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NUMERICAL RECKONING FIXED POINTS FOR BERINDE

MAPPINGS VIA A FASTER ITERATION PROCESS

Osman Alagoz, Birol Gunduz and Sezgin Akbulut

Abstract. In this paper we prove that theM -iteration process converges strongly faster
than S-iteration and Picard-S iteration processes. Moreover, the M− iteration process
is faster than the Sn iteration process with a sufficient condition for weak contractive
mapping defined on a normed linear space. We also give two numerical reckoning
examples to support our main theorem. For approximating fixed points, all codes were
written in MAPLE c© 2018 All rights reserved.
Keywords: Iteration process, fixed point, weak contractive mapping, normed linear
space.

1. Introduction and Preliminaries

Let K be a non-empty convex subset of a Banach space X and let T : K → K be
a mapping. A point p is called the fixed point of a mapping t if Tp = p and F (T )
represents the set of all fixed points of the mapping T .

It is well known that any linear or non-linear equation including differential
equations and integral equations, can be transferred into a fixed point problem. For
example, non-linear equations x2 − sinx = 0, and x3lnx+ ex = 0 cannot be solved
easily. But, after transferring them into fixed point problems such as Tx = x, we
can approximate the fixed point or the fixed points of the mapping of T with the
help of iteration schemes. Thus, it is clear that any fixed point of T is also a solution
of the corresponding equations.

One of the main conclusions which guarantees the existence of a fixed point was
given by S. Banach in 1922 which is also called the Banach contraction principle
and given as follows:

Theorem 1.1. Let (X, d) be a complete metric space and T : X → X be a map-
ping. If there exists a k ∈ [0, 1) such that

d(Tx, T y) ≤ kd(x, y)
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for all x, y ∈ X, then T has a unique fixed point.

Then since the Banach contraction principle was defined, many researchers have
studied fixed point theory on different classes of mapping, on different types of
spaces, and on different iteration processes.

In this paper, we give some useful results about some iteration schemes for
finding fixed points of T . Firstly, we give some well-known iteration processes. Let
(X, d) be a metric space and let T : X → X be a mapping and let {αn}, {βn} and
{γn} be real sequences in (0, 1]. For x0 ∈ X ,

• Picard iteration (1890) [12]

(1.1) xn+1 = Txn, n = 0, 1, 2, . . .

• Mann iteration (1953) [9]

(1.2) xn+1 = (1− αn)xn + αnTxn, n = 0, 1, 2, . . .

• Ishikawa iteration (1974) [7]

(1.3)

{

xn+1 = (1 − αn)xn + αnTyn

yn = (1 − βn)xn + βnTxn, n = 0, 1, 2, . . .

• S-iteration (2007) [2]

(1.4)

{

ξn+1 = (1− αn)Tξn + αnTµn

µn = (1− βn)ξn + βnTξn, n = 0, 1, 2, . . .

• Picard-S iteration (2014) [6]

(1.5)











pn+1 = Tqn

qn = (1− αn)Tpn + αnTrn

rn = (1− βn)pn + βnTpn

• Sn iteration (2016) [14]

(1.6)











un+1 = (1− αn)Twn + αnTvn

vn = (1− βn)un + βnvn

wn = (1− γn)un + γnTun, n = 0, 1, 2, . . .

• M -iteration (2018) [16]

(1.7)











xn+1 = Tyn

yn = Tzn

zn = (1− αn)xn + αnTxn, n = 0, 1, 2, . . .
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In 2004, Berinde [4] introduced the concept of contractive mappings on metric
space (X, d) as follows.

Definition 1.1. Let T be a mapping on a metric space (X, d). Then T is called
a Berinde mapping if there exists δ ∈ [0, 1) and L ∈ [0,∞) such that

(1.8) d(Tx, T y) ≤ δd(x, y) + Ld(x, Tx) ∀x, y ∈ X

for all x, y ∈ X .

He also proved that any Zamfirescu mapping satisfies the weak contractive con-
dition. Thus, the class of weak contractive mappings is wider than the class of
Zamfirescu mapping. We refer the readers to [17, 3] to learn more about Zamfirescu
and Berinde mapping.

In order to compare convergence rates between two iteration processes, we use
the following useful definitions.

Definition 1.2. [4] Let {xn} and {yn} be two sequences of real numbers that
converge to x and y, respectively and suppose that there exists

L : lim
n→∞

|xn − x|

|yn − y|

1. If L = 0, then {xn} converges faster to x than {yn} to y.

2. If 0 < L < ∞, then {xn} and {yn} have the same rate of convergence.

Definition 1.3. [1] Let (X, ‖ · ‖) be a normed linear space and {un} and {vn}
converging to the same point p ∈ X and following the error estimates

‖un − p‖ ≤ an ∀n ∈ N;

‖vn − p‖ ≤ bn ∀n ∈ N;

are available, where {an} and {bn} are two sequences of positive numbers. If {an}
converges faster than {bn} then {un} converges faster than {vn} to p.

