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A SOLUTION ALGORITHM FOR p-MEDIAN LOCATION
PROBLEM ON UNCERTAIN RANDOM NETWORKS

Akram Soltanpour, Fahimeh Baroughi and Behrooz Alizadeh

Abstract. This paper investigates the classical p-median location problem in a network
in which some of the vertex weights and the distances between vertices are uncertain
and while others are random. For solving the p-median problem in an uncertain random
network, an optimization model based on the chance theory is proposed first and then
an algorithm is presented to find the p-median. Finally, a numerical example is given
to illustrate the efficiency of the proposed method.
Keywords: Location problem; p-median; Chance theory; Uncertain random network.

1. Introduction

Location problems have received strong theoretical interest due to their relevance
in practice. One of the well-known location problems which was considered in
the literature is the p-median location problem which is stated as follows: Let
N = (V,E) be an undirected connected network with vertex set V , | V |= n,
edge set E and let p be a constant with p ≤ n. Every edge e ∈ E has a positive
length and each vertex vi ∈ V is associated with a nonnegative weight wi that it
is the demand of the client at this vertex. Let d(x, y) denote the distance between
x, y ∈ N which is equal to the length of the shortest path connecting these two
points. In the classical p-median problem, the aim is to locate p pairwise different
facilities m1, . . . ,mp on the network N (i.e., on vertices or edges) which minimize
the sum of weighted distances from each vertex to its closest facility:

(P1) : min
Xp⊂N,|Xp|=p

∑
vi∈V

wid(vi, Xp)

where
d(vi, Xp) = min

j=1,2,...,p
d(vi,mj), Xp = {m1, . . . ,mp}.

An optimal solution X∗p is called a p-median.
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Hakimi [13] showed that there exists an optimal solution among the set of ver-
tices. This property is called vertex optimality. Later, Kariv and Hakimi [16] proved
that the classical p-median problem was NP-hard, even if N was a planar graph of
maximum degree 3.

Now, let dij = d(vi, vj) be the distance from demand vertex vi to candidate
facility at vertex vj . Also, let w = {wi | vi ∈ V } and d = {dij | vi, vj ∈ V } denote
the set of the vertex weights and the set of distances between vertices, respectively.
Then in the network N , the optimal objective value of the p-median problem is a
function of w and d, which is denoted as f(w, d) in this paper.

We are going to present a 0-1 linear programming formulation of the classical
discrete p-median problem. Let xij be the variable that is equal to 1 if the demands
of the vertex vi are served by a facility at the vertex vj , and 0 otherwise. Also,
let the variable xj be equal to 1 if there is an open facility at the vertex vj , and 0
otherwise. Then, the 0-1 linear programming formulation of the classical discrete
p-median problem can be stated as follows:

(P2) : min
∑n

i=1

∑n
j=1 widijxij

s.t.
∑n

j=1 xij = 1 ∀i = 1, . . . , n,

xij ≤ xj ∀i, j = 1, . . . , n,∑n
j=1 xj = p,

xij , xj ∈ {0, 1} ∀i, j = 1, . . . , n.

This model minimizes the total weighted distance between each demand vertex and
the nearest facility. The first set of constraints requires each demand vertex to be
assigned to exactly one facility. The second set of constraints allows the demand
of the vertex vi to be assigned to a vertex vj only if there is an open facility in
this location. The third set of constraints states that exactly p facilities are to be
located. Finally, the last constraints are the standard integrality conditions [8, 28].

