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Abstract. In this paper, we have investigated some topological properties of sets in
a given gradual normed space. We have stated gradual Hausdorff property and then,
we have studied the relationship between gradual closed sets and gradual compact sets.
Also, we have given a result about having the closure point for an infinite set in a
gradual normed space. In the end, we have provided some illustrative examples.
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1. Introduction

In 1965, Zadeh first introduced a new class of sets named fuzzy sets to quantify
some linguistic terms and stated these terms mathematically [12]. Indeed, fuzzy sets
are generalization of classical sets and also, under certain conditions, we consider
a fuzzy subset as a fuzzy number. But, when we study this notion in fuzzy metric
spaces, the term fuzzy number is used instead of fuzzy intervals.

From this point of view, fuzzy numbers are generalization of intervals, not num-
bers. On the other hand, some algebraic properties of numbers not hold for fuzzy
numbers. These problems have been implied to avoid confusion between the re-
searchers.

In this way, in 2006, Fortin, Dubois and Fargier introduced gradual numbers
as elements of fuzzy intervals [5]. In this new structure, gradual numbers are con-
sidered as an unique generalization of real numbers which are equipped with all
algebraic properties of classical real numbers [5]. Since then, gradual numbers have
been applied as a strong tool for computations and optimization problems.

In [7], Kasperski et al. investigated gradual numbers and applied this notion
to solving combinatorial optimization problems. Some years later, Fortin et al. [6]
suggested some methods for evaluating the optimality by using gradual numbers.
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For more details about other applications of gradual numbers, see ([1], [2], [8], [11],
[13], [14]).

Recently, Sadeqi and Azari [9] have studied some properties of gradual numbers
and introduced gradual normed linear space. In [4], Ettefagh et al. investigated
some properties of sequences in gradual normed spaces.

Motivated by above works, in this paper, we have investigated some topological
properties of sets in a given gradual normed space. We have stated gradual Haus-
dorff property and then, we have studied the relationship between gradual closed
sets and gradual compact sets. Also, we have given a result about having the closure
point for an infinite set in a gradual normed space. Finally, in the last section, we
have presented some illustrative examples.

2. Preliminaries

In this section, we recall some basic definitions and theorems on the gradual numbers
and gradual normed space. For more details, see ([3], [5], [9]).

Definition 2.1. ([5]) A gradual real number r̃ is defined by an assignment function
Ar̃ from (0, 1] to the set of real numbers R. The set of all gradual real numbers is
denoted by G(R). We say that a gradual real number r̃ is non-negative if for each
α ∈ (0, 1], Ar̃(α) ≥ 0. The set of all non-negative gradual real numbers is denoted
by G∗(R).

The gradual operations on the elements of G(R) can be defined as follows.

Definition 2.2. ([5]) Assume that ∗ is any operation in real numbers and r̃1 and
r̃2 are two arbitrary gradual numbers with assignment functions Ar̃1 and Ar̃2 , re-
spectively. Then r̃1 ∗ r̃2 is the gradual number with an assignment function Ar̃1∗r̃2
given by

Ar̃1∗r̃2(α) = Ar̃1(α) ∗Ar̃2(α), (α ∈ (0, 1]).

Then, the gradual addition r̃1 + r̃2 and the gradual scalar multiplication cr̃(c ∈ R)
are defined by

Ar̃1+r̃2(α) = Ar̃1(α) +Ar̃2(α), Acr̃(α) = cAr̃(α),

for each α ∈ (0, 1].

For each real number t ∈ R, the constant gradual number t̃ is defined by
At̃(α) = t for each α ∈ (0, 1]. In particular, 0̃ and 1̃ are constant gradual num-
bers defined by A0̃(α) = 0 and A1̃(α) = 1, respectively. It can be easily proved that
G(R) with the gradual addition and gradual scalar multiplication is a real linear
space [5].

