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Abstract. In this paper, we introduce the notion of radical transversal screen Cauchy-
Riemann (SCR)-lightlike submanifolds of indefinite Kaehler manifolds giving a charac-
terization theorem with some non-trivial examples of such submanifolds. Integrability
conditions of distributions D1, D2, D and D

⊥ on radical transversal SCR-lightlike sub-
manifolds of an indefinite Kaehler manifold have been obtained. Further, we obtain
necessary and sufficient conditions for foliations determined by the above distributions
to be totally geodesic.
Keywords. Semi-Riemannian manifold, degenerate metric, radical distribution, screen
distribution, screen transversal vector bundle, lightlike transversal vector bundle, Gauss
and Weingarten formulae.

1. Introduction

The theory of lightlike submanifolds of a semi-Riemannian manifold was in-
troduced by Duggal and Bejancu ([7]). Various classes of lightlike submanifolds
of indefinite Kaehler manifolds are defined according to the behaviour of distribu-
tions on these submanifolds with respect to the action of (1, 1) tensor field J in
Kaehler structure of the ambient manifolds. Such submanifolds have been studied
by Duggal and Sahin in ([8], [10]). In [9], Duggal and Sahin introduced the notion
of generalized CR-lightlike submanifolds of an indefinite Kaehler manifold which
contains CR-lightlike and SCR-lightlike submanifolds as its sub-cases. In [3], Sahin
and Gunes studied geodesic CR-lightlike submanifolds and found some geometric
properties of CR-lightlike submanifolds of an indefinite Kaehler manifold.

However, all these submanifolds of an indefinite Kaehler manifold mentioned
above have invariant radical distribution on their tangent bundles i.e J(RadTM)
⊂ TM , where RadTM is the radical distribution and TM is the tangent bundle.
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In [2], Sahin introduced radical transversal and transversal lightlike submanifolds
of an indefinite Kaehler manifold for which the action of (1, 1) tensor field J on
radical distribution of such submanifolds does not belong to the tangent bundle,
more precisely, J(Rad(TM)) = ltr(TM), where ltr(TM) is the lightlike transversal
bundle of lightlike submanifolds.

Thus motivated sufficiently, we introduce the notion of radical transversal screen
Cauchy-Riemann (SCR)-lightlike submanifolds of an indefinite Kaehler manifold.
This new class of lightlike submanifolds of an indefinite Kaehler manifold includes
invariant, screen real, screen Cauchy-Riemann, radical transversal, totally real and
generalized transversal lightlike submanifolds as its sub-cases. The paper is arranged
as follows. There are some basic results in Section 2. In Section 3, we study radical
transversal screen Cauchy-Riemann (SCR)-lightlike submanifolds of an indefinite
Kaehler manifold, giving some examples. Section 4 is devoted to the study of
foliations determined by distributions D1, D2, D and D⊥ involved in the definition
of the above submanifolds of an indefinite Kaehler manifold.

2. Preliminaries

A submanifold (Mm, g) immersed in a semi-Riemannian manifold (M
m+n

, g) is
called a lightlike submanifold [7] if the metric g induced from g is degenerate and
the radical distribution RadTM is of rank r, where 1 ≤ r ≤ m. Let S(TM) be
a screen distribution which is a semi-Riemannian complementary distribution of
RadTM in TM, that is

(2.1) TM = RadTM ⊕orth S(TM).

Now consider a screen transversal vector bundle S(TM⊥), which is a semi-Riemannian
complementary vector bundle of RadTM in TM⊥. Since for any local basis {ξi}
of RadTM , there exists a local null frame {Ni} of sections with values in the
orthogonal complement of S(TM⊥) in [S(TM)]⊥ such that g(ξi, Nj) = δij and
g(Ni, Nj) = 0, it follows that there exists a lightlike transversal vector bundle
ltr(TM) locally spanned by {Ni}. Let tr(TM) be a complementary (but not or-
thogonal) vector bundle to TM in TM |M . Then

(2.2) tr(TM) = ltr(TM)⊕orth S(TM⊥),

(2.3) TM |M = TM ⊕ tr(TM),

(2.4) TM |M = S(TM)⊕orth [RadTM ⊕ ltr(TM)]⊕orth S(TM⊥),

where ⊕ denotes the direct sum and ⊕orth denotes the orthogonal direct sum.
Following are four cases of a lightlike submanifold

(

M, g, S(TM), S(TM⊥)
)

:

Case.1 r-lightlike if r < min (m,n),
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Case.2 co-isotropic if r = n < m, S
(

TM⊥
)

= {0},

Case.3 isotropic if r = m < n, S (TM) = {0},

Case.4 totally lightlike if r = m = n, S(TM) = S(TM⊥) = {0}.