The p-median location problems have been studied by many researchers. Kariv
and Hakimi [16] presented an O(p2n2) time algorithm for the p-median location
problem on tree networks. Gavish and Sridhar [10] proposed an algorithm for the
2-median problem on trees which is run in O(n log n) time. Tamir [36] improved the
time complexity of the p-median problem on trees to O(pn2). Benkoczi and Bhat-
tacharya [6] presented an algorithm with time complexity of O(pn log n) for solving
the p-median problem on interval networks. Also, they designed an O(n logp+2 n)
time algorithm to solve the p-median problem on trees [1]. For the 1-median prob-
lem on wheel networks, Hatzl [14] provided an algorithm with linear running time.
In addition, he showed that the 2-median problem on the cactus networks can be
calculated at O(n2) time. Chang et al. [7] proved that the connected p-median
problem on block graphs was NP-hard and for the case that the lengths of the
edges were equal to one, he proposed an O(n) time algorithm. In 2017, Nguyen et
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al. [30]presented a simple algorithm with linear running time to find the 1-median
location on a cactus network. In the real life, we are usually faced with various
types of non-determinacy. For example, in location problems, we are usually not
sure of the vertex weights and the distances between vertices of a network. For
dealing with non-determinacy phenomena, probability theory was introduced by
Kolmogorov [17] in 1933 for modeling frequencies, while in 2007, uncertainty the-
ory was presented by Liu [18] for modeling belief degrees.

The early works mainly focus on handling randomness, i.e., regarding distances
between vertices and vertex weights as random variables. Berman and Krass [5]
investigated the p-median problem with unreliable facilities and complete informa-
tion on a line. They presented an approach for solving the problem that was based
on representing the stochastic problem as a linear combination of deterministic me-
dian problems for which analytical results are available. Berman and Wang [3]
studied the problem of locating p facilities to serve clients residing at the vertices
of a network with discrete probabilistic demand weights. Tadei et al. [37] tried
to find the location of p facilities when the cost for using a facility is a stochastic
variable with unknown probability distribution. Berman and Drezner [4] investi-
gated the p-median problem with stochastic objective value. Their aim was to find
the location of p facilities such that the expected value of the objective function in
the future is minimized. When the stochastic network is a tree, Mirchandani and
Oudjit [27] used a selective enumeration approach for solving the 2-median prob-
lem. Various results on the p-median problem on stochastic networks are given in
[2, 9, 23, 24, 25, 26].

Stochastic network optimization models work well when there are enough data
to estimate the probability distributions of vertex weights and distances between
the vertices. When we do not have enough samples to estimate the probability dis-
tributions of the vertex weights and the distances between vertices, we have to invite
experts to give the belief degrees about the vertex weights and distances between
vertices. Some researchers applied the uncertainty theory to deal with the location
problems: for example the uncertain models for single facility location problems
were investigated by Yuan Gao [12], the hierarchical facility location for the reverse
logistics network design under uncertainty was studied by Wang and Yang [38], the
capacitated facility location-allocation problem under uncertain environment was
investigated by Wen et al. [39], the inverse 1-median problem on a tree under un-
certain cost coefficients was solved by Nguyen and Chi [29] and the classical p-center
location problem on a network with the uncertain vertex weights and the uncertain
distances was studied by Soltanpour et al. [35].

In many cases, uncertainty and randomness simultaneously appear in a complex
system. Specifically, for some non-deterministic phenomena, we have enough obser-
vational data to obtain their probability distribution functions, while for others, we
can only estimate them by expert data. In order to describe this complex system,
in 2013 the chance theory was developed by Liu [21] with the concepts of uncertain
random variable, chance measure and chance distribution. Liu [21] also introduced
the concepts of expected value and variance of uncertain random variables. For cal-
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culating the variance of uncertain random variables, Guo and Wang [11] presented
a formula based on uncertainty distribution. Sheng and Yao [34] verified a formula
to calculate the variance using chance distribution and inverse chance distribution.
As an important contribution to chance theory, Liu [22] presented an operational
law of uncertain random variables. In addition, Hou [15] investigated the distance
between uncertain random variables, and Yao and Gao [40] proved a law of large
numbers for the uncertain random variables. In order to model the optimization
problems with uncertainty and randomness, uncertain random programming was
introduced by Liu [22] in 2013. For a survey on the uncertain random optimization
problems, the reader is referred to [31, 32, 33].