Definition 2.3. ([7]) Let r̃, s̃ ∈ G(R). The partial order relation ≤ in G(R) is
defined by r̃ ≤ s̃ if and only if Ar̃(α) ≤ As̃(α) for all α ∈ (0, 1].
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Theorem 2.1. ([7]) Let r̃, s̃, t̃ ∈ G(R). We have

(i) if r̃ ≤ s̃, then r̃ − t̃ ≤ s̃− t̃;

(ii) if r̃ ≤ s̃ and 0̃ ≤ t̃, then r̃ · t̃ ≤ s̃ · t̃ and
r̃

t̃
≤ s̃

t̃
, t̃ 6= 0̃;

(iii)
(r̃ · s̃)
t̃

= r̃ · ( s̃
t̃
), t̃ 6= 0̃.

Definition 2.4. ([9]) Let X be a real vector space and x, y ∈ X. The mapping
‖ · ‖G from X to G∗(R) is called a gradual norm on X if for each α ∈ (0, 1], we have

(G1) A‖x‖G(α) = A0̃(α) iff x = 0;

(G2) A‖kx‖G(α) = |k|A‖x‖G(α); (k ∈ R)

(G3) A‖x+y‖G(α) ≤ A‖x‖G(α) +A‖y‖G(α).

Then the pair (X, ‖ · ‖G) is called a gradual normed space (GNS).

Example 2.1. ([9]) (i) Let X = Rn. For each α ∈ (0, 1] and x = (x1, . . . , xn) ∈ Rn,
consider the function ‖ · ‖G : Rn → G∗(R) by

A‖x‖G(α) = eα
n∑
i=1

|xi|.

Then ‖ · ‖G is a gradual norm on Rn and (Rn, ‖ · ‖G) is a gradual normed linear space.
(ii) Let X = C([0, 1]) be the space of all continuous real-valued functions on [0, 1]. Consider

two norms on C([0, 1]) by ‖f‖0 =
(∫ 1

0

|f(t)|2 dt
) 1

2
and ‖f‖1 = max

0≤t≤1
{|f(t)|}. Now, the

function ‖ · ‖G : C[0, 1]→ G∗(R) defined by

A‖f‖G(λ) =


‖f‖0, 0 < λ ≤ 1

2

‖f‖1,
1

2
< λ ≤ 1

is a gradual norm on X.

Definition 2.5. ([9]) Let X be a gradual normed space. A gradual neighborhood
of x0 ∈ X with radius of ε > 0 is defined by

x0 +N(α, ε) = {x : A‖x−x0‖G(α) < ε}, α ∈ (0, 1].

In particular, if x0 = 0, then N(α, ε) = {x : A‖x‖G(α) < ε}.

Lemma 2.1. ([9]) Let X be a gradual normed space and α ∈ (0, 1] and ε > 0. We
have
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(N1) N(α, ε) = εN(α, 1);

(N2) if ε1 ≤ ε2, then N(α, ε1) ⊆ N(α, ε2);

(N3) if for every x ∈ X, the assignment function A‖x‖G be decreasing and α1 ≤ α2,
then N(α1, ε) ⊆ N(α2, ε).

Definition 2.6. ([9]) Let X be a gradual normed space and A ⊆ X. Then

(H1) the point x0 ∈ X is called a closure point of A if for each α ∈ (0, 1], we have

(x0 +N(α, α)) ∩A 6= Ø.

The set of all closure points of A is denoted by Ā.

(H2) The point x0 ∈ X is called a limit point of A if for each α ∈ (0, 1],
(x0 +N(α, α))∩A contains at least one point of A different from x0 itself, or

(x0 +N(α, α))∗ ∩A 6= Ø,

where (x0 +N(α, α))∗ = (x0 +N(α, α))\{x0}.

(H3) the point x0 ∈ A is called an interior point of A if there exists N(α0, ε0) such
that x0 + N(α0, ε0) ⊆ A. The set of all interior points of A is denoted by
IntA.

(H4) the set A is said to be gradual closed set iff Ā = A.

(H5) the set A is said to be gradual open set iff IntA = A.

The following theorems state an effective relationship between gradual open sets
and gradual closed sets.

Theorem 2.2. Let (X, ‖ · ‖G) be a gradual normed space and for every x ∈ X,
A‖x‖G be a decreasing function. If B is the gradual open subset of X, then X \ B
is gradual closed.