2. Approximation Results

Recently, Gursoy and Karakaya [6] proved that the Picard-S iteration process con-
verges faster than all Picard [12], Mann [9], Ishikawa [7], Noor [10], SP [11], CR [5],
S [2], S* [8], Abbas [1], Normal-S [13] and two-step Mann [15] iteration processes
for contraction mappings.

In 2016, Sintunavarat and Pitea [14] defined a new three step iteration which
is called Sn iteration. They also showed that their iteration converges faster than
Mann, Ishikawa and S-iteration processes for mappings satisfying Berinde contrac-
tive condition.
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In 2018, Ullah and Arshad [16] defined a new three step iteration process, called
M -iteration process for finding fixed points of mappings and they get some con-
vergence results for Suzuki generalized nonexpansive mappings in uniformly convex
Banach spaces. They also showed that the M -iteration process converges faster
than the Picard-S iteration and the S-iteration process for Suzuki generalized non-
expansive mappings.

Our purpose in this paper is to prove that the M-iteration process converges
faster than the Sn iteration process with a sufficient condition and faster than the
S-iteration and Picard-S iteration processes for weak contractive mappings. We
support our result with two numerical examples.

Theorem 2.1. Let K be a non-empty closed convex subset of a Banach space
(X, ‖ · ‖) and T : K → K be a mapping satisfying the weak contractive condition
(1.8) with a fixed point p. Suppose that the sequences {xn}, {un}, {pn} and {ξn}
are defined by the iteration processes M , Sn, Picard-S and S-iteration processes,
respectively. Also the sequences {αn}, {βn} and {γn} are in [α, 1 − α], [β, 1 − β],
and [γ, 1− γ], respectively, α, β, γ ∈ (0, 1

2
). Then the M -iteration process converges

faster than the S and Picard-S iteration processes. Moreover, if α(2 − γ) < γ then
the M -iteration process is also faster than the Sn-iteration process.

Proof. By using the M -iteration, we can get the following result

‖xn+1 − p‖ = ‖Tyn − p‖

≤ δ‖yn − p‖

= δ‖Tzn − p‖

≤ δ2‖zn − p‖

= δ2‖(1− αn)xn + αnTxn − p‖

≤ δ2[(1− αn)‖xn − p‖+ αnδ‖xn − p‖]

= (1 − (1− δ)αn)δ
2‖xn − p‖(2.1)

for all n ∈ N. Therefore,

‖xn − p‖ ≤ {(1− (1− δ)α)δ2}n‖x0 − p‖

for all n ∈ N. Choose

an := {(1− (1− δ)α)δ2}n‖x0 − p‖.

By using the Picard-S iteration, we get

‖rn − p‖ ≤ ‖(1− βn)pn + βnTpn − p‖

≤ (1− βn)‖pn − p‖+ βn‖Tpn − p‖

≤ (1− βn)‖pn − p‖+ βnδ‖pn − p‖

= (1− (1− δ)βn)‖pn − p‖.(2.2)
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Using the Picard-S again and from (2.2), we have

‖qn − p‖ ≤ ‖(1− αn)Tpn + αnTrn − p‖

≤ (1− αn)‖Tpn − p‖+ αn‖Trn − p‖

≤ (1− αn)δ‖pn − p‖+ αnδ‖rn − p‖

≤ (1− αn)δ‖pn − p‖+ αnδ(1− (1− δ)βn)‖pn − p‖

= (1− (1− δ)αnβn)δ.‖pn − p‖.(2.3)

From (2.3), we get

‖pn+1 − p‖ = ‖Tqn − p‖

≤ δ‖qn − p‖

≤ (1 − (1− δ)αnβn)δ
2‖pn − p‖.(2.4)

for all n ∈ N. Thus,

‖pn − p‖ ≤ {(1− (1 − δ)αβ)δ2}n‖p0 − p‖

for all n ∈ N. Let
bn := {(1− (1− δ)αβ)δ2}n‖p0 − p‖.

As proved in Theorem 2.1 of [14], we have

(2.5) ‖un − p‖ ≤ {1− (1− δ)β[γn − αn + αnγn]}
n‖u0 − p‖

and

(2.6) ‖ξn − p‖ ≤ [1− (1− δ)αβ]n‖ξ0 − p‖

for all n ∈ N. Choose

cn := {1− (1− δ)β[γ − α+ α.γ]}n‖u0 − p‖.

and
dn := [1− (1 − δ)αβ]n‖ξ0 − p‖.

