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ON A SUBSPACE OF A SPECIAL FINSLER SPACE

Vivek Kumar Pandey and P. N. Pandey

Abstract. The present paper deals with the properties of a Finsler space F,; whose met-
ric is obtained from the metric of another Finsler space F,, defined over the same man-
ifold, with the help of a contravariant vector v’(z7) satisfying the condition LC;x.v" =
phji, where L, hji and Cj, are metric function, angular metric tensor and Cartan
tensor of F,, respectively, and p is a scalar function of positional coordinates z*. Apart
from obtaining expressions for different geometric objects of Fj;, a subspace of F,; is
studied. Apart from other results for the subspace of F};, certain conditions for a
subspace of F,; to be totally geodesic and projectively flat have been obtained.
Keywords: Finsler space; subspace; projective change; totally geodesic subspace; pro-
jectively flat space.

1. Introduction

In 1952, S. Kikuchi [11] studied the theory of a subspace of a Finsler space.
H. Rund [3] in 1959, H. Yasuda [4] in 1987, T. Sakaguchi [12] in 1988 and many
others mathematicians contributed significantly to the theory of Finsler subspaces
and obtained many important and interesting results. In 1980 during the study
of conformally flat Finsler spaces, H. Izumi [2] introduced a vector b; which is v—
covariant constant (b;[; = 0) and satisfies the condition LCT b, = phjk, where
p is a scalar independent of directional arguments y*. He called such vector b;
as h— vector. In 1990, B. N. Prasad [1] studied a Finsler space with a special
metric ds = (gi; (dx)dadz? )/ 4+ b;(z,y)dz’, where b; is an h—vector, and obtained
the Cartan connections. In 2008, M. K. Gupta and P. N. Pandey [6] worked on
subspaces of a Finsler space with a special metric by taking this h— vector.

Let F,, = (M,,L) be a Finsler space and F} = (M,, L*) be another Finsler
space over the same manifold M,,, whose metric L* is obtained from the metric L
of F,, by

(1.1) L*(w,y) = Lz, y) +vi(z, y)y",
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where v; = gijvj , 9i; is the metric tensor of F}, and v'(z7) is a contravariant vector
satisfying

(1.2) LCjkrv" = phijg,

where p is a scalar function of positional coordinates .

We call such a Finsler space F* = (M,,, L*) as a special Finsler space. This special
Finsler space F)' is a generalization of the Finsler spaces considered by the authors
([1], [6]). The aim of the present paper is to obtain the Cartan connections and to
study a subspace of the Finsler space Ff = (M, L*).

2. Preliminaries

Let the Cartan connection of an n—dimensional Finsler space F,, = (M,, L) is
given by the triad CT = (F;k, Gé, C;k), where Gj» = F;kyk and C]l:k is the associated
Cartan tensor. If X;(z,y) be a covariant vector field then its hA— and v— covariant
derivatives with respect to the Cartan connection CT' are given by

(2.1) Xip = 00 X; — (0,X)G}, — X, Fj;
and
(2.2) Xilk = 0uXi — X, CJ,

respectively. Here 0y and 3k.den0te the partial derivatives with respect to z* and
y* respectively, and 9, and Jy stand for 9/9z* and 9/9y" respectively.

The components of the metric tensor g;; and the angular metric tensor h;; of
the Finsler space F,, = (M, L) are defined respectively by

1. .
(23) 9ij = 5(91(9][/2
and
(2.4) hij = LgiajL.

Differentiating (2.3) partially with respect to y*, we obtain a tensor C,j of type
(0,3) defined by

1.
(2.5) Cijr = §3kgij-

This tensor is called the Cartan tensor and its degree of homogeneity in ytis —1.
The normalized supporting element l; = y; /L satisfies [; = 9; L. From the equations
(2.3) and (2.4), we obtain the relation

(2.6) 9ij = hij + il
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among the metric tensor g;;, the angular metric tensor h;; and the normalized

supporting element [;. The h—covariant derivatives and v— covariant derivatives of

gij, hij and ; satisfy [9]

2.7) (@) g, =0 (b) i =0 () Lji=0
d) 1= ()  Llj=<ghi (f) Lli=1.

Let M,,(1 < m < n) be an m—dimensional subspace of the n— dimensional
manifold M,, represented parametrically by the equations

(2.8) rt =2t (u®) 1=1,2,.n; a=1,2,..m

)

where u® denote the Gaussian cordinates on the subspace M,,.