Proof. Let B be a gradual open set and x0 be a closure point of X \ B. Then for
each α ∈ (0, 1], we have (x0 +N(α, α)) ∩ (X \B) 6= Ø and so (x0 +N(α, α)) * B.
Now, for each ε > 0 and α ∈ (0, 1], let α0 = min{α, ε}. Thus we have

(x0 +N(α0, α0)) ⊆ (x0 +N(α, ε))

and then (x0 +N(α, ε)) * B. Hence x0 /∈ IntB = B or x0 ∈ X \B and we conclude
that X \B is gradual closed.

Theorem 2.3. Let (X, ‖ · ‖G) be a gradual normed space. For every subset B of
X, if X \B is the gradual closed set, then B is gradual open set.

Proof. Suppose that X \ B is a gradual closed set. Then X \B = X \ B. Let
x0 ∈ B, thus x0 /∈ X \B = X \B. Hence for some α ∈ (0, 1],

(x0 +N(α, α)) ∩ (X \B) = Ø,

or (x0 + N(α, α)) ⊆ B. We conclude that x0 is an interior point for B and B is a
gradual open set.
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3. Main Results

Now, in this section, we are ready to state main results.

Theorem 3.1. Let (X, ‖ · ‖G) be a gradual normed space and A and B be subsets
of X. Then

(i) (A ∩B) ⊆ Ā ∩ B̄ and (A ∪B) = Ā ∪ B̄.

(ii) if every assignment function is decreasing, we have

Int(A) ∪ Int(B) ⊆ Int(A ∪B) and Int(A ∩B) = Int(A) ∩ Int(B).

Proof. (i) Let x ∈ (A ∩B). Then for every α ∈ (0, 1], we have

(x+N(α, α)) ∩ (A ∩B) 6= Ø.

So for every α ∈ (0, 1], we have (x+N(α, α))∩A 6= Ø and (x+N(α, α))∩B 6= Ø.
This shows that x ∈ Ā ∩ B̄.

Also, x ∈ (A ∪B) if and only if for every α ∈ (0, 1], we have

(x+N(α, α)) ∩ (A ∪B) 6= Ø.

Thus, one can write (x+N(α, α)) ∩A 6= Ø or (x+N(α, α)) ∩B 6= Ø. This means
that x ∈ Ā ∪ B̄.

(ii) Let x ∈ Int(A) ∪ Int(B). Then x ∈ Int(A) or x ∈ Int(B). So for some
α1, α2 ∈ (0, 1] and ε1, ε2 > 0, we have

(x+N(α1, ε1)) ⊂ A or (x+N(α2, ε2)) ⊂ B.

Now, let α < min{α1, α2} and ε < min{ε1, ε2}. Since every assignment function is
decreasing, thus (x+N(α, ε)) ⊂ (A ∪B) and we get x ∈ Int(A ∪B).

One can similarly prove the equality Int(A∩B) = Int(A)∩Int(B) and we omit
this part of the proof.

Theorem 3.2. Let (X, ‖ · ‖G) be a gradual normed space. Then

(i) for any collection {Gγ}γ of gradual open sets,
⋃
γ Gγ is a gradual open set.

(ii) for any collection {Fγ}γ of gradual closed sets,
⋂
γ Fγ is a gradual closed set.

Proof. (i) Let {Gγ}γ be an arbitrary collection of gradual open sets and let
x ∈

⋃
γ Gγ . Then, there is some γ0 such that x ∈ Gγ0 . Since Gγ0 is a gradual

open set, thus there exists α ∈ (0, 1] and ε > 0 such that

(x+N(α, ε)) ⊆ Gγ0 ⊆
⋃
γ

Gγ .
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Consequently,
⋃
γ Gγ is a gradual open set.

(ii) Let {Fγ}γ be an arbitrary collection of gradual closed sets and put
F =

⋂
γ Fγ . If x ∈ F̄ , then for each α ∈ (0, 1], we have (x + N(α, α)) ∩ F 6= Ø.

Hence for every γ, we have (x + N(α, α)) ∩ Fγ 6= Ø and so x ∈ F̄γ . On the other
hand, since for each γ, Fγ is a gradual closed set, so x ∈ F̄γ implies that x ∈ Fγ .
Therefore x ∈

⋂
γ Fγ = F . This shows that F̄ ⊆ F and so F is a gradual closed

set.