In this paper, we will investigate the p-median location problem on a network
with uncertain random vertex weights and distances. In the p-median problem too,
there are some circumstances by which there are enough data for some of vertex
weights and distances to estimate their probability distributions. On the other
hand, there are no samples to estimate the probability distributions for some other
vertex weights and distances so that we have to invite experts to give the belief
degrees about them. Therefore, data are divided into categories; some of them have
probability distributions and the others have uncertainty distributions.

The article is organized as follows: In the next section some basic concepts
and properties of the uncertainty theory and chance theory will be introduced.
In Section 3., we will introduce an uncertain random network and give an ideal
chance distribution function of the p-median. Then, we propose an algorithm to
calculate the ideal chance distribution function of the problem under investigation
on uncertain random networks. Section 4. presents a model for finding the p-median
and proposes an algorithm to seek the p-median of an uncertain random network.
A numerical example is presented in Section 5. to illustrate the efficiency of our
proposed method. Finally, Section 6. gives a brief summary to the paper.

2. Preliminary concepts and definitions

In this section, we will introduce some concepts and theorems of the uncertainty
theory and chance theory.

2.1. Uncertainty theory

The uncertainty theory, introduced by Liu [18], provides a new approach to
deal with non-determinacy factors. Nowadays, the uncertainty theory has become a
branch of mathematics for modeling human uncertainty based on normality, duality,
subadditivity, and product axioms.

In the following part, we will introduce some foundational concepts and proper-
ties of the uncertainty theory, which will be used throughout this paper [18, 19, 20].

Definition 2.1. Let Γ be a nonempty set, L a σ-algebra over Γ. A set function
M : L → [0, 1] is called an uncertain measure if it satisfies the following axioms:
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Axiom 1: (Normality Axiom) M{Γ} = 1 for the universal set Γ.
Axiom 2: ( Duality Axiom) M{Λ}+M{Λc} = 1 for any event Λ ∈ L (Λc is com-
pliment of Λ).
Axiom 3: (Subadditivity Axiom) For every countable sequence of events Λ1,Λ2, . . .,
we have

M

{ ∞⋃
i=1

Λi

}
≤
∞∑
i=1

M{Λi}.

The triple (Γ,L,M) is called an uncertainty space. Moreover, in order to pro-
vide an operational law, Liu defined the product uncertain measure on the product
σ-algebra L as follows.

Axiom 4: (Product Axiom) Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, . . ..
Then the product uncertain measure M is an uncertain measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

M{Λk}

where Λk are arbitrary chosen events from Lk for k = 1, 2, . . ., respectively.

Definition 2.2. An uncertain variable is a measurable function ξ from an uncer-
tainty space to the set of real numbers, i.e., for any Borel set B of real numbers,
the set

{ξ ∈ B} = {γ ∈ Γ | ξ(γ) ∈ B}

is an event.

In order to describe an uncertain variable, a concept of uncertainty distribution
is defined as follows.

Definition 2.3. The uncertainty distribution function φ of an uncertain variable
ξ is defined by

φ(x) =M{ξ ≤ x}

for any real number x.

Definition 2.4. The uncertain variables ξ1, ξ2, . . . , ξn are said to be independent
if

M

{
n⋂

i=1

{ξi ∈ Bi}

}
=

n∧
i=1

M{ξi ∈ Bi}

for any Borel sets B1, B2, . . . , Bn of real numbers.

Definition 2.5. Let ξ be an uncertain variable with regular uncertainty distribu-
tion function φ. Then the inverse function φ−1 is called the inverse uncertainty
distribution function of ξ.
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The distribution of a monotonous function of uncertain variables can be obtained
by the following theorem.

Theorem 2.1. Let ξ1, ξ2, . . . , ξn be the independent uncertain variables with reg-
ular uncertainty distribution functions φ1, φ2, . . . , φn, respectively. If the function
f(x1, x2, . . . , xn) is strictly increasing with respect to x1, x2, . . . , xn, then
ν = f(ξ1, ξ2, . . . , ξn) is an uncertain variable with inverse uncertainty distribution
function

ψ−1(α) = f(φ−11 (α), φ−12 (α), . . . , φ−1n (α)).

