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REMARKS ON METALLIC WARPED PRODUCT MANIFOLDS

Adara M. Blaga and Cristina E. Hretcanu

Abstract. We characterize the metallic structure on the product of two metallic man-
ifolds in terms of metallic maps and provide a necessary and sufficient condition for the
warped product of two locally metallic Riemannian manifolds to be locally metallic.
We discuss a particular case of the product manifolds and we construct an example of
the metallic warped product Riemannian manifold.

Keywords: Riemannian manifold, metallic warped product, projection mapping.

1. Introduction

Starting from a polynomial structure, which was generally defined by S. I. Gold-
berg, K. Yano and N. C. Petridis in ([8],[9]), we consider a polynomial structure
on an m-dimensional Riemannian manifold (M, g), called by us a metallic structure
([6],[11],[7],[12]), determined by a (1,1)-tensor field J which satisfies the equation:

(1.1) J? =pJ +ql,

where I is the identity operator on the Lie algebra of vector fields on M identified
with the set of smooth sections I'(T'(M)) (and we will simply denote X € T(M))
with p and ¢ are non-zero natural numbers). From the definition, we easily get the
recurrence relation:

(1.2) T =gns1- T+ gn -1,

where ({gn }nen~) is the generalized secondary Fibonacci sequence defined by g,,+1 =
Pgn + qgn—1, n > 1 with go =0, g1 = 1 and p, ¢ € N*.

If (M,g) is a Riemannian manifold endowed with a metallic structure J such
that the Riemannian metric g is J-compatible (i.e. g(JX,Y) = g(X, JY), for any
X, Y € T(M)), then (M,g,J) is called a metallic Riemannian manifold. In this
case:

(1.3) 9(JX,JY) =pg(X,JY) + q9(X,Y),
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for any X,Y € T(M).
It is known ([13]) that an almost product structure ' on M induces two metallic
structures:

2 —
(1.4) Jy =+ P

p p
F+=T1
2 + 2
and, conversely, every metallic structure J on M induces two almost product struc-
tures:

2
(1.5) Fo=+ J-—Lr
20p,q =P 20p,q =P
_ pH/p2H4q . . . . .- .
where o), ; = —5—— is the metallic number, which is a positive solution of the

2

equation z© — pr — g = 0, for p and ¢ non-zero natural numbers.

In particular, if the almost product structure F' is compatible with the Rieman-
nian metric, then J; and J_ are metallic Riemannian structures.

On a metallic manifold (M, J) there exist two complementary distributions D,
and D,, corresponding to the projection operators I and m ([13]) given by:

1 T+ Op,q Com— 1 T4+ apﬁq—pj

(1.6) l=— = )
20p,q =P 20p,q =P 20p,q — D 20p,q — D

The analogue concept of a locally product manifold is considered in the context
of metallic geometry. Precisely, we say that the metallic Riemannian manifold
(M, g,J) is locally metallic if J is parallel with respect to the Levi-Civita connection
associated to g.

2. Metallic warped product Riemannian manifolds

2.1. Warped product manifolds

Let (M1,91) and (Ma,g2) be two Riemannian manifolds of dimensions n and m,
respectively. Denote by p; and py the projection maps from the product manifold
My x My onto My and My and by ¢ := ¢ o py the lift to M; x M5 of a smooth
function ¢ on M;. In this case, we call M; the base and My the fiber of My x Moa.
The unique element X of T(M; x M) that is pi-related to X € T(M;) and to
the zero vector field on My will be called the horizontal lift of X and the unique
element V of T'(M; x Ms) that is pa-related to V' € T'(M3) and to the zero vector
field on M7 will be called the wvertical lift of V. Also denote by £(M;) the set of all
horizontal lifts of vector fields on M; and by L(Ms) the set of all vertical lifts of
vector fields on Ms.

For f > 0 a smooth function on M, consider the Riemannian metric on M; x Ma:
(2.1) g:=pig1+ (f o p1)’psga.

Definition 2.1. ([4]) The product manifold of M; and M together with the Rie-
mannian metric g defined by (2.1) is called the warped product of M; and My by

the warping function f [and it is denoted by (M := M; x; M, 7)].
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Note that if f is constant (equal to 1), the warped product becomes the usual
product of the Riemannian manifolds.

For (z,y) € M, we shall identify X € T(M;) with (X,,0,) € Ti,,)(M) and
Y € T(Ms) with (0,,Y) € Tia.)(M) ([3)).