The Gauss and Weingarten formulae are given as

(2.5) ∇XY = ∇XY + h(X,Y ), ∀X,Y ∈ Γ(TM),

(2.6) ∇XV = −AV X +∇t
XV, ∀V ∈ Γ(tr(TM)),

where {∇XY,AV X} and {h(X,Y ),∇t
XV } belong to Γ(TM) and Γ(tr(TM)), re-

spectively. ∇ and ∇t are linear connections on M and the vector bundle tr(TM),
respectively. The second fundamental form h is a symmetric F (M)-bilinear form
on Γ(TM) with values in Γ(tr(TM)) and the shape operator AV is a linear endo-
morphism of Γ(TM). From (2.5) and (2.6), we have

(2.7) ∇XY = ∇XY + hl (X,Y ) + hs (X,Y ) , ∀X,Y ∈ Γ(TM),

(2.8) ∇XN = −ANX +∇l
X (N) +Ds (X,N) , ∀N ∈ Γ(ltr(TM)),

(2.9) ∇XW = −AWX +∇s
X (W ) +Dl (X,W ) , ∀W ∈ Γ(S(TM⊥)),

where hl(X,Y ) = L (h(X,Y )), hs(X,Y ) = S (h(X,Y )), Dl(X,W ) = L(∇t
XW ),

Ds(X,N) = S(∇t
XN). L and S are the projection morphisms of tr(TM) on

ltr(TM) and S(TM⊥), respectively. ∇land ∇s are linear connections on ltr(TM)
and S(TM⊥) called the lightlike connection and screen transversal connection on
M , respectively. For any vector field X tangent to M , we put

(2.10) JX = PX + FX,

where PX and FX are tangential and transversal parts of JX , respectively.

Now by using (2.5), (2.7)-(2.9) and metric connection ∇, we obtain

(2.11) g(hs(X,Y ),W ) + g(Y,Dl(X,W )) = g(AWX,Y ),

(2.12) g(Ds(X,N),W ) = g(N,AWX).

Denote the projection of TM on S(TM) by P . Then from the decomposition of
the tangent bundle of a lightlike submanifold, we have

(2.13) ∇XPY = ∇∗

XPY + h∗(X,PY ), ∀X,Y ∈ Γ(TM),

(2.14) ∇Xξ = −A∗

ξX +∇∗t
Xξ, ξ ∈ Γ(RadTM).
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By using the above equations, we obtain

(2.15) g(hl(X,PY ), ξ) = g(A∗

ξX,PY ),

(2.16) g(h∗(X,PY ), N) = g(ANX,PY ),

(2.17) g(hl(X, ξ), ξ) = 0, A∗

ξξ = 0.

It is important to note that in general ∇ is not a metric connection. Since ∇ is a
metric connection, by using (2.7), we get

(2.18) (∇Xg)(Y, Z) = g(hl(X,Y ), Z) + g(hl(X,Z), Y ).

An indefinite almost Hermitian manifold (M, g, J) is a 2m-dimensional semi-
Riemannian manifold M with a semi-Riemannian metric g of the constant index q,
0 < q < 2m and a (1, 1) tensor field J on M such that the following conditions are
satisfied:

(2.19) J
2
X = −X, ∀X ∈ Γ(TM),

(2.20) g(JX, JY ) = g(X,Y ),

for all X,Y ∈ Γ(TM).

An indefinite almost Hermitian manifold (M, g, J) is called an indefinite Kaehler
manifold if J is parallel with respect to ∇, i.e.,

(2.21) (∇XJ)Y = 0,

for all X,Y ∈ Γ(TM), where ∇ is the Levi-Civita connection with respect to g.

A plane section S in tangent space TxM at a point x of a Kaehler manifold M is
called a holomorphic section if it is spanned by a unit vector X and JX , where X is
a non-zero vector field on M . The sectional curvature K(X, JX) of a holomorphic
section is called a holomorphic sectional curvature. A simply connected complete
Kaehler manifold M of the constant sectional curvature c is called a complex space-
form and denoted by M(c). The curvature tensor of the complex space-form M(c)
is given by ([12])

R(X,Y )Z =
c

4
[g(Y, Z)X − g(X,Z)Y + g(JY, Z)JX

− g(JX,Z)JY + 2g(X, JY )JZ],
(2.22)

for any smooth vector fields X , Y and Z on M . This result is also true for an
indefinite Kaehler manifold M .
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3. Radical Transversal SCR-Lightlike Submanifolds

In this section, we introduce the notion of radical transversal SCR-lightlike sub-
manifolds of an indefinite Kaehler manifold.