Now, for the finite number of gradual open (closed) sets, we have the following
theorem.

Theorem 3.3. Let (X, ‖ · ‖G) be a gradual normed space. Hence

(i) if every assignment function is decreasing, then for any finite collection
G1, G2, · · · , Gn of gradual open sets,

⋂n
i=1Gi is a gradual open set.

(ii) for any finite collection F1, F2, · · · , Fn of gradual closed sets,
⋃n
i=1 Fi is a

gradual closed set.

Proof. (i) Let G1, G2, · · · , Gn be a finite collection of gradual open sets and let
x ∈

⋂n
i=1Gi be an arbitrary element. Then for any 1 ≤ i ≤ n, x ∈ Gi. But

every Gi is a gradual open set, thus for each 1 ≤ i ≤ n, there are αi ∈ (0, 1]
and εi > 0 such that (x + N(αi, εi)) ⊆ Gi. Put α < min{α1, α2, · · · , αn} and
ε < min{ε1, ε2, · · · , εn}. Since for each x ∈ X, the assignment function A‖x‖G is
decreasing, so we have N(α, ε) ⊆ N(αi, εi), for all 1 ≤ i ≤ n. Thus

(x+N(α, ε)) ⊆ (x+N(αi, εi)) ⊆ Gi.

Therefore, (x+N(α, ε)) ⊆
⋂n
i=1Gi. Hence

⋂n
i=1Gi is a gradual open set.

(ii) Since each Fi is gradual closed, thus F̄i = Fi. Now, suppose that

x0 ∈
⋃n
i=1 Fi, so for each α ∈ (0, 1], we have

(x0 +N(α, α)) ∩
( n⋃
i=1

Fi
)
6= Ø.

This means that for each α ∈ (0, 1], there exists 1 ≤ i ≤ n with

(x0 +N(α, α)) ∩ Fi 6= Ø,

and so x0 ∈ F̄i = Fi. Therefore, x0 ∈
⋃n
i=1 Fi. Hence, we conclude that⋃n

i=1 Fi ⊆
⋃n
i=1 Fi and the proof is completed.

Theorem 3.4. (Gradual Hausdorff property) Let (X, ‖ · ‖G) be a gradual
normed space and x, y ∈ X with x 6= y. Then there exists two disjoint neighborhoods
of x and y.
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Proof. Since x 6= y, so for each α ∈ (0, 1], we have A‖x−y‖G(α) 6= A0̃(α). Thus,

there is α0 ∈ (0, 1] such that A‖x−y‖G(α0) > 0. Put ε0 < 1
2A‖x−y‖G(α0) and

we claim that (x + N(α0, ε0)) ∩ (y + N(α0, ε0)) = Ø. To prove this claim, let
z ∈ (x + N(α0, ε0)) ∩ (y + N(α0, ε0)). Then, we have A‖x−z‖G(α0) < ε0 and
A‖y−z‖G(α0) < ε0. Now, one can write

A‖x−y‖G(α0) ≤ A‖x−z‖G(α0) +A‖y−z‖G(α0)

< 2ε0 < A‖x−y‖G(α0)

and this is a contradiction.

Theorem 3.5. Let B be a subset of the gradual normed space (X, ‖ · ‖G) and for
each x ∈ X, the assignment function A‖x‖G be decreasing. If x0 is a limit point of
B, then every neighborhood of x0 contains infinitely many points of B.

Proof. Suppose that there exists α ∈ (o, 1] and ε > 0 such that the neighborhood
(x0 + N(α, ε)) of x0 contains only finite number of elements of B, i.e.
(x0 +N(α, ε)) ∩B = {y1, y2, . . . , yn}. Put

ε0 < min{A‖x0−y1‖G(α), A‖x0−y2‖G(α), . . . , A‖x0−yn‖G(α)}.

Since ε0 < ε, hence (x0 +N(α, ε0)) ⊂ (x0 +N(α, ε)). Now, we claim that the neigh-
borhood (x0 + N(α, ε0)) contains no point of B. Indeed, if for some
i(i = 1, 2, . . . , n), yi ∈ (x0 +N(α, ε0)), then we have

A‖x0−yi‖G(α) < ε0 < A‖x0−yi‖G(α)

and this is a contradiction. Therefore (x0 + N(α, ε0))∗ ∩ B = Ø. Now, put
α0 < min{ε0, α}. So, we have α0 < ε0 and α0 < α. Since every assignment
function is decreasing, thus

(x0 +N(α0, α0)) ⊂ (x0 +N(α, ε0)).