The projection mappings of T'(M; x Ms) onto T'(M7) and T'(Ms), respectively,
denoted by m; =: T'py and me =: T'ps verify:

(2.2) mAm=1 7wl=m, 7wi=my, mom=myom =0,

The Riemannian metric of the warped product manifold M=M 1 X ¢ My equals
to:
(2.3) 9(X,Y) = 1(X1,Y1) + (f 0 p1)*g2( X2, Y2),

for any X = (X1, X,),Y = (Y1,Y2) € T(M) = T(M; x s Ms) and we notice that the
leaves My x{y}, for y € My, are totally geodesic submanifolds of (M = My X M2, g).

If we denote by %, Miyg, MY the Levi-Civita connections on M, M, and Mo,
we know that for any X7,Y7 € T(M;) and X, Ys € T(Ma) ([14]):

~ 1
Vixx) (Y1, Y2) = MV, Yy — 592(X27Y2) - grad(f?),

1 1
(2.4) Mg, Yo + 2—Fxl(f2)Y2 + Q—JQYl(fQ)Xz).

In particular:
6(X,O) (07 Y) = 6(O,Y) (X7 0) = (07 X(ln(f))Y)

Let R, R, , Rm, be the Riemannian curvature tensors on M , M7 and M5 and
Ry, R, the lift on M of Ry, and Ryz,. Then:
Lemma 2.1. ([4]) If (]Tj = My Xy Ma,g) is the warped product of My and Mo
by the warping function f and m > 1, then for any X, Y, Z € L(M1) and any U,
V, W € L(Ms), we have:

1. R(X,Y)Z = Ry, (X,Y)Z;

2. R(U,X)Y = %Hf(X, Y)U, where HY is the lift on M of Hess(f):

3. R(X,Y)U=R(U,V)X =0;

4. RUV)W = Rag, (U, V)W — 22UDE [ W)V — g(V,W)U;

5. R(X,U)V = 4g(U,V)V xgrad(f).
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Let S, Sar,, Sa, be the Ricei curvature tensors on ]T/[/, M; and M, and S/'I\Z,
Swm, the lift on M of Sy, and Sys,. Then:

Lemma 2.2. ([4]) If (]Tj = M, Xy Ma,g) is the warped product of My and Mo
by the warping function f and m > 1, then for any X, Y € L(My) and any V,
W e L(Ms), we have:
1. S(X,Y) =Sy, (X,Y) - %Hf(X, Y), where HY is the lift on M of Hess(f);
2. S(X,V)=0;

—_— 2
3. S(V,W) = S (VW) — | 248 (m — 1) lamedtDE ) (v, ).

Remark 2.1. For the case of product Riemannian manifolds:

i) the Riemannian curvature tensors verify ([2]):
(2.5) R(X,Y)Z = (R1(X1,Y1)Z1, Ra(X2, Y2) Z2),

for any X = (X1, X2),Y = (Y1,Y2), Z = (Z1, Z2) € T(My x Mz), where R, Ry and Rs are
respectively the Riemannian curvature tensors of the Riemannian manifolds (Mi x Mas,g),
(M1, g1) and (M2, g2);

ii) the Ricci curvature tensors verify ([2]):
(2:6) S(X,Y) = $1(X1, Y1) + Sa(X2, 2),

for any X = (X1, X2), Y = (Y1,Y2) € T (M1 x Mz), where S, S1 and S2 are respectively the
Ricci curvature tensors of the Riemannian manifolds (My X M2, q), (M1, g1) and (Ma2, g2).

Note that the Riemannian curvature tensor of a locally metallic Riemannian
manifold has the following properties:

Proposition 2.1. If (M, g,J) is a locally metallic Riemannian manifold, then for
any X,Y,Z € T(M):

(2.7) R(X,Y)JZ = J(R(X,Y)Z),

(2.8) R(JX,Y) = R(X,JY),

(2.9) R(JX,JY)=qR(JX,Y)+pR(X,Y),
(2.10) R(J"™X,Y) = gni1- R(JX,Y) + g, - R(X,Y),

where ({gn}nen+) is the generalized secondary Fibonacci sequence defined by gn+1 =
DGn + q9n—1, n > 1 with go =0, g1 =1 and p, g € N*.

