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ON ALMOST PARACONTACT ALMOST PARACOMPLEX

RIEMANNIAN MANIFOLDS ∗

Mancho H. Manev and Veselina R. Tavkova

Abstract. Almost paracontact manifolds of odd dimension having an almost para-
complex structure on the paracontact distribution are studied. The components of the
fundamental (0,3)-tensor, derived by the covariant derivative of the structure endo-
morphism and the metric on the considered manifolds in each of the basic classes are
obtained. Then, the case of the lowest dimension 3 of these manifolds is considered.
An associated tensor of the Nijenhuis tensor is introduced and the studied manifolds
are characterized with respect to this pair of tensors. Moreover, a cases of paracontact
and para-Sasakian types are commented. A family of examples is given.
Keywords: Paracontact manifold; Riemannian manifold; tensor; metric.

1. Introduction

In 1976, on a differentiable manifold of arbitrary dimension, I. Sato introduced
in [10] the concept of (almost) paracontact structure compatible with a Riemannian
metric as an analogue of almost contact Riemannian manifold. Then, he studied
several properties of the considered manifolds. Later, a lot of geometers develop the
differential geometry of these manifolds and in particular of paracontact Riemannian
manifolds and para-Sasakian manifolds. In the beginning are the papers [11], [1],
[12], [13] and [9] by I. Sato, T. Adati, T. Miyazawa, K. Matsumoto and S. Sasaki.

On an almost paracontact manifold can be considered two kinds of metrics
compatible with the almost paracontact structure. If the structure endomorphism
induces an isometry on the paracontact distribution of each tangent fibre, then
the manifold has an almost paracontact Riemannian structure as in the papers
mentioned above. In the case when the induced transformation is antiisometry,
then the manifold has a structure of an almost paracontact metric manifold, where
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the metric is semi-Riemannian of type (n + 1, n). This case is studied by many
geometers, see for example the papers [7], [14] of S. Zamkovoy and G. Nakova.

In 2001, M. Manev and M. Staikova give a classification in [6] of almost paracon-
tact Riemannian manifold of type (n, n) according to the notion given by Sasaki in
[9]. These manifolds are of dimension 2n+1 and the induced almost product struc-
ture on the paracontact distribution is traceless, i.e. it is an almost paracomplex
structure.

In the present paper, we continue investigations on these manifolds. The paper
is organized as follows. In Sect. 2., we recall some facts about the almost paracon-
tact Riemannian manifolds of the considered type and we make some additional
comments. In Sect. 3., we reduce the basic classes of the considered manifolds in
the case of the lowest dimension 3. In Sect. 4. and Sect. 5., we find the class of
paracontact type and the class of normal type of the manifolds studied, respectively,
and we obtain some related properties. In Sect. 6., we introduce an associated Ni-
jenhuis tensor and we discuss relevant problems. In Sect. 7., we argue that the
classes of the considered manifolds can be determined only by the pair of Nijenhuis
tensors. Finally, in Sect. 8., we construct a family of Lie groups as examples of the
manifolds of the studied type and we characterize them in relation with the above
investigations.

2. Almost paracontact almost paracomplex Riemannian manifolds

Let (M, φ, ξ, η) be an almost paracontact manifold, i.e. M is an m-dimensional
real differentiable manifold with an almost paracontact structure (φ, ξ, η) if it admits
a tensor field φ of type (1, 1) of the tangent bundle, a vector field ξ and a 1-form η,
satisfying the following conditions:

φξ = 0, φ2 = I − η ⊗ ξ, η ◦ φ = 0, η(ξ) = 1,(2.1)

where I is the identity on the tangent bundle [10].

In [9], it is considered the so-called almost paracontact manifold of type (p, q),
where p and q are the numbers of the multiplicity of the φ’s eigenvalues +1 and −1,
respectively. Moreover, φ has a simple eigenvalue 0. Therefore, we have trφ = p−q.

Let us recall that an almost product structure P on an differentiable manifold
of arbitrary dimension m is an endomorphism on the manifold such that P 2 = I.
Then a manifold with such a structure is called an almost product manifold. In the
case when the eigenvalues +1 and −1 of P have one and the same multiplicity n, the
structure P is called an almost paracomplex structure and the manifold is known as
an almost paracomplex manifold of dimension 2n [2]. Then trP = 0 follows.

