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INVEXITY AND A CLASS OF CONSTRAINED OPTIMIZATION PROBLEMS
IN HILBERT SPACES

Sandip Chatterjee and R.N.Mukherjee

Abstract. In this paper the notion of invexity has been introduced in Hilbert spaces. A
class of constrained optimization problems has been proposed under the assumption of
invexity. Some of the algebraic properties leading to the optimality criterion of such a
class of problems has been studied.
Keywords: Convexity , Invexity , Frechet Derivative , Archimedean Order , Zorn’s
Lemma

1. Introduction

The mathematics of Convex Optimization was discussed by several authors for
about a century [5, 10, 11, 12, 16, 17, 20, 22]. In the second half of the last century var-
ious generalizations of convex functions have been introduced [2, 14, 15, 18, 19, 21].
The invex(invariant convex), pseudoinvex and quasiinvex functions were introduced by
M.A.Hanson in 1981 [13]. These functions are extremely significant in optimization
theory mainly due to the properties regarding their global optima. For example, a
differentiable function is invex iff every stationary point is a global minima[1]. Later in
1986, Craven defined the non-smooth invex functions [3]. For the last few decades
generalized monotonicity, duality and optimality conditions in invex optimization
theory have been discussed by several authors but mainly inRn [1, 3, 4, 6, 8, 13, 18].
In this paper the concept of invex functions and a class of optimization problems
involving invex functions have been introduced in Hilbert spaces. Some important
theorems regarding the characterization of extreme points and optimal solution
have also been discussed.

2. Prerequisites

Definition 2.1: A subset C of Rn is convex if for every pair of points x1, x2 in C, the
line segment
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[x1, x2] = {x : x = αx1 + βx2, α ≥ 0, β ≥ 0, α + β = 1}

belongs to C.
The set C is said to be η − invex if there exist a vector function η : C × C→ Rn such
that

x1 + λη(x1, x2) ∈ C ∀ x1, x2 ∈ C and ∀λ ∈ [0, 1]

Definition 2.2: Let C be an open convex set in Rn and let f be real valued and
differentiable on C. Then f is convex if

f (x) − f (y) ≥ 〈∇ f (y), x − y〉 , ∀ x, y ∈ C

The function f is said to be η − invex if there is a vector function η : C × C→ Rn

f (x) − f (y) ≥ 〈∇ f (y), η(x, y)〉 , ∀ x, y ∈ C

Remark: Clearly, every differentiable convex function is η− invex, since in that case
one can take η(x, y) = (x − y). It is to be further noted that a differentiable function
which is η-invex for a specific η(x, y) may not be the same for a different η(x, y).
Therefore, in a particular context of a discussion η(x, y)(if exists) is fixed and that
depends upon the differentiable function to be studied.
Definition 2.3: A set C ⊆ Rn is said to be a cone, if x ∈ C ⇒ λx ∈ C , ∀ λ ≥ 0.
In addition, if C is convex, then C is said to be a convex cone. A convex cone is
said to be a proper cone if it is closed, having non-empty interior and pointed(i,e.
x ∈ C,−x ∈ C⇒ x = 0).
A barrier cone of a convex set C is defined to be the set of all vectors x∗ such that, for
some β ∈ R, 〈x, x∗〉 ≤ β for every x ∈ C.
Definition 2.4: Let X and Y be two normed vector spaces. A continuous linear
transformation A:X→ Y is said to be the Fréchet(Strong) derivative of f : X→ Y at
x if for every ε > 0, ∃ δ > 0 such that