Proof. The locally metallic condition VJ = 0 is equivalent to VxJY = J(VxY),
for any X,Y € T(M) and (2.7) follows from the definition of R. The relations (2.8),
(2.9) and (2.10) follow from the symmetries of R and from the recurrence relation
JT =g J+gn- 1. O
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Theorem 2.1. If (M =M Xy Ma, g, j) is a locally metallic Riemannian warped
product manifold, then Mo is J-invariant submanifold of M.

Proof. Applying (2.8) from Proposition 2.1 and Lemma 2.1, we obtain H¥ (X, Y)jU =
Hf(JX,Y)U, for any X,Y € L(M;) and any U € L(Ms), where H/ is the lift on
M of Hess(f). O

2.2. Metallic warped product Riemannian manifolds

2.2.1. Metallic Riemannian structure on (1\7, 9) induced by the projection
operators

The endomorphism
(2.11) F:=m —m

verifies F2 = I and §(FX,Y) = (X, FY), thus F is an almost product structure
on Ml X M2.

By using relations (1.4) we can construct on M; x My two metallic structures,
given by:

~ 2, . —
(2.12) Jy=4"2pa P, Pp
2 2

Also from §(FX,Y) = (X, FY) follows §(J+X,Y) = §(X,J+Y). Therefore,

we can state the following result:

Theorem 2.2. There exist two metallic Riemannian structures J+ on (M, g) given
by:

~ 92 _
(2.13) Ty = i%pF + gl,

where M = M, X5 My and §()~(,l~/) = g1(X1, Y1) + (f 0 p1)%g2(X2,Y2), for any

X = (X1, X,),Y = (W1,Ya) € T(M) = T(M; x5 My).

Note that for jJr = %WZT_]QF—FgI, the projection operators are m; = m, my =1

and for J_ =
by (1.6).

—WF + %I we have m; = [, mo = m, where m and [ are given

Remark 2.2. If we denote by V the Levi-Civita connection on /]\NZ with respect to g, we
obtain that VF = 0 [hence VJ+ = 0 and so (M = My x; Ma,g,J+) is a locally metallic
Riemannian manifold].

For the case of a product Riemannian manifold (M = My x Ma,g) with g given
by (2.1) for f =1 and Jy defined by (2.13), we deduce that the Riemann curvature

of V verifies (2.7), (2.8), (2.9), (2.10).
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2.2.2. Metallic Riemannian structure on (]Tj ,g) induced by two metal-
lic structures on M; and M>

For any vector field X = (X,Y) € T(M; x M) we define a linear map J of
tangent space T'(M; X Ms) into itself by:

(2.14) JX = (11X, oY),

where J; and Jy are two metallic structures defined on M; and Ms, respectively,
with J? = pJ; +ql, i € {1,2} and p, ¢ non zero natural numbers. It follows that:

(215)  JPX = J(L1 X, oY) = (JPX,J3Y) = p(J1 X, J,Y) + ¢(X,Y).

Also from g¢;(JiX:,Y;) = g:(Xs, JiY3), i € {1,2}, we get G(JX,Y) = §(X,JY).
Therefore, we can state the following result:

Theorem 2.3. If (M, g1, J1) and (Ms, g2, J2) are metallic Riemannian manifolds
with J? = pJ; +ql, i € {1,2} and p, q¢ non-zero natural numbers, then there exists
a metallic Riemannian structure J on (M,q) given by:

(2.16) JX = (J1X, oY),

for any X = (X,Y) € T(M), where M = M, X My and §(X,Y) = g1(X1,Y1) +
(f op1)?92(X2,Y2), for any X = (X1,X2),Y = (Y1,Ys) € T(M) = T(M; x5 My).

For the case of a product Riemannian manifold (M = M; X M, g) with g given
by (2.1) for f =1 and Jy defined by (2.13), we deduce that the Riemann curvature

of V verifies (2.7), (2.8), (2.9), (2.10).

Now we shall obtain a characterization of the metallic structure on the product
of two metallic manifolds (M7, J1) and (Ma, J3) in terms of metallic maps, that are
smooth maps ® : My — M> satisfying:

T®oJy =Jy0T0.
In a way similar to the case of Golden manifolds ([5]), we have:
Proposition 2.2. The metallic structure J := (Jy, J2) given by (2.16) is the only
metallic structure on the product manifold M = My x My such that the projections

p1 and p2 on the two factors My and Ms are metallic maps.

