closed) subsets of X such that for every $x \in X$, there exists a closed subset of X containing x such that it intersects only finitely many members of the refinement.
- (ii) Corresponding to every decreasing sequence $\{G_n\}$ of C-open (resp. α -open) subsets of X with empty intersection there exists a decreasing sequence $\{F_n\}$ of α -closed (resp. C-closed) subsets of X such that $\bigcap_{n=1}^{\infty} F_n = \emptyset$ and for every $n \in \mathbb{N}, G_n \subseteq F_n$.
- **Proof.** (i) \Rightarrow (ii) Suppose that $\{G_n\}$ is a decreasing sequence of C-open (resp. α -open) subsets of X with empty intersection. Then $\{G_n^c:n\in\mathbb{N}\}$ is a countable covering of C-closed (resp. α -closed) subsets of X. By hypothesis (i) and Lemma 3.1, this covering has a refinement $\{V_n : n \in \mathbb{N}\}$ such that every V_n is a closed subset of X and $V_n^{\Lambda} \subseteq G_n^c$. By setting $F_n = (V_n^{\Lambda})^c$, we obtain a decreasing sequence of closed subsets of X with the required properties.
- (ii) \Rightarrow (i) Now if $\{H_n : n \in \mathbb{N}\}$ is a countable covering of C-closed (resp. α -closed) subsets of X, we set for $n \in \mathbb{N}, G_n = (\bigcup_{i=1}^n H_i)^c$. Then $\{G_n\}$ is a decreasing sequence of C-open (resp. α -open) subsets of X with empty intersection. By (ii) there exists a decreasing sequence $\{F_n\}$ consisting of α -closed (resp. C-closed) subsets of X such that $\bigcap_{n=1}^{\infty} F_n = \emptyset$ and for every $n \in \mathbb{N}, G_n \subseteq F_n$. Now we define the subsets W_n of X in the following manner:

 W_1 is a closed subset of X such that $F_1^c \subseteq W_1$ and $W_1^{\Lambda} \cap G_1 = \emptyset$.

 W_2 is a closed subset of X such that $W_1^{\Lambda} \cup F_2^c \subseteq W_2$ and $W_2^{\Lambda} \cap G_2 = \emptyset$, and so on. (By Lemma 3.1, W_n exists).

Then since $\{F_n^c : n \in \mathbb{N}\}$ is a covering for X, hence $\{W_n : n \in \mathbb{N}\}$ is a covering for X consisting of closed sets. Moreover, we have

- (i) $W_n^{\Lambda} \subseteq W_{n+1}$ (ii) $F_n^c \subseteq W_n$ (iii) $W_n \subseteq \bigcup_{i=1}^n H_i$.

Now setting $S_1 = W_1$ and for $n \geq 2$, we set $S_n = W_{n+1} \setminus W_{n-1}^{\Lambda}$.

Then since $W_{n-1}^{\Lambda} \subseteq W_n$ and $S_n \supseteq W_{n+1} \setminus W_n$, it follows that $\{S_n : n \in \mathbb{N}\}$ consists

of closed sets and covers X. Furthermore, $S_i \cap S_j \neq \emptyset$ if and only if $|i-j| \leq 1$. Finally, consider the following sets:

These sets are closed sets, cover X and refine $\{H_n : n \in \mathbb{N}\}$. In addition, $S_i \cap H_j$ can intersect at most the sets in its row, immediately above, or immediately below row.

Hence if $x \in X$ and $x \in S_n \cap H_m$, then $S_n \cap H_m$ is a closed set containing x that intersects at most finitely many of sets $S_i \cap H_j$. Consequently, $\{S_i \cap H_j : i \in \mathbb{N}, j = 1, \ldots, i+1\}$ refines $\{H_n : n \in \mathbb{N}\}$ such that its elements are closed sets, and for every point in X we can find a closed set containing the point that intersects only finitely many elements of that refinement.

Corollary 3.5. If every two disjoint C-open and α -open subsets of X can be separated by closed subsets of X and, in addition, every countable covering of C-closed (resp. α -closed) subsets of X has a refinement that consists of α -closed (resp. C-closed) subsets of X such that for every point of X we can find a closed subset containing that point such that it intersects only a finite number of refining members then X has the weakly cc-insertion property for $(c\alpha c, cCc)$ (resp. $(cCc, c\alpha c)$). Proof. Since every two disjoint C-open and α -open sets can be separated by closed subsets of X, therefore by Corollary 3.4, X has the weak cc-insertion property for $(c\alpha c, cCc)$ and $(cCc, c\alpha c)$. Now suppose that f and g are real-valued functions on X with g < f, such that g is $c\alpha c$ (resp. cCc), f is cCc (resp. $c\alpha c$) and f - g is cCc (resp. $c\alpha c$). For every $n \in \mathbb{N}$, set