Definition 3.1. Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of an
indefinite Kaehler manifold M . Then we say that M is the radical transversal
SCR-lightlike submanifold of M if the following conditions are satisfied:

(i) there exist orthogonal distributions D1, D2, D and D⊥ on M such that
RadTM = D1 ⊕orth D2 and S(TM) = D ⊕orth D⊥,

(ii) the distributions D1 and D are invariant distributions with respect to J , i.e.
JD1 = D1 and JD = D,

(iii) the distributions D2 and D⊥ are transversal distributions with respect to
J , i.e. JD2 ⊂ Γ(ltr(TM)) and JD⊥ ⊂ ΓS(TM⊥).

From the above definition, we have the following decomposition

(3.1) TM = D1 ⊕orth D2 ⊕orth D ⊕orth D⊥.

In particular, we have

(i) if D1 = 0, then M is a generalized transversal lightlike submanifold,

(ii) if D1 = 0 and D = 0, then M is a transversal lightlike submanifold,

(iii) if D1 = 0 and D⊥ = 0, then M is a radical transversal lightlike submanifold,

(iv) if D2 = 0, then M is a screen CR-lightlike submanifold,

(v) if D2 = 0 and D = 0, then M is a screen real lightlike submanifold,

(vi) if D2 = 0 and D⊥ = 0, then M is an invariant lightlike submanifold.

Thus this new class of lightlike submanifolds of an indefinite Kaehler manifold
includes radical transversal, transversal, generalized transversal, invariant, screen
real, screen Cauchy-Riemann lightlike submanifolds which have been studied in ([2],
[8], [10], [15]) as its sub-cases.

Let (R2m
2q , g, J) denote the manifold R

2m
2q with its usual Kaehler structure given by

g = 1

4
(−

∑q

i=1
dxi ⊗ dxi + dyi ⊗ dyi +

∑m

i=q+1
dxi ⊗ dxi + dyi ⊗ dyi),

J(
∑m

i=1
(Xi∂xi + Yi∂yi)) =

∑m

i=1
(Yi∂xi −Xi∂yi),

where (xi, yi) are the cartesian coordinates on R
2m
2q .

Now, we construct some examples of radical transversal SCR-lightlike subman-
ifolds of an indefinite Kaehler manifold.

Example 1. Let (R16
4 , g, J) be an indefinite Kaehler manifold, where g is of signa-

ture (−,−,+,+,+,+,+,+,−,−,+,+,+,+,+,+) with respect to
{∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂x7, ∂x8, ∂y1, ∂y2, ∂y3, ∂y4, ∂y5, ∂y6, ∂y7, ∂y8}.

Suppose M is a submanifold of R16
4 given by x1 = −y3 = u1, x

3 = y1 = u2,
x1 = −y4 = u3, x

4 = −y1 = u4, x
5 = −y6 = u5, x

6 = y5 = u6, x
7 = y8 = u7,

x8 = y7 = u8.
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The local frame of TM is given by {Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8}, where

Z1 = 2(∂x1 − ∂y3), Z2 = 2(∂x3 + ∂y1),

Z3 = 2(∂x1 − ∂y4), Z4 = 2(∂x4 − ∂y1),

Z5 = 2(∂x5 − ∂y6), Z6 = 2(∂x6 + ∂y5),

Z7 = 2(∂x7 + ∂y8), Z8 = 2(∂x8 + ∂y7).

Hence RadTM = span {Z1, Z2, Z3, Z4} and S(TM) = span {Z5, Z6, Z7, Z8}.

Now ltr(TM) is spanned by N1 = ∂x1 + ∂y3, N2 = ∂x3 − ∂y1, N3 = 2(∂x1 +
∂y4), N4 = 2(∂x4 + ∂y1) and S(TM⊥) is spanned by

W1 = 2(∂x5 + ∂y6), W2 = 2(∂x6 − ∂y5),

W3 = 2(∂x7 − ∂y8), W4 = 2(∂x8 − ∂y7).