A necessary and sufficient condition for the warped product of two locally metal-
lic Riemannian manifolds to be locally metallic will be further provided:
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Theorem 2.4. Let (M My x ¢ Ma,g, J) (with § given by (2.1) and J given
by (2.16)) be the warped product of the locally metallic Riemannian manifolds
(M1, q1,J1) and (Ma, g2, J2). Then (M My xy M, g, J) is locally metallic if
and only if:
{ (df?o 1)@ 1 =df*® Jy
92(J1-,) - grad(f?) = g2(-, ) - Ji(grad(f?))

Proof. Replacing the expression of V from (2.4), under the assumptions M1 V.J; =0
and M2V J, = 0 we obtain the conclusion.

Theorem 2.5. Let (]T/[/: My x5 M, g, j) (with g given by (2.1) and J (2.16)) be
the warped product of the metallic Riemannian manifolds (M, g1, J1) and (Ma, g2, J2).
If My and My have J1- and Jo-invariant Ricci tensors, respectively (i.e. Qpr, 0 J; =
JioQu,, 1 € {1,2}), then M has J-invariant Ricci tensor if and only if

Hess(f)(J1+,-) — Hess(f)(-, J1-) € {0} x T(Ma).

Proof If we denote by S, S M 5 S, the Ricci curvature tensors on M M, and Ms

and SMI, SM2 the lift on M of Sar, and Sy, by using Lemma 2.2, for any X,
Y € L(M), we have:

S(TX,Y) = Sap, (JX,Y) — %H-f(fX, Y) = Sar, (X, JY) — %H-f(fX, Y) =

= S(X,JY) + %H-f (X, JY) - %H-f (JX,Y),
where H/ is the lift on M of Hess(f). Also, for any V, W € £(M,), we obtain:
SV, W) = Sar, (JV, W) = [fA(f) + (m = 1)|grad(f)[*]ga(J2V, W) =
= S, (V, JW) = [FA(f) + (m = 1V)grad(f)|Plga(V, JoW) = S(V, JW).
O

Example 2.1. Consider M := {(u,a1,az2,...,an),u > 0,a; € [0,5],i € {1,...,n}} and
let f: M — R?™ be the immersion given by:

(2.17) flu,a1,...,an) := (ucosar,usinay, ..., U COS Qn, USIN Ay ).

We can find a local orthonormal frame of the submanifold M in R?*, spanned by the
vectors:

n

(2.18) Zo = ; (cosaiaim +Sinai8?/i> . Zi = —usinaiaixi —&—ucosoziaiyi7

for any i € {1,...,n}.
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We remark that || Zo||?> = n, ||Z:||* = u?, ZoLZ;, for any i € {1,...,n} and Z; LZ;, for
i,7 €{1,..,n} with i # j.
In the next considerations, we shall denote by:
(XL Y xR YR xR YRR X YT = (X Y X7 YY),
forany k € {2,..,n—1},i€{1,..,k}and j € {k+1,....,n}.
Let J : R*™ — R?" be the (1, 1)-tensor field defined by:
(2.19) JXLYL X7, Y7) = (X', 0Y" 5X7,5Y7),

for any k € {2,..,n—1}, ¢ € {1,...,k} and j € {k + 1,...,n}, where o := 0,4 is the
metallic number and @ = 1 — o. It is easy to verify that J is a metallic structure on R?"
(i.e. J> = pJ +ql).

Moreover, the metric g, given by the scalar product (-,-) on R?", is J-compatible and
(R®",g,J) is a metallic Riemannian manifold.

From (2.18) we get:
a ) ) . 0 )
JZy = O’Z: <coso¢i8—xi —l—sinaia—%) +0 Z <Cosaj8_xj +Sin06j8—yj>
i=1 j=k+1
and, for any k € {2,...,n—1},i € {1,...,k} and j € {k + 1, ...,n} we get:

JZ; = o, JZj :523'.

We can verify that JZy is orthogonal to span{Zi, ..., Z,} and

— ko + (n—k)o
2.20 cos(JZo, Zp) = .
(2:20) ( ) Vn(ko? + (n — k)52)

Consider the manifolds My and My with T My = span{Zo} and T M2 = span{Zi, ..., Zn}.
Then M := M; X, M2 with the Riemannian metric tensor g = ndu® + u? ?:1 daf is a
warped product (semi-slant) submanifold of the metallic Riemannian manifold (R*™, (-, -), J).
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