Further we consider the case when the dimension of M is m = 2n + 1. Then
H = ker(η) is the 2n-dimensional paracontact distribution of the tangent bundle
of (M, φ, ξ, η), the endomorphism φ acts as an almost paracomplex structure on
each fiber of H and the pair (H, φ) induces a 2n-dimensional almost paracomplex
manifold. Then we give the following
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Definition 2.1. A (2n + 1)-dimensional differentiable manifold with a structure
(φ, ξ, η) defined by (2.1) and trφ = 0 is called almost paracontact almost paracomplex
manifold. We denote it by (M, φ, ξ, η).

Now we can introduce a metric on the considered manifold. It is known from
[10] that M admits a Riemannian metric g which is compatible with the structure
of the manifold by the following way:

g(φx, φy) = g(x, y)− η(x)η(y), g(x, ξ) = η(x).(2.2)

Here and further x, y, z will stand for arbitrary elements of the Lie algebra X(M)
of tangent vector fields on M or vectors in the tangent space TpM at p ∈ M.

In [11], an almost paracontact manifold of arbitrary dimension with a Rieman-
nian metric g defined by (2.2) is called an almost paracontact Riemannian manifold.

It is easy to conclude that the requirement for a positive definiteness of the metric
is not necessary, i.e g can be a pseudo-Riemannian metric. Then, since g(ξ, ξ) = 1
follows from (2.1) and (2.2), the signature of g has the form (2k+1, 2n−2k), k < n.
Since the signature of the metric is not crucial for our considerations, we suppose
that g is Riemannian.

Definition 2.2. Let the manifold (M, φ, ξ, η) be equipped with a Riemannian
metric g satisfying (2.2). Then (M, φ, ξ, η, g) is called an almost paracontact almost
paracomplex Riemannian manifold.

The decomposition x = φ2x+η(x)ξ due to (2.1) generates the projectors h and v

on any tangent space of (M, φ, ξ, η). These projectors are determined by hx = φ2x

and vx = η(x)ξ and have the properties h ◦ h = h, v ◦ v = v, h ◦ v = v ◦ h = 0.
Therefore, we have the orthogonal decomposition TpM = h(TpM)⊕ v(TpM). Ob-
viously, it generates the corresponding orthogonal decomposition of the space S of
the tensors S of type (0,2) over (M, φ, ξ, η). This decomposition is invariant with
respect to transformations preserving the structures of the manifold. Hereof, we
use the following linear operators in S:

ℓ1(S)(x, y) = S(hx, hy), ℓ2(S)(x, y) = S(vx, vy),

ℓ3(S)(x, y) = S(vx, hy) + S(hx, vy).
(2.3)

Namely, we have the following decomposition:

S = ℓ1(S)⊕ ℓ2(S) ⊕ ℓ3(S), ℓi(S) = {S ∈ S | S = ℓi(S)} , i = 1, 2, 3.

The associated metric g̃ of g on (M, φ, ξ, η, g) is defined by g̃(x, y) = g(x, φy) +
η(x)η(y). It is shown that g̃ is a compatible metric with (M, φ, ξ, η) and it is a
pseudo-Riemannian metric of signature (n+ 1, n). Therefore, (M, φ, ξ, η, g̃) is also
an almost paracontact almost paracomplex manifold but with a pseudo-Riemannian
metric.
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Since the metrics g and g̃ belong to S, then they have corresponding components
in the three orthogonal subspaces introduced above and we get them in the following
form:

ℓ1(g) = g(φ·, φ·) = g − η ⊗ η, ℓ2(g) = η ⊗ η, ℓ3(g) = 0,
ℓ1(g̃) = g(·, φ·) = g̃ − η ⊗ η, ℓ2(g̃) = η ⊗ η, ℓ3(g̃) = 0.

In the final part of the present section we recall the needed notions and results
from [6].

In the cited paper, the manifolds under study are called almost paracontact
Riemannian manifolds of type (n, n). The structure group of (M, φ, ξ, η, g) isO(n)×
O(n)× 1, where O(n) is the group of the orthogonal matrices of size n.