It follows that D1 = span {Z1, Z2} such that JZ1 = −Z2, JZ2 = Z1, which
implies that D1 is invariant with respect to J and D2 = span {Z3, Z4} such that
JZ3 = −N4, JZ4 = −N3, which implies that JD2 ⊂ ltr(TM). On the other hand,
we can see that D = span {Z5, Z6} such that JZ5 = −Z6, JZ6 = Z5, which implies
that D is invariant with respect to J and D⊥ = span {Z7, Z8} such that JZ7 = W4,
JZ8 = W3, which implies that D⊥ is anti-invariant with respect to J . Hence M is
a radical transversal SCR-lightlike submanifold of R16

4 .

Example 2. Let (R16
4 , g, J) be an indefinite Kaehler manifold, where g is of signa-

ture (−,−,+,+,+,+,+,+,−,−,+,+,+,+,+,+) with respect to
{∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂x7, ∂x8, ∂y1, ∂y2, ∂y3, ∂y4, ∂y5, ∂y6, ∂y7, ∂y8}.

Suppose M is a submanifold of R16
4 given by x3 = u1, y

3 = u2, x
2 = u1 cosα−

u2 sinα, y2 = u1 sinα + u2 cosα, x2 = u3, y2 = −u4, x4 = u3 cosβ − u4 sinβ,
y4 = u3 sinβ + u4 cosβ, x

5 = u5 cos γ, y
6 = u5 sin γ, x

6 = u6 sin γ, y
5 = −u6 cos γ,

x7 = u8 cos δ, y
8 = u8 sin δ, x

8 = u7 cos δ, y
7 = u7 sin δ.

The local frame of TM is given by {Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8}, where

Z1 = 2(∂x3 + cosα∂x2 + sinα∂y2), Z2 = 2(∂y3 − sinα∂x2 + cosα∂y2),

Z3 = 2(∂x2 + cosβ∂x4 + sinβ∂y4), Z4 = 2(−∂y2 − sinβ∂x4 + cosβ∂y4),

Z5 = 2(cos γ∂x5 + sin γ∂y6), Z6 = 2(sin γ∂x6 − cos γ∂y5),

Z7 = 2(cos δ∂x8 + sin δ∂y7), Z8 = 2(cos δ∂x7 + sin δ∂y8).

Hence RadTM = span {Z1, Z2, Z3, Z4} and S(TM) = span {Z5, Z6, Z7, Z8}.

Now ltr(TM) is spanned by N1 = −∂x3 + cosα∂x2 + sinα∂y2, N2 = −∂y3 −
sinα∂x2+cosα∂y2, N3 = 2(−∂x2+cosβ∂x4+sinβ∂y4), N4 = 2(−∂y2+sinβ∂x4−
cosβ∂y4) and S(TM⊥) is spanned by

W1 = 2(sin γ∂x5 − cos γ∂y6), W2 = 2(cos γ∂x6 + sin γ∂y5),

W3 = 2(sin δ∂x8 − cos δ∂y7), W4 = 2(sin δ∂x7 − cos δ∂y8).

It follows that D1 = span {Z1, Z2} such that JZ1 = −Z2, JZ2 = Z1, which
implies that D1 is invariant with respect to J and D2 = span {Z3, Z4} such that
JZ3 = N4, JZ4 = N3, which implies that JD2 ⊂ ltr(TM). On the other hand, we
can see that D = span {Z5, Z6} such that JZ5 = Z6, JZ6 = −Z5, which implies
that D is invariant with respect to J and D⊥ = span {Z7, Z8} such that JZ7 = W4,
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JZ8 = W3, which implies that D⊥ is anti-invariant with respect to J . Hence M is
a radical transversal SCR-lightlike submanifold of R16

4 .

Now, we denote the projection morphisms on D1, D2, D and D⊥ in TM by
P1, P2, P3 and P4 respectively. Similarly, we denote the projection morphisms of
tr(TM) on ν, JD2, µ and JD⊥ by Q1, Q2, Q3 and Q4 respectively, where ν and
µ are orthogonal complementry distributions of JD2 and JD⊥ in ltr(TM) and
S(TM⊥) respectively. Then, we get

(3.2) X = P1X + P2X + P3X + P4X, ∀X ∈ Γ(TM).

Now applying J to (3.2), we have

(3.3) JX = JP1X + JP2X + JP3X + JP4X.

Thus we get JP1X ∈ D1 ⊂ RadTM , JP2X ∈ JD2 ⊂ ltr(TM), JP3X ∈ D ⊂
S(TM), JP4X ∈ JD⊥ ⊂ S(TM⊥). Also, we have

(3.4) W = Q1W +Q2W +Q3W +Q4W, ∀W ∈ Γ(tr(TM)).

Applying J to (3.4), we obtain

(3.5) JW = JQ1W + JQ2W + JQ3W + JQ4W.