$$A(f-g,3^{-n+1}) = \{x \in X : (f-g)(x) \le 3^{-n+1}\}.$$

Since f-g is cCc (resp. $c\alpha c$), hence $A(f-g,3^{-n+1})$ is a C-open (resp. α -open) subset of X. Consequently, $\{A(f-g,3^{-n+1})\}$ is a decreasing sequence of C-open (resp. α -open) subsets of X and furthermore since 0 < f-g, it follows that $\bigcap_{n=1}^{\infty} A(f-g,3^{-n+1}) = \varnothing$. Now by Lemma 3.3, there exists a decreasing sequence $\{D_n\}$ of α -closed (resp. C-closed) subsets of X such that $A(f-g,3^{-n+1}) \subseteq D_n$ and $\bigcap_{n=1}^{\infty} D_n = \varnothing$. But by Lemma 3.2, the pair $A(f-g,3^{-n+1})$ and $X \setminus D_n$ of C-open (resp. α -open) and α -open (resp. C-open) subsets of X can be completely separated by contra-continuous functions. Hence by Theorem 2.2, there exists a contra-continuous function h defined on X such that g < h < f, i.e., X has the weakly cc-insertion property for $(c\alpha c, cCc)$ (resp. $(cCc, c\alpha c)$).

Acknowledgement

This research was partially supported by Centre of Excellence for Mathematics (University of Isfahan).

REFERENCES

- 1. A. Al-Omari and M. S. Md Noorani: Some properties of contra-b-continuous and almost contra-b-continuous functions, European J. Pure. Appl. Math., **2(2)**(2009), 213-230.
- F. Brooks: Indefinite cut sets for real functions, Amer. Math. Monthly, 78(1971), 1007-1010.
- 3. M. Caldas and S. Jafari: Some properties of contra- β continuous functions, Mem. Fac. Sci. Kochi. Univ., **22**(2001), 19-28.
- 4. J. Dontchev: The characterization of some peculiar topological space via $\alpha-$ and $\beta-$ sets, Acta Math. Hungar., **69(1-2)**(1995), 67-71.
- 5. J. Dontchev: Contra-continuous functions and strongly S-closed space, Intrnat. J. Math. Math. Sci., 19(2)(1996), 303-310.
- 6. J. Dontchev, and H. Maki: On sg-closed sets and semi $-\lambda$ -closed sets, Questions Answers Gen. Topology, **15(2)**(1997), 259-266.
- 7. J. Dontchev: Between α and β -sets, Math. Balkanica (N.S), **12(3-4)**(1998), 295-302.
- 8. E. Ekici: On contra-continuity, Annales Univ. Sci. Bodapest, 47(2004), 127-137.
- E. Ekici: New forms of contra-continuity, Carpathian J. Math., 24(1)(2008), 37-45.
- A. I. El-Magbrabi: Some properties of contra-continuous mappings, Int. J. General Topol., 3(1-2)(2010), 55-64.
- 11. M. Ganster and I. Reilly: A decomposition of continuity, Acta Math. Hungar., **56(3-4)**(1990), 299-301.
- 12. E. Hatir, T. Noiri and S. Yksel: A decomposition of continuity, Acta Math. Hungar., **70(1-2)**(1996), 145-150.
- 13. S. Jafari and T. Noiri: Contra-continuous function between topological spaces, Iranian Int. J. Sci., 2(2001), 153-167.
- S. Jafari and T. Noiri: On contra-precontinuous functions, Bull. Malaysian Math. Sc. Soc., bf 25(2002), 115-128.
- 15. M. Katětov: On real-valued functions in topological spaces, Fund. Math., ${\bf 38}(1951),\,85\text{-}91.$
- M. Katětov: Correction to, "On real-valued functions in topological spaces", Fund. Math., 40(1953), 203-205.
- 17. E. Lane: Insertion of a continuous function, Pacific J. Math., 66(1976), 181-190.
- 18. S. N. Maheshwari and R. Prasad: On $R_{Os}-spaces$, Portugal. Math., ${\bf 34}(1975)$, 213-217.

- 19. H. Maki: Generalized Λ -sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement, (1986), 139-146.
- 20. M. Mirmiran: Insertion of a function belonging to a certain subclass of \mathbb{R}^X , Bull. Iran. Math. Soc., **28(2)**(2002), 19-27.
- 21. M. Mrsevic: On pairwise R and pairwise R₁ bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, **30**(1986), 141-145.
- 22. A. A. Nasef: Some properties of contra-continuous functions, Chaos Solitons Fractals, 24(2005), 471-477.
- 23. M. Przemski: A decomposition of continuity and α -continuity, Acta Math. Hungar., **61(1-2)**(1993), 93-98.

Majid Mirmiran
Department of Mathematics
University of Isfahan
Isfahan 81746-73441, Iran
mirmir@sci.ui.ac.ir

Binesh Naderi School of Management and Medical Information Medical University of Isfahan, Iran naderi@mng.mui.ac.ir