2.2. Chance theory

In this subsection, we will introduce some foundational definitions and properties
of the uncertain random variable, the chance measure, the chance distribution and
the operational law, [21, 22].

Let (Γ,L,M) be an uncertainty space and (Ω,A, P r) be a probability space.
The product (Γ,L,M)× (Ω,A, P r) is called a chance space.

Definition 2.6. Let (Γ,L,M)× (Ω,A, P r) be a chance space, and let
Θ ∈ L×A be an uncertain random event. Then the chance measure of Θ is defined
as

Ch{Θ} =

∫ 1

0

Pr{ω ∈ Ω|M{γ ∈ Γ|(γ, ω) ∈ Θ} ≥ r}dr.

Liu [21] proved that a chance measure satisfies normality, duality, and mono-
tonicity properties, that is

(1) Ch{Γ× Ω} = 1.

(2) Ch{Θ}+ Ch{Θc} = 1 for any event Θ (Θc is compliment of Θ).

(3) Ch{Θ1} ≤ Ch{Θ2} for any real number set Θ1 ⊂ Θ2.

Moreover, Hou [15] proved the subadditivity of chance measure, that is,

Ch

{ ∞⋃
i=1

Θi

}
≤
∞∑
i=1

Ch{Θi}

for a sequence of events Θ1,Θ2, . . . .

Theoretically, an uncertain random variable is a measurable function on the
chance space. It is usually used to deal with measurable functions of uncertain
variables and random variables.

Definition 2.7. An uncertain random variable is a measurable function θ from a
chance space (Γ,L,M) × (Ω,A, P r) to the set of real numbers, i.e., {θ ∈ B} is an
event for any Borel set B.
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Note that random variables and uncertain variables can be regarded as special
cases of uncertain random variables.

Definition 2.8. The chance distribution function of an uncertain random variable
θ is defined by

Φ(x) = Ch{θ ≤ x}
for any real number x.

The chance distribution function of a random variable is just its probability
distribution function, and the chance distribution function of an uncertain variable
is just its uncertainty distribution function.

Theorem 2.2. Let η1, η2, . . . , ηm be the independent random variables with proba-
bility distribution functions Ψ1,Ψ2, . . . ,Ψm respectively, and let τ1, τ2, . . . , τn be the
uncertain variables. Then the uncertain random variable

θ = f(η1, η2, . . . , ηm, τ1, τ2, . . . , τn)

has a chance distribution function

Φ(x) =

∫
Rm

F (x, y1, y2, . . . , ym)dΨ1(y1)dΨ2(y2) . . . dΨm(ym)

where F (x, y1, y2, . . . , ym) is the uncertainty distribution function of uncertain vari-
able f(y1, y2, . . . , ym, τ1, τ2, . . . , τn) for any real numbers y1, y2, . . . , ym.

3. The ideal chance distribution function of the p-median

In this section, we will introduce the uncertain random network and the ideal
chance distribution function of p-median. Then, we propose an algorithm for cal-
culating the ideal chance distribution function. First, some assumptions are listed
as follows.

(1) The undirected uncertain random network is connected.

(2) The weight of each vertex and the distances (shortest path length) between
vertices are finite.

(3) The weight of each vertex and the distances between vertices are positive
uncertain variables or positive random variables.

(4) All the uncertain variables and the random variables are independent.

Definition 3.1. The quartette (V,U ,R,W) is said to be an uncertain random
network if V = {v1, v2, . . . , vn} is the vertex set and U ,R,W are defined as follows.

U = {(vi, vj)| the shortest distance between vertices vi and vj is uncertain}⋃
{vk| the weight of the vertex vk is uncertain},
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R = {(vi, vj)| the shortest distance between vertices vi and vj is random}⋃
{vk| the weight of thevertex vk is random},

and W is the collection of uncertain and random vertex weights and uncertain and
random vertex distances.

In this paper, all deterministic distances and weights are regarded as special
uncertain distances and weights.