Thus we get JQ1W ∈ ν ⊂ ltr(TM), JQ2W ∈ D2 ⊂ RadTM , JQ3W ∈ µ ⊂
S(TM⊥) and JQ4W ∈ D⊥ ⊂ S(TM).

Now, by using (2.21), (3.3), (3.5) and (2.7)-(2.9) and identifying the components
on D1, D2, D, D⊥, ν, JD2, µ and JD⊥, we obtain

P1(∇XJP1Y ) + P1(∇XJP3Y )− P1(AJP2Y
X)− P1(AJP4Y

X)

= JP1∇XY,
(3.6)

P2(∇XJP1Y ) + P2(∇XJP3Y )− P2(AJP2Y
X)− P2(AJP4Y

X)

= JQ2h
l(X,Y ),

(3.7)

P3(∇XJP1Y ) + P3(∇XJP3Y )− P3(AJP2Y
X)− P3(AJP4Y

X)

= JP3∇XY,
(3.8)

P4(∇XJP1Y ) + P4(∇XJP3Y )− P4(AJP2Y
X)− P4(AJP4Y

X)

= JQ4h
s(X,Y ),

(3.9)

Q1h
l(X, JP1Y ) +Q1h

l(X, JP3Y ) +Q1∇
l
XJP2Y +Q1D

l(X, JP4Y )

= JQ1h
l(X,Y ),

(3.10)

Q2h
l(X, JP1Y ) +Q2h

l(X, JP3Y ) +Q2∇
l
XJP2Y +Q2D

l(X, JP4Y )

= JP2∇XY,
(3.11)
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Q3h
s(X, JP1Y ) +Q3h

s(X, JP3Y ) +Q3∇
s
XJP4Y +Q3D

s(X, JP2Y )

= JQ3h
s(X,Y ),

(3.12)

Q4h
s(X, JP1Y ) +Q4h

s(X, JP3Y ) +Q4∇
s
XJP4Y +Q4D

s(X, JP2Y )

= JP4∇XY.
(3.13)

Theorem 3.1. Let M be a radical transversal SCR-lightlike submanifold of an
indefinite Kaehler manifold M . Then µ is an invariant distribution with respect to
J .

Proof. Let M be a radical transversal SCR-lightlike submanifold of an indefinite
Kaehler manifold M . For any X ∈ Γ(µ), ξ ∈ Γ(RadTM) and N ∈ Γ(ltr(TM)), we
have g(JX, ξ) = −g(X, Jξ) = 0 and g(JX,N) = −g(X, JN) = 0. Thus JX has no
components in RadTM and ltr(TM).

Now, for X ∈ Γ(µ) and Y ∈ Γ(D⊥), we have g(JX, Y ) = −g(X, JY ) = 0, as
JY ∈ Γ(JD⊥), which implies that JX has no components in D⊥. Hence J(µ) ⊂
Γ(µ), which complete the proof.

Now we give a characterization theorem for radical transversal SCR-lightlike
submanifold.

Theorem 3.2. Let M be a lightlike submanifold of an indefinite complex space-
form (M(c), g), c 6= 0. Then M is a radical transversal SCR-lightlike submanifold
if and only if

(i) the maximal invariant subspace of TpM , p ∈ M defines a distribution D =
D1⊕D, where RadTM = D1⊕D2 and D is a non-degenerate invariant distribution
on M ,

(ii) g(R(ξ,N)ξ1, ξ2) 6= 0, for all ξ ∈ Γ(D1), N ∈ Γ(ltr(TM)) and ξ1, ξ2 ∈ Γ(D2),

(iii) g(R(X,Y )Z,W ) = 0, for all X,Y ∈ Γ(D) and Z,W ∈ Γ(D⊥), where D⊥

is the complementry distribution of D in S(TM).

Proof. Let M be a radical transversal SCR-lightlike submanifold of an indefinite
complex space-form (M(c), g), c 6= 0. Then proof of (i) follows from the definition
of radical transversal SCR-lightlike submanifold. For ξ ∈ Γ(D1), N ∈ Γltr(TM)
and ξ1, ξ2 ∈ Γ(D2), from (2.22), we have

(3.14) g(R(ξ,N)ξ1, ξ2) =
c

2
g(Jξ,N)g(ξ1, Jξ2).