Let B! = gqf; be the projection factors [3] and the matrix ||B:|| of this projec-
tion factors be supposed to be of rank m. If 4*, the supporting element, is assumed
to be tangential to the subspace M, then it can be written in terms of the projection
factors as

(2.9) y' = B’ (u)w®”, a=1,2,..m.

Here w = (w®) is assumed to be the supporting element at the point (u®) of the
subspace My,. The metric L(z,y) of the Finsler space F,, = (M,, L) induces the
metric

(2.10) L(u,w) = L(z(u), y(u, w))

on the subspace M;,. Thus, we obtain an m—dimensional Finsler subspace F;, =
(M, L(u, w)) of the space F,, = (My, L).
Let gop(u,w) defined by

1 9%L2

@11) 90 (1 0) = 5 G

be the metric tensor of the subspace F),,. Successive partial differentiations of (2.10)
with respect to w® and w® give

(2.12) gap(u,w) = g (z, y)BgBé
A covariant vector Y; which satisfies the condition
(2.13) Y;B! (u) =0

is called normal to the subspace F,,,. Clearly, these are m equations for determina-
tions of n functions Y;. So, there exist (n — m) linearly independent and mutually
orthogonal unit vectors Y(la), (say), satisfying the following conditions

(2.14) 9 BLY ], =0

a” (a
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and

(2.15) Yi(a) = gijy({l)a

where (a) =m + 1, m + 2, ...n. Further, (2.14) and (2.15) imply that

(2.16) 95Y(y Y3y = 8o {(a),()) =m +1,m+2,....n}.
If B¢ (u,w) is the reciprocal of the projection factors B, defined by

(2.17) By (u,w) = g*’ B, gij,

then, in view of (2.12), we have

(2.18) BB =4

From (2.14), (2.15), (2.16), (2.17) and (2.18), we have

2.1 (a) By =0 (b) Y{,B&=0
: i () _ ¢(a) i po i (@) _ ¢
(c) Y(G)Yi = 5(17) (d) B, Bj —i—Y(a)Yj = 6j.

If the triad ICT = (Fg‘,y, %‘,Cg,y), where G§ = Fg y", is the induced Cartan
connection of the Finsler subspace F), then the second fundamental tensor H é%)

and the normal curvature vector Héa) with respect to induced Cartan connection

ICT can be expressed in the direction of the normal vector Y(Za) by

(2.20) HY) =Y (Bls+ F)BLBE) + M) H
and
(2.21) HL® =Y (By, + Fj; Bl)

respectively, where

(a) _ i y(a) k
(2.22) M) = LYY} B,
- R X ,
i i, Bni
(223) aBf = 7auaauﬂ, BOa =7 Bﬁa

The contraction of (2.20) by v® gives us

(2.24) HYY = v H ) = H.

o
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3. The Finsler space F; = (M,, L*)

Let v® = v¥(27) be a contravariant vector field in a Finsler space F,, = (M,, L)
satisfying the condition (1.2).
Differentiating v; = g;(z,y)v" partially with respect to ¢’ and using the condition
(1.2), we obtain

(31) L(éjvi) = 2phij.
Consider an n— dimensional Finsler space F = (M,,, L*) whose metric function

L*(x,y) is obtained from the metric of the space F, by the transformation (1.1).
Throughout the paper, the geometric objects related to F, will be asterisked .

Differentiating (1.1) partially with respect to * and using (3.1), we get
(3.2) Ly = Li + vy,

where L} =y L*.
The normalized supporting element [} of F; can be written as

(3.3) 15 =l + v
Differentiating (3.2) partially with respect to y7 and using (3.1), we obtain
(3.4) L%, = Ljk + 2phji/ L,

where Lj, = 0;0,L and L%, = 0;0,L".

Using (2.4) in (3.4), we get

(35) S= (4 20) Lk

Partial Differentiation of (3.5) with respect to y* gives

(3.6) ik = (1+2p) Lijk,

where Lijk = 8.kLij and L;ﬁjk = 8.ka]<.

In view of (2.4), the angular metric tensor h; of the Finsler space F}; is given as
(37) hrj = T(l + 2p)hij,

where 7 = LL .

From (3.3), (3.7) and (2.6), the fundamental metric tensor g;; of the Finsler space
F is given by

(3.8) g;‘j = T(l + 2p)gij + viv; + Livy + vl + (1—-7(1+ 2p))lilj.

Keeping g*ijg;‘k = 4! in view, the inverse metric tensor ¢g*¥ is given by

- 1 3 1 o
3.9 i i lio] 4 il
(3.9) g T(1+2p)g 72(1+2p)( v l) +

T(1+2p) +v* -1
3(1+2p)

1
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in the Finsler space F;;.
Differentiating (3.8) partially with respect to y*, we obtain the Cartan tensor Chik
of F as

(1+2p)

5L (hjkci + hricy + hijck).