Let ηk and ξij denote the weight of vertex vk, vk ∈ U ∪ R, and the distance
between two vertices vi and vj , (vi, vj) ∈ U ∪ R, respectively. Then ηk and
ξij are uncertain variables if vk, (vi, vj) ∈ U , and ηk and ξij are random vari-
ables if vk, (vi, vj) ∈ R. Without loss of generality, we assume that the uncertain
weight ηk and the distance ξij for vk, (vi, vj) ∈ U are defined on uncertainty spaces
(Γ1,L1,M1) and (Γ2,L2,M2), respectively, and also the random weight ηk and the
distance ξij for vk, (vi, vj) ∈ R are defined on probability spaces (Ω1,A1, P r1) and
(Ω2,A2, P r2), respectively. Since the weights and the distances are assumed to be
finite, we have ak ≤ ηk ≤ bk, aij ≤ ξij ≤ bij , where ak, aij and bk, bij are the lower
bounds and the upper bounds, respectively.

Define η = {ηk| vk ∈ U ∪ R} and ξ = {ξij | (vi, vj) ∈ U ∪ R}. We can denote
the network with the uncertain random weights and distances as (V,U ,R,W). The
optimal value of the p-median problem is a function of weights and distances which
is denoted as f in this paper. Obviously, f(η, ξ) is an uncertain random variable.
For an uncertain random network, the optimal value of the p-median problem,
f(η, ξ), is an increasing function with respect to each component of ηk and ξij . The
chance distribution function of f(η, ξ) is called an ideal chance distribution function
associated with uncertain random network (V,U ,R,W). Note that the ideal chance
distribution function is unique for a given uncertain random network. The following
theorem explains how to calculate an ideal chance distribution function.

Theorem 3.1. Let (V,U ,R,W) be an uncertain random network. Assume that
the uncertain weights ηk and the uncertain distances ξij have regular uncertainty
distribution functions Υk and Υij for vk ∈ U and (vi, vj) ∈ U and also the random
weights ηk and the random distances ξij have probability distribution functions Ψk

and Ψij for vk ∈ R and (vi, vj) ∈ R, respectively. Then the ideal chance distribution
function associated with the uncertain random network (V,U ,R,W) is

Φ(z) =
∫∞
0
. . .

∫∞
0
F (z; yk, yij | vk, (vi, vj) ∈ R)∏

vk∈R dΨk(yk)
∏

(vi,vj)∈R dΨij(yij)
(3.1)

where F (z; yk, yij | vk, (vi, vj) ∈ R) is the uncertainty distribution function of the
uncertain variable f(yk, yij | vk, (vi, vj) ∈ R; ηk, ξij | vk, (vi, vj) ∈ U), and it is deter-
mined by its inverse uncertainty distribution function F−1(α; yk, yij |vk, (vi, vj) ∈ R)
which is equal to

f(yk, yij | vk, (vi, vj) ∈ R; Υ−1k (α),Υ−1ij (α)| vk, (vi, vj) ∈ U),

and f can be calculated by using (P2).
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Proof. Let f(ηk, ξij | vk, (vi, vj) ∈ U ∪R) be the sum of the weighted distance of the
p-median. By Definitions 2.6 and 2.8 and also Theorem 2.2, we can obtain the ideal
chance distribution function as follows.

Φ(z) = Ch{f(ηk, ξij | vk, (vi, vj) ∈ U ∪R) ≤ z}

=
∫ 1

0
Pr{ω1 ∈ Ω1, ω2 ∈ Ω2| M{f(ηk(ω1), ξij(ω2)|vk, (vi, vj) ∈ R,
ηk, ξij |vk, (vi, vj) ∈ U) ≤ z} ≥ r}dr

=
∫∞
0
. . .

∫∞
0
M{f(ηk(ω1), ξij(ω2)| vk, (vi, vj) ∈ R, ηk, ξij |vk, (vi, vj) ∈ U) ≤ z}∏

vk∈R dΨk(yk)
∏

(vi,vj)∈R dΨij(yij)

=
∫∞
0
. . .