Since α(2− γ) < γ, we obtain

1− (1− δ)β(γ − α+ α.γ) < 1− (1− δ)αβ < 1.

Now using the definition (1.2) and the definition (1.3) we get the following results.

lim
n→∞

‖xn − p‖ ≤ lim
n→∞

[(1 − (1− δ)α)δ2]n‖x0 − p‖ = 0,

lim
n→∞

‖pn − p‖ ≤ lim
n→∞

[(1 − (1− δ)αβ)δ2]n‖p0 − p‖ = 0,

lim
n→∞

‖un − p‖ ≤ lim
n→∞

[1− (1 − δ)β[γ − α+ α.γ]]n‖u0 − p‖ = 0,

lim
n→∞

‖ξn − p‖ ≤ lim
n→∞

[1− (1 − δ)αβ]n‖ξ0 − p‖ = 0.

Now we give convergence rates of the above iterations as follows;
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• limn→∞

an

bn
=

(1− (1− δ)α)nδ2n

(1− (1− δ)αβ)nδ2n
.
‖x0 − p‖

‖p0 − p‖
= 0,

• limn→∞

an

cn
=

(1− (1− δ)α)nδ2n

[1− (1− δ)β[γ − α+ α.γ]]n
.
‖x0 − p‖

‖u0 − p‖
= 0,

• limn→∞

an

dn
=

(1− (1− δ)α)nδ2n

[1− (1− δ)αβ]n
.
‖x0 − p‖

‖ξ0 − p‖
= 0.

Therefore, the conclusion follows.

3. Numerical Results

Now we give numerical examples to support our theorem. In both examples, we
choose functions satisfying the weak contraction condition. It can be understood
easily with the help of the mean value theorem.

Example 3.1. Let D = [−10, 10] be a subset of a usual normed space R and let T :
D → D be a mapping such that Tx = sin(cos x) for all x ∈ D. Choose α = β = 0.12 and
γ = 0.24 and αn = βn = γn = 0.25 for all n ∈ N. It is obvious that T has a unique fixed
point p = 0.69481969073079 ∈ D. Moreover, the sequences of {αn} , {βn} and {γn} and
the parameters α, β and γ satisfy the condition of Theorem 2.1.

For an arbitrary initial point x0 = 2, the values of the iterations of S, Picard-S,
Sn and M are given in Table 1. Thus, it is obvious that the M -iteration process
converges faster than all other iterations. Now we give the graphs of these iterations
to show their convergence behaviours in Figure 1.

In the next example, we use an exponential function which also satisfies the
weak contractive condition.

Example 3.2. Let D = [0, 5] be a subset of a usual normed space R and let T : D → D

be a mapping such that Tx = e
4

4+x
2 for all x ∈ D. Choose α = β = 0.2,γ = 0.45

and αn = βn = γn = 0.50 for all n ∈ N. It is obvious that T has a unique fixed point
p = 1.7579448713504 ∈ D. Moreover, the sequences of {αn} , {βn} and {γn} and the
parameters α, β and γ satisfy the conditions of Theorem 2.1.

For an arbitrary initial point x0 = 5, the values of the iterations of S, Picard-S,
Sn and M are given in Table 2. Thus, it is obvious that the M -iteration process
converges faster than all other iterations. Now we give the graphs of these iterations
in Figure 2 to see their convergence behaviours.