Since D1 is invariant distribution, we obtain g(Jξ,N) 6= 0, ∀ξ ∈ Γ(D1), N ∈
Γltr(TM). Also JD2 ⊂ ltr(TM), so we get g(ξ1, Jξ2) 6= 0, ∀ξ1, ξ2 ∈ Γ(D2). Hence
g(R(ξ,N)ξ1, ξ2) 6= 0 for all ξ ∈ Γ(D1), N ∈ Γ(ltr(TM)) and ξ1, ξ2 ∈ Γ(D2), which
proves (ii). For X,Y ∈ Γ(D) and Z,W ∈ Γ(D⊥), from (2.22), we have

(3.15) g(R(X,Y )Z,W ) =
c

2
g(JX, Y )g(Z, JW ).
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In view of JW ∈ S(TM⊥), we have g(Z, JW ) = 0, ∀Z,W ∈ Γ(D⊥). Hence
g(R(X,Y )Z,W ) = 0, which proves (iii).

Now, conversely suppose that the conditions (i), (ii), (iii) are satisfied. Since
D1 is invariant distribution, we have g(Jξ,N) 6= 0 ∀ξ ∈ Γ(D1), N ∈ Γ(ltr(TM)).
Thus from (ii) and (3.14), we have g(ξ1, Jξ2) 6= 0 ∀ξ1, ξ2 ∈ Γ(D2), which implies
JD2 ⊂ ltr(TM).

Further, since D is non-degenerate invariant distribution, we may chooseX,Y ∈
Γ(D) such that g(JX, Y ) 6= 0. Thus from (iii) and (3.15), we have g(Z, JW ) = 0,
∀Z,W ∈ Γ(D⊥), which implies that JW have no components in (D⊥). For any
X ∈ Γ(D), we have g(JW,X) = −g(W,JX) = 0, which implies that JW have no
components in D.

Now, form (i) and (ii), we also have g(JW, ξ) = −g(W,Jξ) = 0 and g(JW,N) =
−g(W,JN) = 0, ∀ξ ∈ Γ(RadTM) and N ∈ Γ(ltr(TM)), which implies that JW

have no components in RadTM and ltr(TM). Thus, we get JD⊥ ⊆ S(TM⊥),
which completes the proof.

Theorem 3.3. Let M be a radical transversal SCR-lightlike submanifold of an in-
definite Kaehler manifold M . Then the induced connection ∇ is a metric connection
if and only if P3∇XJP1ξ = P3AJP2ξ

X, Q4h
s(X, JP1ξ) = 0 and Q4D

s(X, JP2ξ) =
0, ∀X ∈ Γ(TM) and ξ ∈ Γ(RadTM).

Proof. Let M be a radical transversal SCR-lightlike submanifold of an indefinite
Kaehler manifold M . Then the induced connection ∇ on M is a metric connection
if and only if RadTM is parallel distribution with respect to ∇ ([10]), i.e. ∇Xξ ∈
Γ(RadTM), ∀X ∈ Γ(TM), ∀ξ ∈ Γ(RadTM). From (2.21), we have

(3.16) ∇XJξ = J∇Xξ ∀X ∈ Γ(TM), ∀ξ ∈ Γ(RadTM).

From (2.7), (2.8), (2.19) and (3.16), we obtain

J∇XJP1ξ + Jhl(X, JP1ξ) + Jhs(X, JP1ξ)− JAJP2ξ
X+

J∇l
XJP2ξ + JDs(X, JP2ξ) +∇Xξ + hl(X, ξ) + hs(X, ξ) = 0.

(3.17)

Now, taking tangential components in (3.17), we get

JP1∇XJP1ξ + JP3∇XJP1ξ + JQ2h
l(X, JP1ξ) + JQ4h

s(X, JP1ξ)−

JP1AJP2ξ
X − JP3AJP2ξ

X + JQ2∇
l
XJP2ξ + JQ4D

s(X, JP2ξ) +∇Xξ = 0.

(3.18)

Thus ∇Xξ = JP1AJP2ξ
X − JP1∇XJP1ξ − JQ2h

l(X, JP1ξ) − JQ2∇
l
XJP2ξ ∈

Γ(RadTM) if and only if P3∇XJP1ξ = P3AJP2ξ
X , Q4h

s(X, JP1ξ) = 0 and

Q4D
s(X, JP2ξ) = 0, ∀X ∈ Γ(TM) and ξ ∈ Γ(RadTM), which completes the proof.
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Theorem 3.4. Let M be the radical transversal SCR-lightlike submanifold of an
indefinite Kaehler manifold M . Then D1 is integrable if and only if

(i) Q2h
l(Y, JP1X) = Q2h

l(X, JP1Y ) and Q4h
s(Y, JP1X) = Q4h

s(X, JP1Y ),

(ii) P3(∇XJP1Y ) = P3(∇Y JP1X), ∀X,Y ∈ Γ(D1).