(310) C:;k = T(l + 2P)Cijk +
Here ¢; = v; — (1 — 1)l;. Thus, we have

Theorem 3.1. The components of the metric tensor g;;, the inverse metric tensor
g*, the angular metric tensor h;; and the Cartan tensor Cfj,. of the Finsler space
E whose metric L* is obtained from the metric L of the Finsler space F,, by (1.1),
are given by (3.8), (3.9), (3.7) and (8.10) respectively.

4. The Cartan connection of the Finsler space F; = (M,, L")

In this section, we find the Cartan connection of the Finsler space F¥ = (M,,, L*).
Since L;; is h—covariant constant with respect to the Cartan connection CT' =
(szk,G;-,C';k), ie. Lijr =0, (2.1) gives

(4.1) O Lij = LijrEox + Lrj By, + Lir Fjy,,

where L;ji, = gkLij and I, = FZTkyl =G
Differentiating (3.5) covariantly with respect to a*, we get

(42) 61L;kk = (1 + 2p)6iij + 2piij,

where 0;p = p;.
In view of (4.1), (3.5) and (3.6), (4.2) can be written as
(4.3)  (L+2p){Ljnr(Foi” — Fy) + L (B} = Fjy) + Ljr (Fyf” = Fii) } = 2piLji.

Let D;k be the difference of the connections F;}g and F' ;k, ie.
(1.4 Dix = Fji - Fj.

In view of (4.4), (4.3) reduces to

(4.5) (1 +2p)(Ljrr Do; + Lei D5y + Ljr Dii) = 2piLij.
Cyclic rotation of the indices i, j and k gives

(4.6) (1+2p)(Lir DGy + Liri D}y + Ly Di;) = 2p5 L,
and

(4.7) (1+2p)(Lijr Doy, + Lrj Dy; + Lir D) = 2pi L.
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Using Ly); = 0 in (2.1), we have
(4.8) 0jLy = Ly, Fg; + Ly Fl.

Differentiating (3.2) partially with respect to 27 and then using (4.8) and (2.1), we
obtain

(4.9) Ly F+ L7 Ff = (14 2p) Ly By + (Ly + 0, ) F + vk
In view of (3.2), (3.3), (3.5), and (4.4), (4.9) reduces to
(4.10) (1+2p) Ly Dy + (Ir + vr) Dyj = v

Here subscript ‘0’denotes the contraction by the supporting element y*.
Now, we propose

Theorem 4.1. If F,, = (M,,L) and F} = (M,,L*) are two Finsler spaces over
the same manifold M,, and L*(x,y) is given by (1.1), then the Cartan connection
of EY is completely determined by (4.5) and (4.10).

To prove Theorem 4.1, first we have to prove the following lemma

Lemma 4.1. The system of equations

(a) (1+2p)LyA" = B,

(4.11) (b) (I +vx)A* =B

has a unique solution
(4.12) A¥ = (14 2p) ' LB* + 77 Y(B — (1 +2p)LB,)I",

where T = (L*/L), B, = Bjv' and B' = g B; for given B; and B such that
Bl =0.

Proof. From hj, = LLj;, and (2.6), (4.11(a)) can be written as
(4.13) gin AR = (14 2p)7 LB, + 1;(1,, A%).
Transvecting (4.13) with v7, we get

(4.14) vp AR = (1+2p) 7 LB, + (7 — 1)I A,

where B, = B;v'.
In view of (4.11(b)), (4.14) implies

(4.15) LAY = 771(B — (1+2p)"'LB,).
Thus, from (4.13) and (4.15), we have
(4.16) girA¥ = (1+2p)'LB; + 7 4B — (1 +2p)"*LB,)l;.

Contraction of (4.16) by g* gives the solution
(4.17) A= (1+2p) ' LB +77YB - (14 2p) 'LB,)I"
of the given system, where B* = g"/ B; and 7 = LT* O
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Thus, we are in a position to prove Theorem 4.1. We complete the proof of Theorem
4.1 if we find the value of D;k

We will find the value of D; i in three steps. In the first step, we will find the value
of Dfy, in the second step we will find D}, and in the last step we will find D;k.