The tensor F of type (0,3) plays a fundamental role in differential geometry of
the considered manifolds. It is defined by:

F (x, y, z) = g
(
(∇xφ) y, z

)
,(2.4)

where ∇ is the Levi-Civita connection of g. The basic properties of F with respect
to the structure are the following:

F (x, y, z) = F (x, z, y)
= −F (x, φy, φz) + η(y)F (x, ξ, z) + η(z)F (x, y, ξ).

(2.5)

The relations of ∇ξ and ∇η with F are:

(∇xη)y = g (∇xξ, y) = −F (x, φy, ξ).(2.6)

If {ξ; ei} (i = 1, 2, . . . , 2n) is a basis of the tangent space TpM at an arbitrary
point p ∈ M and

(
gij

)
is the inverse matrix of the matrix (gij) of g, then the

following 1-forms are associated with F :

θ(z) = gijF (ei, ej, z), θ∗(z) = gijF (ei, φej , z), ω(z) = F (ξ, ξ, z).(2.7)

These 1-forms are known also as the Lee forms of the considered manifolds. Obvi-
ously, the identities ω(ξ) = 0 and θ∗ ◦ φ = −θ ◦ φ2 are always valid.

There, it is made a classification of the almost paracontact almost paracomplex
Riemannian manifolds with respect to F . The vector space F of all tensors F with
the properties (2.5) is decomposed into 11 subspaces Fi (i = 1, 2, . . . , 11), which
are orthogonal and invariant with respect to the structure group of the considered
manifolds. This decomposition induces a classification of the manifolds under study.
An almost paracontact almost paracomplex Riemannian manifold is said to be in
the class Fi (i = 1, 2, . . . , 11), or briefly an Fi-manifold, if the tensor F belongs to
the subspace Fi. Such a way, it is obtained that this classification consists of 11 basic
classes F1, F2, . . ., F11. The intersection of the basic classes is the special class F0

determined by the condition F (x, y, z) = 0. Hence F0 is the class of the considered
manifolds with ∇-parallel structures, i.e. ∇φ = ∇ξ = ∇η = ∇g = ∇g̃ = 0.
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Moreover, it is given the conditions for F determining the basic classes Fi of
(M, φ, ξ, η, g) and the components of F corresponding to Fi. It is said that (M, φ,

ξ, η, g) belongs to the class Fi (i = 1, 2, . . . , 11) if and only if the equality F = Fi is
valid. In the last expression, Fi are the components of F in the subspaces Fi and
they are given by the following equalities:

F1(x, y, z) =
1
2n

{
g(φx, φy)θ(φ2z) + g(φx, φz)θ(φ2y)
− g(x, φy)θ(φz) − g(x, φz)θ(φy)

}
,

F2(x, y, z) =
1
4

{
2F (φ2x, φ2y, φ2z) + F (φ2y, φ2z, φ2x) + F (φ2z, φ2x, φ2y)

− F (φy, φz, φ2x)− F (φz, φy, φ2x)
}

− 1
2n

{
g(φx, φy)θ(φ2z) + g(φx, φz)θ(φ2y)
− g(x, φy)θ(φz) − g(x, φz)θ(φy)

}
,

F3(x, y, z) =
1
4

{
2F (φ2x, φ2y, φ2z)− F (φ2y, φ2z, φ2x)− F (φ2z, φ2x, φ2y)

+ F (φy, φz, φ2x) + F (φz, φy, φ2x)
}
,

F4(x, y, z) =
θ(ξ)
2n

{
g(φx, φy)η(z) + g(φx, φz)η(y)

}
,

F5(x, y, z) =
θ∗(ξ)
2n

{
g(x, φy)η(z) + g(x, φz)η(y)

}
,

F6(x, y, z) =
1
4

{
[F (φ2x, φ2y, ξ) + F (φ2y, φ2x, ξ) + F (φx, φy, ξ)

+ F (φy, φx, ξ)]η(z)
+ [F (φ2x, φ2z, ξ) + F (φ2z, φ2x, ξ) + F (φx, φz, ξ)

+ F (φz, φx, ξ)]η(y)
}

− θ(ξ)
2n

{
g(φx, φy)η(z) + g(φx, φz)η(y)

}

− θ∗(ξ)
2n

{
g(x, φy)η(z) + g(x, φz)η(y)