Numerical Reckoning Fixed Points for Berinde Mappings 301

Step Siteration Picard-S Sn iteration M iteration
1 2.00000000000000 2.00000000000000 2.000000000000000 2.00000000000000
2 −0.2606345908683 0.82274676877756 0.059666857688088 0.83357849776340
3 0.82742078111148 0.72063145818922 0.79298563965090 0.71374670426113
4 0.63322481776167 0.69984773469901 0.66834020139151 0.69737415165409
5 0.71929615165795 0.69579056568185 0.70061313646443 0.69516366956216
6 0.68437145798799 0.69500682583460 0.69335657926482 0.69486599536890
7 0.69915397516439 0.69485574834868 0.69515086974096 0.69482592374820
8 0.69299964736283 0.69482663793094 0.69473790460681 0.69482052974562
9 0.69558010394304 0.69482102922656 0.69483851648450 0.69481980366892
10 0.69450131531509 0.69481994861403 0.69481510357798 0.69481970593317
11 0.69495287230429 0.69481974041622 0.69482075802148 0.69481969277715
12 0.69476395803525 0.69481970030350 0.69481943293436 0.69481969100624
13 0.69484300965349 0.69481969257512 0.69481975113705 0.69481969076786
14 0.69480993330735 0.69481969108613 0.69481967622364 0.69481969073577
15 0.69482377345466 0.69481969079925 0.69481969414590 0.69481969073146
16 0.69481798240850 0.69481969074398 0.69481968991371 0.69481969073088
17 0.69482040553572 0.69481969073333 0.69481969092373 0.69481969073080
18 0.69481939163787 0.69481969073127 0.69481969068473 0.69481969073079
19 0.69481981587892 0.69481969073088 0.69481969074169 0.69481969073079
20 0.69481963836559 0.69481969073080 0.69481969072819 0.69481969073079
21 0.69481971264172 0.69481969073079 0.69481969073140 0.69481969073079
22 0.69481968156270 0.69481969073079 0.69481969073065 0.69481969073079
23 0.69481969456696 0.69481969073079 0.69481969073082 0.69481969073079
24 0.69481968912563 0.69481969073079 0.69481969073078 0.69481969073079
25 0.69481969140243 0.69481969073079 0.69481969073079 0.69481969073079
26 0.69481969044976 0.69481969073079 0.69481969073079 0.69481969073079
27 0.69481969084838 0.69481969073079 0.69481969073079 0.69481969073079
28 0.69481969068158 0.69481969073079 0.69481969073079 0.69481969073079
29 0.69481969075137 0.69481969073079 0.69481969073079 0.69481969073079
30 0.69481969072217 0.69481969073079 0.69481969073079 0.69481969073079
...

...
...

...
...

39 0.69481969073079 0.69481969073079 0.69481969073079 0.69481969073079
40 0.69481969073079 0.69481969073079 0.69481969073079 0.69481969073079

Table 3.1: Comparative results of Example 3.1
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Step S iteration Picard-S Sn iteration M iteration
1 5.00000000000000 5.00000000000000 5.00000000000000 5.00000000000000
2 1.42941764430671 1.93846644431469 1.40485245885178 1.87003729972110
3 1.84419392945226 1.77947624628915 1.75019355009770 1.76199242097177
4 1.73187212214594 1.76120146917096 1.75603091341028 1.75819390853271
5 1.76700050742008 1.75849723073996 1.75778491609830 1.75796491928449
6 1.75460689343929 1.75804523322895 1.75790258123863 1.75794676700153
7 1.75923776754111 1.75796396996576 1.75794020608824 1.75794507130585
8 1.75742781464024 1.75794862884936 1.75794356116350 1.75794489420287
9 1.75815703047109 1.75794562943728 1.75794471266250 1.75794487412885
10 1.75785610751453 1.75794502733560 1.75794482305018 1.75794487170534
11 1.75798260400559 1.75794490395775 1.75794486551196 1.75794487139762
12 1.75792862247490 1.75794487825579 1.75794486935670 1.75794487135688
13 1.75795194515923 1.75794487282874 1.75794487112933 1.75794487135130
14 1.75794176333736 1.75794487166981 1.75794487126058 1.75794487135052
15 1.75794624777708 1.75794487141994 1.75794487134225 1.75794487135040
16 1.75794425757424 1.75794487136563 1.75794487134601 1.75794487135038
17 1.75794514670100 1.75794487135375 1.75794487135012 1.75794487135038
18 1.75794474716322 1.75794487135112 1.75794487135015 1.75794487135038
19 1.75794492762700 1.75794487135055 1.75794487135039 1.75794487135038
20 1.75794484573944 1.75794487135042 1.75794487135036 1.75794487135038
21 1.75794488305041 1.75794487135039 1.75794487135039 1.75794487135038
22 1.75794486598680 1.75794487135038 1.75794487135038 1.75794487135038
23 1.75794487381696 1.75794487135038 1.75794487135038 1.75794487135038
24 1.75794487021279 1.75794487135038 1.75794487135038 1.75794487135038
25 1.75794487187643 1.75794487135038 1.75794487135038 1.75794487135038
26 1.75794487110653 1.75794487135038 1.75794487135038 1.75794487135038
27 1.75794487146368 1.75794487135038 1.75794487135038 1.75794487135038
28 1.75794487129764 1.75794487135038 1.75794487135038 1.75794487135038
29 1.75794487137498 1.75794487135038 1.75794487135038 1.75794487135038
30 1.75794487133888 1.75794487135038 1.75794487135038 1.75794487135038
...

...
...

...
...

39 1.75794487135039 1.75794487135038 1.75794487135038 1.75794487135038
40 1.75794487135038 1.75794487135038 1.75794487135038 1.75794487135038

Table 3.2: Comparative results of Example 3.2
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Fig. 3.1: Behaviour of the iterations given in Example 1
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Fig. 3.2: Behaviour of the iterations given in Example 2
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