Hence, it is followed that (x0 +N(α0, α0))∗∩B = Ø, which contradicts to the being
limit point x0 for B and the proof is completed.

Now, we define the new concept ”gradual compact set” in a gradual normed
space.

Definition 3.1. Let (X, ‖ · ‖G) be a gradual normed space and K be an arbitrary
nonempty subset of X. We say that K is a gradual compact set if for each cover
{Vi}i∈I of gradual open sets for K, there exists finite number Vi(i = 1, · · · , n) such
that K ⊆

⋃n
i=1 Vi.

Theorem 3.6. Let (X, ‖ · ‖G) be a gradual normed space and for each x ∈ X,
the assignment function A‖x‖G be decreasing. Then every gradual compact set is
gradual closed.
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Proof. Let K be a gradual compact subset of X. We will show that X \ K is a
gradual open set. For this, assume that p ∈ (X \K) and for each q ∈ K, consider
neighborhoods Vq = (p+N(α0, ε)) and Wq = (q+N(α0, ε)) for p and q, respectively,
where α0 ∈ (0, 1] is a fixed number and

ε <
1

2
A‖p−q‖G(α0).

For each q ∈ K, we have Vq ∩ Wq = Ø; because if z ∈ Vq ∩ Wq, then we get
A‖z−p‖G(α0) < ε and A‖z−q‖G(α0) < ε. So

A‖p−q‖G(α0) < 2ε < A‖p−q‖G(α0)

which is a contradiction.
Now, the cover

⋃
q∈KWq of gradual open sets for K has finite subcover as

follows:

∃ q1, q2, · · · , qn ∈ K s.t. K ⊆
n⋃
i=1

Wqi .

Let V =
⋂n
i=1 Vqi . Since V is a finite intersection of gradual open sets containing p

and each assignment function is decreasing, so by Theorem 3.3 (i), V is a gradual
open set containing p. Therefore V ∩K = Ø and so V ⊆ (X \K). This proves that
X \K is a gradual open set and by Theorem 2.2, K is a gradual closed set.

Theorem 3.7. Let (X, ‖ · ‖G) be a gradual normed space and K be a gradual
compact subset of X. If F is a gradual closed subset of K, then F is gradual
compact.

Proof. Suppose that {Vi}i∈I is a cover of gradual open subsets for F . By Theorem
2.3, X \F is a gradual open subset and so {Vi}i∈I ∪ (X \F ) is a cover for K. Since
K is gradual compact, there exists a finite cover {Vi}ni=1 ∪ (X \ F ) for K. This
implies that {Vi}ni=1 is a finite cover for F . Hence F will be a gradual compact
set.

Corollary 3.1. Let (X, ‖ · ‖G) be a gradual normed space such that every assign-
ment function is decreasing. Suppose that F and K are gradual closed and gradual
compact subsets of X, respectively. Then F ∩K is a gradual compact set.

Proof. This is a consequence of Theorems 3.6, 3.7 and 3.2(ii).

Finally, we give the last result about having closure point for an infinite set in
a gradual normed space. This property is like to Bolzano-Weierstrass property in
metric spaces [10].

Theorem 3.8. Let (X, ‖ · ‖G) be a gradual normed space and E be an infinite
subset of the gradual compact set K. Then E has the limit point in K.
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Proof. Suppose that every x ∈ K is not a limit point of E. Then there exists
αx ∈ (0, 1] such that (x+N(αx, αx))∗ ∩ E = Ø. Hence, if x ∈ E is arbitrary, then
(x+N(αx, αx)) ∩ E = {x}. This shows that there is no finite collection of infinite
cover {x+N(αx, αx)}x∈E of gradual open sets for E which covers the set E.
Now, let {Gi}i∈I be an arbitrary cover of gradual open sets for K \ E. Then

{x+N(αx, αx)}x∈E ∪ {Gi}i∈I

is a cover of gradual open sets for K which contains no finite subcover and this
contradicts to the gradual compactness of K.