Proof. Let M be the radical transversal SCR-lightlike submanifold of an indefinite
Kaehler manifold M . Let X,Y ∈ Γ(D1). From (3.8), we get P3(∇XJP1Y ) =
JP3∇XY , which gives P3(∇XJP1Y ) − P3(∇Y JP1X) = JP3[X,Y ]. In view of
(3.11), we haveQ2h

l(X, JP1Y ) = JP2∇XY . ThusQ2h
l(X, JP1Y )−Q2h

l(Y, JP1X)
= JP2[X,Y ]. Also from (3.13), we obtain Q4h

s(X, JP1Y ) = JP4∇XY , which gives
Q4h

s(X, JP1Y )−Q4h
s(Y, JP1X) = JP4[X,Y ]. This concludes the theorem.

Theorem 3.5. Let M be the radical transversal SCR-lightlike submanifold of an
indefinite Kaehler manifold M . Then D2 is integrable if and only if

(i) P1(AJP2Y
X) = P1(AY JP2X

Y ) and P3(AJP2Y
X) = P3(AJP2X

Y ),

(ii) Q4D
s(Y, JP2X) = Q4D

s(X, JP2Y ), ∀X,Y ∈ Γ(D2).

Proof. Let M be the radical transversal SCR-lightlike submanifold of an indefinite
Kaehler manifold M . Let X,Y ∈ Γ(D2). From (3.6), we get P1(AJP2Y

X) =

−JP1∇XY , which gives P1(AJP2X
Y )−P1(AJP2Y

X) = JP1[X,Y ]. In view of (3.8),

we obtain P3(AJP2Y
X) = −JP3∇XY , which implies P3(AJP2X

Y )−P3(AJP2Y
X) =

JP3[X,Y ]. Also from (3.13), we have Q4D
s(X, JP2Y ) = JP4∇XY , which gives

Q4D
s(X, JP2Y )−Q4D

s(Y, JP2X) = JP4[X,Y ]. This completes the proof.

Theorem 3.6. Let M be the radical transversal SCR-lightlike submanifold of an
indefinite Kaehler manifold M . Then D is integrable if and only if

(i) Q2h
l(Y, JP3X) = Q2h

l(X, JP3Y ) and Q4h
s(Y, JP3X) = Q4h

s(X, JP3Y ),

(ii) P1(∇XJP3Y ) = P1(∇Y JP3X), ∀X,Y ∈ Γ(D).

Proof. Let M be the radical transversal SCR-lightlike submanifold of an indefinite
Kaehler manifold M . Let X,Y ∈ Γ(D). From (3.6), we get P1(∇XJP3Y ) =
JP1∇XY , which gives P1(∇XJP3Y ) − P1(∇Y JP3X) = JP1[X,Y ]. In view of
(3.11), we haveQ2h

l(X, JP3Y ) = JP2∇XY . ThusQ2h
l(X, JP3Y )−Q2h

l(Y, JP3X)
= JP2[X,Y ]. Also from (3.13), we obtain Q4h

s(X, JP3Y ) = JP4∇XY , which
gives Q4h

s(X, JP3Y )−Q4h
s(Y, JP3X) = JP4[X,Y ]. Thus, we obtain the required

results.

Theorem 3.7. Let M be the radical transversal SCR-lightlike submanifold of an
indefinite Kaehler manifold M . Then D⊥ is integrable if and only if

(i) P1(AJP4Y
X) = P1(AY JP4X

Y ) and P3(AJP4Y
X) = P3(AJP4X

Y ),

(ii) Q2D
l(Y, JP4X) = Q2D

l(X, JP4Y ), ∀X,Y ∈ Γ(D⊥).
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Proof. Let M be the radical transversal SCR-lightlike submanifold of an indefinite
Kaehler manifold M . Let X,Y ∈ Γ(D⊥). From (3.6), we get P1(AJP4Y

X) =

−JP1∇XY , which gives P1(AJP4X
Y )−P1(AJP4Y

X) = JP1[X,Y ]. In view of (3.8),

we have P3(AJP4Y
X) = −JP3∇XY , which implies P3(AJP4X

Y )− P3(AJP4Y
X) =

JP3[X,Y ]. Also from (3.11), we obtain Q2D
l(X, JP4Y ) = JP2∇XY , which gives

Q2D
l(X, JP4Y )−Q2D

l(Y, JP4X) = JP2[X,Y ]. This proves the theorem.