}
,

F7(x, y, z) =
1
4

{
[F (φ2x, φ2y, ξ)− F (φ2y, φ2x, ξ) + F (φx, φy, ξ)

− F (φy, φx, ξ)]η(z)
+ [F (φ2x, φ2z, ξ)− F (φ2z, φ2x, ξ) + F (φx, φz, ξ)

− F (φz, φx, ξ)]η(y)
}
,

F8(x, y, z) =
1
4

{
[F (φ2x, φ2y, ξ) + F (φ2y, φ2x, ξ) − F (φx, φy, ξ)

− F (φy, φx, ξ)]η(z)
+ [F (φ2x, φ2z, ξ) + F (φ2z, φ2x, ξ) − F (φx, φz, ξ)

− F (φz, φx, ξ)]η(y)
}
,

F9(x, y, z) =
1
4

{
[F (φ2x, φ2y, ξ)− F (φ2y, φ2x, ξ) − F (φx, φy, ξ)

+ F (φy, φx, ξ)]η(z)
+ [F (φ2x, φ2z, ξ)− F (φ2z, φ2x, ξ) − F (φx, φz, ξ)

+ F (φz, φx, ξ)]η(y)
}
,

F10(x, y, z) = η(x)F (ξ, φ2y, φ2z),
F11(x, y, z) = η(x)

{
η(y)ω(z) + η(z)ω(y)

}
.

(2.8)

It is easy to conclude that a manifold of the considered type belongs to a direct
sum of two or more basic classes, i.e. (M, φ, ξ, η, g) ∈ Fi⊕Fj⊕· · ·, if and only if the
fundamental tensor F on (M, φ, ξ, η, g) is the sum of the corresponding components
Fi, Fj , . . . of F , i.e. the following condition is satisfied F = Fi + Fj + · · ·.

Finally in this section, we obtain immediately
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Proposition 2.1. The dimensions of the subspaces Fi (i = 1, 2, . . . , 11) in the
decomposition of the space F of the tensors F on (M, φ, ξ, η, g) are the following:

dimF1 = 2n, dimF2 = n(n− 1)(n+ 2), dimF3 = n2(n− 1),
dimF4 = 1, dimF5 = 1, dimF6 = (n− 1)(n+ 2),
dimF7 = n(n− 1), dimF8 = n2, dimF9 = n2,

dimF10 = n2, dimF11 = 2n.

Proof. Using the characteristic symmetries of the fundamental tensor F and
the form of its components from (2.8) in each of Fi (i = 1, 2, . . . , 11), we get the
equalities in the statement.

3. The components of the fundamental tensor for dimension 3

Let (M, φ, ξ, η, g) be the manifold under study with the lowest dimension, i.e.
dimM = 3 (or n = 1) and let the system of three vectors {e0 = ξ, e1 = e, e2 = φe}
be a φ-basis which satisfies the following conditions:

g(e0, e0) = g(e1, e1) = g(e2, e2) = 1,
g(e0, e1) = g(e1, e2) = g(e0, e2) = 0.

(3.1)

We denote the components of the tensors F , θ, θ∗ and ω with respect to the φ-basis
{e0, e1, e2} as follows Fijk = F (ei, ej, ek), θk = θ(ek), θ

∗

k = θ∗(ek) and ωk = ω(ek).
The properties (2.5) and (3.1) imply the equalities Fi12 = Fi21 = 0 and Fi11 = −Fi22

for any i. Then, bearing in mind (2.7), we obtain for the Lee forms the following:

θ0 = F110 + F220, θ1 = F111 = −F122 = −θ∗2 , ω1 = F001,

θ∗0 = F120 + F210, θ2 = F222 = −F211 = −θ∗1 , ω2 = F002,

ω0 = 0.
(3.2)

The arbitrary vectors x, y, z in TpM, p ∈ M, have the expression x = xiei, y = yiei,
z = ziei with respect to {e0, e1, e2}.