In view of (4.10), we have
(4.18) (1+ 2P)LjTD(T)k + (- + UT)DJT'k = Uj|k-

Simultaneously adding and subtracting (4.18) and (4.10), we get

(4.19) (1 +2p)(Ljr Doy, + Lir Do) + 2(1y + v7) Dy = vjjp + vpyj
and

(4.20) (1 +2p)(Ljr Doy, — Lir Dgyj) = vjji — Vgl

If we take

(4.21) (@) vk + vk = 255k (b)  vjjk — vky = 2tk

then (4.19) and (4.20) become

(4.22) (1 + 2p)(Ljr Doy, + Lir Dgy;) + 2(1y + vp) DYy = 255

(4.23) (1+2p)(L;r Dy, — L;WDSJ-) = 2ti.
Subtracting (4.7) from the addition of (4.5) and (4.6), we have
(4.24) 2Lk, Di;+(1+2p)(Ljkr Do+ Liir Do — Lijr Do) = 2(pi L+ pj Lii — prLij).-

Transvection of (4.22), (4.23) and (4.24) with y* and utilization of L;;y7 = 0 give
us

(425) (1 + 2p)LJTD60 + 2(17« + ’UT)DSj = 28j0,
(426) (1 + 2p)LjTD60 = Qtjo,
(4.27) (1+2p)(LjrDg; + LirDgj + Lijr Do) = 2poLi;.

Transvecting (4.25) with y7, we find
(428) (lr + ’UT)DSO = S500-
Applying Lemma 4.1 in (4.26) and (4.28), we get

L

4.2 Dl=—
(4.29) 0 L1+ 2p)

{2L*t6 + lr((l + 2[))800 - 2Ltvo>}
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Here t6 = giTtiO and t'uO = tiovi.
Putting k in palace of ¢ in (4.27) and then adding with (4.23), we find

T 1 1 T
(430) LjTDOk = m(2t]k + 2p0L]k — 5(1 + 2p)L]k7‘D00)'
If we take

1 1 .
(4.31) m(%‘k +2poLjk — 5 (1+2p) Lijkr Do) = Aji

then (4.30) reduces to
(4.32) L;,Diy, = Aj.
From (4.29) and (4.31), we have

1

(4.33) Ay = TR

{QL* (tjk — LijrtS) + L, ((1 + 2p)800 —2Lt,0+ 2L*p0)}.

This shows that Aj is known.
If we write

(4.34) sk0 — 5 (14 20) Ly D = A,
the equation (4.25) assumes the form

(4.35) (I +v,) Dy, = Ay
Putting the value of Dj, from (4.29) in (4.34), we get
(4.36) Ay, = so — LLy,ty,.

In view of Lemma 4.1, the system of equations (4.32) and (4.35) give

(4.37) oy, = L

E(L*AZ + lT(Ak — LAUk)),

where Ay, = Ajiv? and AL = g™ Ay,
Now we can express (4.22) in the form

(4.38) (I + vr) Djy, = B,
where

1 . .
(4.39) Bjk = sjk = 5(1+20)(Ljr Doy + Lier D)-

The equation (4.24) may be written as

(4.40) Lir D%, = Bijr,



608 V. K. Pandey and P. N. Pandey
where

1 ‘s ‘s ‘s
(4.41) Bijk = (pjLii+ prLij — piLji) — 5(1 +2p)(Lyir D j + Lijr Doy, — Ljir Dgyy).-

Putting the value of Df; from (4.37), we see that Bj; and B, are known quantities.
Applying the Lemma 4.1, for the system of equations (4.38) and (4.40), we obtain

T L * T T
(4.42) ik = E{L Bj, +1"(Bjr — LBuji)},
where B;k = g"Bijk and By, = Bij;gvi. The quantities Bj and B;ji are given by

respectively (4.39) and (4.41) together with (4.37).
Thus, the proof is completed.

5. Subspace of the Finsler space F = (M, L*)

Suppose Fj, and F, are the subspaces of the Finsler spaces F;, and F} respec-
tively.
Contracting (2.14) by w® and using (2.9) and y'g;; = y;, we obtain

VI
(5.1) YY), = 0.
Again contracting (3.8) with Y(Z;I)Y(JI;) and using (2.16), (5.1) and 7 = (L*/L), we
have
* vl 7 L i k
(5:2) 9ii¥ (@) Yty = T (1 +20)0(a)v) + viY (o) 0¥ )

Fixing the index (a) and taking (a) = (b) in (5.2), we get

* V1 j L T
(5.3) 95 Y (@)Y = f(l +2p) + (0, Y()%
Hence
i )
(5.4) O o)

g;j<¢%<1 +2p) + (vTY@)V) <¢%<1 +2p) + <vry<g>>2> -

Yia)
VE Q4200+ Y], )2

Contracting (3.8) by BLY{,) and using (2.14) & (5.1), we obtain

(5.5) 95 BLY() = (Y (vi + 1) By,

From (5.4), it is clear that ( ) is a unit vector.