∫∞
0
F (z; yk, yij | vk, (vi, vj) ∈ R)

∏
vk∈R dΨk(yk)

∏
(vi,vj)∈R dΨij(yij)

where F (z; yk, yij |vk, (vi, vj) ∈ R) is the uncertainty distribution function of uncer-
tain variable f(yk, yij | vk, (vi, vj) ∈ R; ηk, ξij | vk, (vi, vj) ∈ U) for any real numbers
yk, yij , vk, (vi, vj) ∈ R, and it is determined by its inverse uncertainty distribution
F−1(α; yk, yij , vk, (vi, vj) ∈ R). By Theorem 2.1, for given α ∈ (0, 1), we have

F−1(α; yk, yij , vk, (vi, vj) ∈ R)

= f(yk, yij | vk, (vi, vj) ∈ R; Υ−1k (α),Υ−1ij (α)| vk, (vi, vj) ∈ U),

which is just the optimal value of the p-median problem of a determinacy network
and f is a strictly increasing function with respect to ηk and ξij , where ηk and ξij
denote the weight of the vertex vi and the shortest distance between two vertices
vi and vj , respectively. We can calculate f by using (P2). Thus the theorem is
proved.

Note that, it is difficult to calculate the ideal chance distribution function by
using formula (3.1). Hence, in order to calculate the ideal chance distribution func-
tion of the p-median in an uncertain random network, we propose the following
algorithm:

Algorithm 1

1. For any yk and yij , vk, (vi, vj) ∈ R, give partitions
∏

k and
∏

ij of intervals
[ak, bk] and [aij , bij ] with step ∆ = 0.01. Let random variables ηk and ξij
take values in {yk| yk = ak + 0.01 ∗ i for i = 1, 2, . . . , (bk − ak) ∗ 100} and
{yij | yij = aij + 0.01 ∗ i for i = 1, 2, . . . , (bij − aij) ∗ 100}, respectively.

2. Calculate F−1(α; yk, yij , vk, (vi, vj) ∈ R) by using (P2) for given yk and yij
and each α ∈ {0.01, 0.02, . . . , 0.99}.

3. Obtain the uncertainty distribution function of F (z; yk, yij | vk, (vi, vj) ∈ R),
from its discrete form via linear interpolation.

4. Input F (z; yk, yij | vk, (vi, vj) ∈ R) into formula (3.1) to calculate the chance
distribution function Φ(z) for each z.
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4. The p-median model in uncertain random networks

In this section, we will consider the p-median problem in an uncertain random
network and present an algorithm for finding the p-median.

Given a connected and undirected uncertain random network (V,U ,R,W). Let
Vp ⊆ V, |Vp| = p, and let the variable xj be equal to 1 if vj ∈ Vp, and 0 otherwise.
Also let xij be the variable that is equal to 1 if the nearest vertex to the vertex
vi in Vp is the vertex vj , and 0 otherwise. A p-facility location is represented by
{xj , xij | vj , (vi, vj) ∈ U ∪R}, where∑

(vi,vj)∈U∪R xij = 1 ∀vi ∈ U ∪R,

xij ≤ xj ∀vj , (vi, vj) ∈ U ∪R,∑
vj∈U∪R xj = p,

xij , xj ∈ {0, 1} ∀vj , (vi, vj) ∈ U ∪R.

Therefore the sum of weighted distances of a p-facility location
{xj , xij | vj , (vi, vj) ∈ U ∪R} is∑

vi∈U∪R

∑
(vi,vj)∈U∪R

ηiξijxij

which is obviously an uncertain random variable. Its chance distribution function
is denoted by Ψ(z), i.e.,

Ψ(z) = Ch

 ∑
vi∈U∪R

∑
(vi,vj)∈U∪R

ηiξijxij ≤ z

 .

Based on Theorem 2.2, we suggest the following algorithm to calculate the
chance distribution function which corresponds to the p-facility location

{xj , xij | vj , (vi, vj) ∈ U ∪R}.