‖ f (x + h) − f (x) − Ah ‖Y≤ ε ‖ h ‖X ∀h with ‖ h ‖X≤ δ

When the derivative exists it is denoted by D f (x).
Remark : It is to be noted that in Rn, D f (x) = ∇ f (x).
Definition 2.5: An ordering ≥ on a real vector space V is said to be Archimedean if
v ≥ θV whenever u + λv ≥ θV for some u ∈ V and all λ > 0.
If u ≤ w and u,w ∈ V then [u,w] will denote the set {v ∈ V : u ≤ v ≤ w}. Such a set
is termed as order interval. A subset of V is order bounded if it is contained in some
order interval.
Remark : The order relation ≥ inRn is archimedean if x+ny ≥ θ, n = 1, 2, 3, ..... im-
plies y ≥ θ. Most of the orderings that occur in practical problems are archimedean.
Lexicographic orderings in sequence spaces are non-archimedean orderings.
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3. Invex Programming Problem(IP)

Definition 3.1: Let H1 and H2 be two Hilbert spaces with some archimedean
ordering “ ≥ ” and X ⊆ H1 is an open set. The differentiable(Frechet) function
f : X → H2 is η − invex if there exist a vector function η : X × X → H2 and some
e ∈ H2 with ‖e‖H2 = 1 such that,

f (x) − f (y) ≥ 〈D f (y) , η(x, y)〉e ∀x, y ∈ X(3.1)

Remark: It is to be noted that if H1 and H2 are taken as Rn, then if we choose
e = (1, 1, 1, . . . , 1) and η(x, y) = (x − y), f will become a convex function in Rn. The
norm in this case can be taken as (n)− 1

2 -multiple of the usual euclidean norm.
Example 3.1: Let us consider the function f : L2[0, 1] → L2[0, 1] defined as,

( f (x))(t) = (x − sinx)(t) , x > 0, n ∈N
Clearly, f(x)is non-convex in nature. But it can be verified that f(x) is η-invex for

η(x, y) = 4sin x−y
2

cos(x)−1 whenever x � 2nπ and η(x, y) = 0 elsewhere.

Fig. 3.1: Graph of f(x)=x− sin(x) , x > 0 , which is not convex but invex

Definition 3.2: Let H1 and H2 be two real Archimedean ordered separable
Hilbert spaces. Letφ : H1 → H2 and f : H1 → H2 be η−invex functions (i.e. both the
functions are invex with respect to the same η) such that f (x) = f (y)⇒ (x−y) ∈ Ker f
. Let us consider the following program:

Min φ(x)
s.t. f (x) = y x ∈ H1 , y ∈ H2

x ≥ θH1

Let us denote the program by IP(H1,H2,φ, f ) or simply by IP(if there is no confusion).
Example 3.2: The very well known Bottleneck Problem due to Bellman(1957)[9] is
one of the examples of IP.

4. Extreme Points and Basic Feasible Solutions

Definition 4.1: For any IP we define that x is feasible iff it satisfies the conditions
of IP . The set of feasible solutions of IP is thus
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F = {x ∈ H1 : x ≥ θH1 and f (x) = y}
Definition 4.2: Let H be a real Hilbert space and X be a subset of H. Let C denote a
positive cone in X. For any x ∈ C define

B(x) = {y ∈ X : x + λy ∈ C and x − λy ∈ C, λ ∈ R}
In particular if F is Rn, B(x) reduces to

B(x) = {ξ ∈ Rn : ξi = 0 f or i � S(x)}
where S(x) is the support of x (often called the basis)[9].
Definition 4.3: A feasible solution of IP is basic if B(x)∩N( f ) = {θ}
Definition 4.4: x is an extreme point of X if for anyλ ∈ R either x+λy ∈ X or x−λy ∈ X
but not both.
Theorem 4.1: x is a Basic Feasible Solution(BFS) for IP iff x is an extreme point of F
.
Proof: A BFS x is not an extreme point of F iff there exist a λ > 0 and z(� θ) ∈ F such
that x+λz and x−λz both are feasible. .This is true iff x+λz ∈ C and x−λz ∈ C and
f (x + λz) = y = f (x − λz) which implies f (2λz) = θ i.e. 2λz ∈ N( f ). Now since
z ∈ B(x), 2λz ∈ B(x), which implies that 2λz ∈ B(x) ∩ N( f ). This is a contradiction
as x is a BFS.
Theorem 4.2: A feasible solution x is a BFS iff for any ξ ∈ F , B(ξ) ⊆ B(x)implies
ξ = x
Proof: Let x be a basic feasible solution and ξ is another feasible solution such that
B(ξ) ⊆ B(x). Since ξ ∈ B(ξ), ξ ∈ B(x). Since both x and ξ are feasible, f (x) = y = f (ξ).
Which implies that f (x − ξ) = θ ⇒ (x − ξ) ∈ B(x) ∩ N( f ). Since x is a BFS, (x − ξ)
must be θ, i,e. x = ξ.
Conversely, let x is a feasible solution but not basic.Choose η � θ with η ∈
B(x)∩N( f ) then x + λη ≥ θ and x − λη ≥ θ.Let ξ = x + λη. Let ξ