4. Examples

The following examples are generalizations of the Example 2.1. Also we have some
arguments about gradual interior and gradual closure points in each example.

Example 4.1. Let (X, ‖ · ‖) be a real normed space. We define the function
‖ · ‖G : X → G∗(R) by

A‖x‖G(α) = f(α)‖x‖; (α ∈ (0, 1], x ∈ X)

where f : (0, 1]→ R+ is a nonzero function. One can easily verify that ‖ · ‖G is a gradual
norm on X. Also, if we denote the neighborhoods in (X, ‖ · ‖) by

Nε(x) = {a ∈ X : ‖x− a‖ < ε}, (ε > 0),

then in gradual normed space (X, ‖ · ‖G), for ε > 0 and α ∈ (0, 1] we have

N(α, ε) = N ε
f(α)

(0)

and for x ∈ X, (x+N(α, ε)) = N ε
f(α)

(x).

Hence we conclude that Int(A) = IntG(A), where Int(A) and IntG(A) denote the set of
all interior points of A in (X, ‖ · ‖) and (X, ‖ · ‖G), respectively.
Now, suppose that A ⊂ X and x ∈ X is a closure point of A in (X, ‖ · ‖). Then for every

ε > 0 , we have Nε(x) ∩A 6= Ø. Thus for every α ∈ (0, 1] and ε =
α

f(α)
, we can write

(x+N(α, α)) ∩A = N α
f(α)

(x) ∩A 6= Ø,

and we conclude that x is a closure point of A in (X, ‖ · ‖G) or Ā ⊂ ĀG, in which Ā and
ĀG denote the closure of A in (X, ‖ · ‖) and (X, ‖ · ‖G), respectively.

Example 4.2. Let ‖·‖1 and ‖·‖2 be two norms on real vector space X such that they are
not equivalent norms. For x ∈ X and α ∈ (0, 1], we define the function ‖ ·‖G : X → G∗(R)
by

A‖x‖G(α) =


‖x‖1, 0 < α ≤ 1

2

‖x‖2,
1

2
< α ≤ 1
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It is easy to check that (X, ‖ · ‖G) will be a gradual normed space. This example can be
extended to a finite number of non-equivalent norms.
Now, for x ∈ X and ε > 0, let

1Nε(x) = {a ∈ X : ‖x− a‖1 < ε},

2Nε(x) = {a ∈ X : ‖x− a‖2 < ε}.
Therefore in (X, ‖ · ‖G), we can write for ε > 0 and α ∈ (0, 1],

N(α, ε) = {x ∈ X : A‖x‖G(α) < ε} =


1Nε(0), 0 < α ≤ 1

2

2Nε(0),
1

2
< α ≤ 1 ,

and also for x ∈ X,

(x+N(α, ε)) =


1Nε(x), 0 < α ≤ 1

2

2Nε(x),
1

2
< α ≤ 1 .

Then we can conclude that

IntG(A) = Int1(A) ∪ Int2(A),

where IntG(A), Int1(A) and Int2(A) denote the set of all interior points of A in (X, ‖·‖G),
(X, ‖ · ‖1) and (X, ‖ · ‖2), respectively.
Now, suppose that x ∈ ĀG. So for every α ∈ (0, 1], (x+N(α, α)) ∩ A 6= Ø; In particular,

it will be true for each α ∈ (0,
1

2
]. This shows that ĀG ⊂ Ā1, where Ā1 denote the closure

of A in the space (X, ‖ · ‖1). Finally, suppose that x ∈ Ā1 ∩ Ā2. Then for each α > 0, we

have 1Nα(x) ∩A 6= Ø and 2Nα(x) ∩A 6= Ø. Consequently, for each α ∈ (0,
1

2
], we have

(x+N(α, α)) ∩A = 1Nα(x) ∩A 6= Ø,

and for each α ∈ (
1

2
, 1], we have

(x+N(α, α)) ∩A = 2Nα(x) ∩A 6= Ø.

This shows that x ∈ ĀG and we conclude that (Ā1 ∩ Ā2) ⊂ ĀG.
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