Algorithm 2

1. Step 1 as described in Algorithm 1.

2. For given yk and yij and each α ∈ {0.01, 0.02, . . . , 0.99}, calculate
F−1(α; yk, yij , vk, (vi, vj) ∈ R), which is the sum of the weighted distances of
the corresponding p-facility location.

3. Use discrete form of linear interpolation to obtain the uncertainty distribution
function of F (z; yk, yij | vk, (vi, vj) ∈ R).
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4. Input F (z; yk, yij | vk, (vi, vj) ∈ R) into formula∫∞
0
. . .

∫∞
0
F (z; yk, yij | vk, (vi, vj) ∈ R)

∏
vk∈R dΨk(yk)

∏
(vi,vj)∈R dΨij(yij)

and calculate the chance distribution function Ψ(z) for each z.

Theorem 4.1. Let (V,U ,R,W) be an uncertain random network and let Φ(z) be
an ideal chance distribution function associated with it. Assume that
{xj , xij | vj , (vi, vj) ∈ U ∪R} is a given p-facility location. Then we have

Ψ(z) ≤ Φ(z).

Proof. Obviously, by Theorem 3.1, the ideal chance distribution function of the
p-median Φ(z) is the smallest sum distribution. So we can obtain the chance dis-
tribution function of any p-facility location

Ψ(z) ≤ Φ(z).

The theorem is proved.

In order to find the p-median location of an uncertain random network (V,U ,R,W),
we give the following definition.

Definition 4.1. Let (V,U ,R,W) be an uncertain random network and let Φ(z)
be the ideal chance distribution function of the p-median. Assume that Ψ(z) is the
chance distribution function of a p-facility location {xj , xij | vj , (vi, vj) ∈ U ∪R}. If
Ψ(z) is the closest the Φ(z), i.e.,∫ ∞

0

{Φ(z)−Ψ(z)}dz

is minimum, then the p-facility location {xj , xij | vj , (vi, vj) ∈ U ∪ R} is called the
p-median in an uncertain random network.

Based on Definition 4.1 and the above statements, we formulate the following
optimization model to determine a p-median for an uncertain random network.

(P3) : min
∫∞
0
{Φ(z)−Ψ(z)}dz

s.t.
∑

(vi,vj)∈U∪R xij = 1 ∀vi ∈ U ∪R,

xij ≤ xj ∀vj , (vi, vj) ∈ U ∪R,∑
vj∈U∪R xj = p,

xij , xj ∈ {0, 1} ∀vj , (vi, vj) ∈ U ∪R,
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where Φ(z) is the ideal chance distribution function and

Ψ(z) = Ch

 ∑
vi∈U∪R

∑
(vi,vj)∈U∪R

ηiξijxij ≤ z


is the chance distribution function of any p-facility location.

In order to find the p-median in an uncertain random network (V,U ,R,W), we
propose the following algorithm.

Algorithm 3

1. Calculate the ideal chance distribution function for the uncertain random
network by using Algorithm 1.

2. Consider all the p-facility locations in the uncertain random network.

3. Calculate the chance distribution function of the sum of weighted distances
for each p-facility location by using Algorithm 2.

4. Calculate the objective function of Model (P3) for given p-facility location,
and choose the minimum value of objective function, which corresponds to
the desired p-median.

5. An illustrative example

In this section, we give an example for the 2-median location problem in an
uncertain random network to illustrate the proposed algorithms.

Consider goods distribution system. Assume that the system is given as the
network N in Figure 5.1 where the vertices denote urban areas. In this system,
warehouses of the distribution company and supermarkets are facilities and clients,
respectively. There is a supermarket at each area. Suppose that the weight ηi of
the vertex vi is equal to the average monthly purchase of residents of this area from
the supermarket located at vertex vi. Some of the vertex weights and the distances
between vertices in the network are uncertain, while others are random (see Table
5.1). Our aim is to find two vertices on the network N to locate warehouses of the
distribution company which will minimize the sum of weighted distances from each
supermarket to its closest warehouse.