′ ∈ B(ξ), then for
some scalarμ, ξ+μξ

′ ≥ θ and ξ−μξ′ ≥ θ i, e. x+λη+μξ
′ ≥ θ and x+λη−μξ′ ≥ θ.

Now x + (μ2 )ξ
′
= 1

2¢ [(x− λη) + (x + λη + μξ
′
)] ≥ θ and similarly x − μ2ξ

′ ≥ θ. Which
implies that ξ

′ ∈ B(x) i, e. B(ξ) ⊆ B(x) which is a contradiction since as per the
assumption ξ � x.
Definition 4.5: Let H be a Hilbert space with some ordering “ ≥ ”. A vector x ∈ H
is said to be non-negative (positive) if x ≥ θH(x > θH).

5. Main Results

Theorem 5.1: Let C be a proper cone in H1 , then a feasible solution x of IP is basic
iff there is no other feasible solution ξ such that B(ξ) ⊂ B(x).
Proof: Let x be a feasible solution of IP which is not basic. Let y ∈ B(x) ∩ N( f ).
Let L be the order interval [x − λy, x + λy]. Then clearly L ∩ F = L ∩ C must be
an order interval having at least a maximal or a minimal element ( using Zorn’s
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Lemma). Let ξ be such an element of that order interval. Then ξ ∈ B(x) and it has
been shown in the proof of Theorem 4.2 that this implies B(ξ) ⊂ B(x). The inclusion
is strict because y � B(ξ) (since C ∩ −C = θB1 as C is a proper cone).
Theorem 5.2: Let C be a proper cone in H1 and x is an optimal solution of IP. If
η(H1 × L) , Dφ(L) and αe are all non-negative, where α ≥ 0, then IP has a basic
optimal solution.
Proof: Let x is not basic.Then as discussed in Theorem 5.1 we can find a ξ ∈ B(x)
which is feasible for IP. Now if the set of subspaces {B(ξ) : ξ ∈ F} is inductively
ordered by inclusion then using Zorn’s Lemma we can find a ξ for which B(ξ)
is minimal. Now since φ is η-invex , φ(x) − φ(ξ) ≥ Dφ(ξ) η(x, ξ) ≥ θB2 ,as per
the assumption. Which implies that φ(x) ≥ φ(ξ). Now since x is optimal, φ(ξ) ≥
φ(x).This implies that φ(ξ) = φ(x).Therefore ξ is a basic optimal solution.

6. Conclusion

Theorem 4.1 provides the characterization of basic solutions as the extreme point
of the set of feasible solutions. Theorem 4.2 shows that if there is a feasible solution
for an IP then there must be a basic feasible solution. This property has been
strengthened in Theorem 5.1. Theorem 5.2 characterizes the basic optimal solutions
of an IP and guarantees that a basic optimal solution can be constructed from an
optimal solution using the method discussed in Theorem 5.1. But here it is worth
mentioning that the ordering in the context is very important. There are examples
of spaces with non-Archimedean ordering where existence of optimal solution does
not imply the existence of basic optimal solution.
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