From (5.5), we can say that Y(Ja) is normal to the subspace F};, if and only if the
condition

(5.6) (0;Y(,))(vi +15)Bg, = 0
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holds. This implies at least one of the conditions ij({l) =0 and (v; +1;)B:, = 0.
Suppose (v; + ;) B?, = 0. Contracting this condition by w® and using B’ w® = y,
we get L 4+ v;4° = L* = 0 which is not possible. Hence, we have the first condition,
ie.

Vi
(5.7) v; Yy, = 0.
Thus, the vector Y(Ja ) is normal to the subspace F};, if and only if the vector v; is

j
tangent to the subspace Fy,. From (5.4), (5.5) and (5.7), we find that <%)
T P

is a unit normal vector of the subspace F*. In view of (2.14), (2.15) and (2.16), we
obtain

j
*j _ L
(5.8) Y = .

(a) -
V(1 +2p)

Contracting (3.8) by Y(ff) and using (2.15), we obtain

*

h

#(a) _ (a)
(5.9) Y, = f(l +2p)Y .
Thus, we have

Theorem 5.1. Let F = (M, L*) be a Finsler space whose metric function L*
is obtained from the metric function L of the Finsler space F,, = (M, L) by the
transformation (1.1). If Fy, and F,, are m— dimensional subspaces of F and F,
respectively, then the vector v;(x,y) satisfying the condition (1.2) is tangent to Fy,
if and only if any vector Y(Za) normal to F,, is also normal to F,.

Let us assume that the transformation given by (1.1) is projective. Then, we
have

(5.10) G5 = G+ pjy' + pol,

where p is a function of directional argument and of homogeneity one in y® and
9;p = pj- } }

Contracting (4.4) by y* and using F;kyk = G}, we get

(5.11) G’ =Gy + Dj;.

Thus, from (5.10) and (5.11), we have

(5.12) Dj; = p;y’ + pé}.

Contracting (5.12) by B4Y,”), using (2.15) and (2.19(a)), we obtain

(5.13) v, Di. Bl = 0.
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If every geodesic in the subspace F,,, with respect to the induced metric is also
a geodesic in the enveloping space Fj,, the subspace F}, is called totally geodesic
subspace and this type of space is characterized by

(5.14) H@ =9,

i.e. its normal curvature vector vanishes identically.

In view of (2.21), the normal curvature vector HZQ“’ of the subspace F}, in the

direction Y;(a)

(5.15) H:@ =Y (B}, + G5 Bl).
Using (5.9) and (5.11) in (5.15), we get

(5.16) ,/ (14 2p) “>+\/ (14 2p) ) Y\ Di. Bl = 0.

In view of (5.13), (5.16) reduces to

is given by

L*
(5.17) Hx@) = —(1+2p) H®.

L (1+2p) # 0 for
fact that p is a function of 2°. Hence, we conclude from (5.17) that H\" vanishes

if and only if H(*) vanishes as L> (14 2p) # 0. Therefore, we have

L~ (14 2p) = 0 implies p = —(1/2), a contradiction to the

Theorem 5.2. If a contravariant vector field v' satisfying the condition (1.2) is
tangent to a subspace F,, of the space F, then F,, is totally geodesic if and only if
the subspace Fy, of F) is totally geodesic.

If there exists a projective change between the Finsler spaces F,, = (M,, L) and
F* = (M,, L*) over the underlying manifold M,, such that the later space is locally
Minkowskian then the space F), is said to be projectively flat.

In 2005, M. Kitayama [7] showed that a totally geodesic subspace of a projec-
tively flat Finsler space is also projective.

Makato Matsumoto [8] proved that a Finsler space F™(n > 3) is projectively
flat if the Weyl torsion tensor Wzk and the Douglas tensor D7, vanish, i.e.

(5.18) (a) Wi =0, (b) Dip, =0

and the converse part is also true.

Under a projective change Wi = Wj, and D}, = D, i.e. both tensors are
invariant [10]. Thus, we conclude following theorem, from Theorem 5.2 in view of
(5.18)

Theorem 5.3. Let the metric function L* of a Finsler space F) = (M,,L*)
be obtained from the metric function L of a projective flat Finsler space F, =
(M,,L),n > 3, by the transformation (1.1). If a subspace F,, of F, is totally
geodesic and the vector field v® satisfying (1.2) is tangential to it, then the corre-
sponding subspace Fyy, of F) is projectively flat.
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