V = {v1, v2, v3, v4, v5, v6},
U = {v1, v2, v4, v5, v6} ∪ {(v1, v2), (v1, v4), (v2, v5), (v3, v4)(v4, v6)},
R = {v3} ∪ {(v2, v3)},
W = {η1, η2, η3, η4, η5, η6} ∪ {ξ12, ξ14, ξ23, ξ25, ξ34, ξ46}.

Note that if the distance between some vertices or weight of some vertices are
considered as constant values, then we regard them as special uncertain variables.
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Fig. 5.1: An uncertain random network

Table 5.1: Uncertainty and probability distributions

vertex ηi arc ξij
v1 2 (v1, v2) L(2, 3)
v2 L(2, 4) (v1, v4) L(3, 4)
v3 U (2, 3 ) (v2, v3) U (4, 6 )
v4 3 (v2, v5) 2
v5 L(1, 2) (v3, v4) L(2, 3)
v6 L(2, 3) (v4, v6) 5

From Theorem 3.1, we can obtain the ideal chance distribution function associ-
ated with the network (V,U ,R,W) as follows:

Φ(z) =

∫ ∞
0

∫ ∞
0

F (z; y3, y23)dΨ3(y3)dΨ23(y23)

where F (z; y3, y23) is determined by its inverse uncertainty distribution function

F−1(α; y3, y23) = f(Υ−11 (α),Υ−12 (α), y3,Υ
−1
4 (α),Υ−15 (α),Υ−16 (α); Υ−112 (α),Υ−114 (α), y23,

Υ−125 (α),Υ−134 (α),Υ−146 (α)).

Give a partition
∏

3 on interval [2, 3] with step 0.01, and let random variable η3
take values in

{y3 | y3 = 2 + 0.01i for i = 1, . . . , 100}.

Also give a partition
∏

23 on interval [4, 6] with step 0.01, and let random
variable η23 take values in

{y23 | y23 = 4 + 0.01i for i = 1, . . . , 200}.
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For any y3 ∈
∏

3, y23 ∈
∏

23, given α ∈ {0.01, 0.02, . . . , 0.99}, we calculate
F−1(α; y3, y23) by using the model (P2).

We may first calculate the ideal chance distribution function Φ(z) associated
with the network by Algorithm 1.

Then we will calculate the chance distribution function of the total weighted
distance of each 2-facility location( i.e., Ψ(z)) by Algorithm 2, which is shown in
Figure 5.2.

Fig. 5.2: The shapes of chance distribution functions of all 2-facilities for the ex-
ample

Using Algorithm 3, we will calculate the difference between the chance distri-
bution function of total weighted distance of each 2-facility location and the ideal
one, which is given as Table 5.2.

Model (P3) implies that the vertices v2 and v4 are the desired warehouses lo-
cations since the difference between the chance distribution function and the ideal
one is minimum.
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Table 5.2: Difference between the chance distribution function and the ideal chance
distribution function

2-facility location {v1, v2} {v1, v3} {v1, v4} {v1, v5} {v1, v6}
Difference 20.015 13.759 6.259 27.234 13.234

2-facility location {v2, v3} {v2, v4} {v2, v5} {v2, v6} {v3, v4}
Difference 7.511 0 36.234 8.759 18.261

2-facility location {v3, v5} {v3, v6} {v4, v5} {v4, v6} {v5, v6}
Difference 14.261 18.261 5.009 17.009 21.006

6. Conclusions

In this paper, we have investigated the p-median location problem in an un-
certain random network, i.e., a network in which the weights of vertices and the
distances between vertices are uncertain random variables. We first introduced the
concept of the ideal chance distribution function and then presented an algorithm
to calculate the ideal chance distribution function of the p-median associated with
the uncertain random network. We have formulated the discrete p-median location
problem in an uncertain random network and presented an algorithm to find the
p-median. Finally, to illustrate the efficiency of the proposed method, we gave a
numerical example.
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