4. Foliations Determined by Distributions

In this section, we obtain necessary and sufficient conditions for foliations deter-
mined by distributions to be totally geodesic on the radical transversal SCR-lightlike
submanifold of an indefinite Kaehler manifold.

Theorem 4.1. Let M be the radical transversal SCR-lightlike submanifold of an
indefinite Kaehler manifold M . Then RadTM defines a totally geodesic foliation in
M if and only if

(i) hl(X, JZ) = 0 and Dl(X, JW ) = 0,

(ii) ∇XJZ and AJWX have no components in Rad TM ,
∀X ∈ Γ(RadTM), Z ∈ Γ(D) and W ∈ Γ(D⊥).

Proof. Let M be the radical transversal SCR-lightlike submanifold of an indefinite
Kaehler manifold M . The distribution RadTM defines a totally geodesic foliation
if and only if ∇XY ∈ RadTM , ∀X,Y ∈ Γ(RadTM). Since ∇ is metric a con-
nection, from (2.7), (2.20) and (2.21), for any X,Y ∈ Γ(RadTM) and Z ∈ Γ(D),
we have g(∇XY, Z) = g(∇XJY, JZ), which gives g(∇XY, Z) = −g(∇XJZ, JY ) =
−g(∇XJZ, JP2Y ) − g(hl(X, JZ), JP1Y ). In view of (2.7), (2.20) and (2.21), for
any X,Y ∈ Γ(RadTM) and W ∈ Γ(D⊥), we obtain g(∇XY,W ) = g(∇XJY, JW ),
which implies g(∇XY,W ) = g(AJWX, JP2Y ) − g(Dl(X, JW ), JP1Y ). This com-
pletes the proof.

Theorem 4.2. Let M be the radical transversal SCR-lightlike submanifold of an
indefinite Kaehler manifold M . Then D defines a totally geodesic foliation in M if
and only if AJWX, AJQ1N

X and A∗

JQ2N
X have no components in D, ∀X ∈ Γ(D),

∀N ∈ Γ(ltr(TM)) and ∀W ∈ Γ(D⊥).

Proof. Let M be the radical transversal SCR-lightlike submanifold of an indefinite
Kaehler manifold M . The distribution D defines a totally geodesic foliation if and
only if ∇XY ∈ D, ∀X,Y ∈ Γ(D). Since ∇ is metric a connection, from (2.7),
(2.20) and (2.21), for any X,Y ∈ Γ(D) and W ∈ Γ(D⊥), we have g(∇XY,W ) =
g(∇XJY, JW ), which gives g(∇XY,W ) = −g(∇XJW, JY ) = g(AJWX, JY ). In
view of (2.7), (2.20) and (2.21), for any X,Y ∈ Γ(D) and N ∈ Γ(ltr(TM)), we ob-
tain g(∇XY,N) = g(∇XJY, JN), which implies g(∇XY,N) = −g(JY,∇X(JQ1N+
JQ2N)). This concludes the theorem.



286 A. Yadav

Theorem 4.3. Let M be the radical transversal SCR-lightlike submanifold of an
indefinite Kaehler manifold M . Then D⊥ defines a totally geodesic foliation in M

if and only if

(i) Ds(X, JQ1N) = 0 and hs(X, JQ2N) = 0, ∀N ∈ Γ(ltr(TM)),

(ii)hs(X, JZ) = 0, ∀X ∈ Γ(D⊥) and ∀Z ∈ Γ(D).

Proof. Let M be the radical transversal SCR-lightlike submanifold of an indefi-
nite Kaehler manifold M . The distribution D⊥ defines a totally geodesic foliation
if and only if ∇XY ∈ D⊥, ∀X,Y ∈ Γ(D⊥). Since ∇ is metric a connection,
in view of (2.7), (2.20) and (2.21), for any X,Y ∈ Γ(D⊥) and Z ∈ Γ(D), we
have g(∇XY, Z) = g(∇XJY, JZ), which gives g(∇XY, Z) = −g(∇XJZ, JY ) =
g(hs(X, JZ), JY ). From (2.7), (2.20) and (2.21), for any X,Y ∈ Γ(D⊥) and N ∈
Γ(ltr(TM)), we obtain g(∇XY,N) = g(∇XJY, JN), which implies g(∇XY,N) =
−g(∇X(JQ1N + JQ2N), JY ) = −g(hs(X, JQ2N)+Ds(X, JQ1N), JY ). Thus, we
obtain the required results.
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