Proposition 3.1. The components Fi (i = 1, 2, . . . , 11) of the fundamental tensor
F for a 3-dimensional almost paracontact almost paracomplex Riemannian manifold
are the following:

F1(x, y, z) =
(
x1θ1 − x2θ2

) (
y1z1 − y2z2

)
,

F2(x, y, z) = F3(x, y, z) = 0,

F4(x, y, z) =
θ0
2

{
x1

(
y0z1 + y1z0

)
+ x2

(
y0z2 + y2z0

)}
,

F5(x, y, z) =
θ∗

0

2

{
x1

(
y0z2 + y2z0

)
+ x2

(
y0z1 + y1z0

)}
,

F6(x, y, z) = F7(x, y, z) = 0,
F8(x, y, z) = λ

{
x1

(
y0z1 + y1z0

)
− x2

(
y0z2 + y2z0

)}
,

F9(x, y, z) = µ
{
x1

(
y0z2 + y2z0

)
− x2

(
y0z1 + y1z0

)}
,

F10(x, y, z) = ν x0
(
y1z1 − y2z2

)
,

F11(x, y, z) = x0
{
ω1

(
y0z1 + y1z0

)
+ ω2

(
y0z2 + y2z0

)}
,

(3.3)
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where

λ = F110 = −F220, µ = F120 = −F210, ν = F011 = −F022

and the components of the Lee forms are given in (3.2).

Proof. Using the expressions (2.8) of Fi for the corresponding classes Fi (i = 1,
. . . , 11), the equalities (2.5), (3.1) and (3.2), we obtain the corresponding form of
Fi for the lowest dimension of the considered manifold.

As a result of Proposition 3.1, we establish the truthfulness of the following

Theorem 3.1. The 3-dimensional almost paracontact almost paracomplex Rie-
mannian manifolds belong to the basic classes F1, F4, F5, F8, F9, F10, F11 and to
their direct sums.

Let us remark that for the considered manifolds of dimension 3, the basic classes
F2, F3, F6, F7 are restricted to the special class F0.

4. Paracontact almost paracomplex Riemannian manifolds

Let (M, φ, ξ, η, g), dimM = 2n+1, be an almost paracontact almost paracomplex
Riemannian manifold such that the following condition is satisfied:

2g(x, φy) = (Lξg)(x, y),(4.1)

where the Lie derivative L of g along ξ has the following form in terms of ∇η:

(Lξg)(x, y) = (∇xη)y + (∇yη)x.(4.2)

Bearing in mind (2.6) and (4.2), Lξg is expressed by F as follows:

(Lξg)(x, y) = −F (x, φy, ξ)− F (y, φx, ξ).(4.3)

In [11], it is said that an m-dimensional almost paracontact Riemannian man-
ifold endowed with the property 2g(x, φy) = (∇xη)y + (∇yη)x is a paracontact
Riemannian manifold.

Definition 4.1. An almost paracontact almost paracomplex Riemannian mani-
fold satisfied (4.1) is called paracontact almost paracomplex Riemannian manifold.

Now we determine the class of paracontact almost paracomplex Riemannian man-
ifolds with respect to the basic classes Fi. Firstly, we compute Lξg on each Fi-
manifold using (4.3) and (2.8). Then we obtain

Proposition 4.1. Let (M, φ, ξ, η, g) be an almost paracontact almost paracomplex
Riemannian manifold. Then we have:
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a) (Lξg)(x, y) = 0 if and only if (M, φ, ξ, η, g) belongs to F1 ⊕ F2 ⊕ F3 ⊕ F7 ⊕
F8 ⊕F10;

b) (Lξg)(x, y) = − 1
n
θ(ξ)g(x, φy) if and only if (M, φ, ξ, η, g) belongs to F4;

c) (Lξg)(x, y) = − 1
n
θ∗(ξ)g(φx, φy) if and only if (M, φ, ξ, η, g) belongs to F5;

d) (Lξg)(x, y) = 2
(
∇xη

)
y if and only if (M, φ, ξ, η, g) belongs to F6 ⊕F9;

e) (Lξg)(x, y) = −η(x)ω(φy)− η(y)ω(φx) if and only if (M, φ, ξ, η, g) belongs to
F11.

It is known that ξ is a Killing vector field when Lξg = 0. Therefore, the latter
proposition implies

Corollary 4.1. An almost paracontact almost paracomplex Riemannian manifold
(M, φ, ξ, η, g) has a Killing vector field ξ if and only if (M, φ, ξ, η, g) belongs to Fi

(i = 1, 2, 3, 7, 8, 10) or to their direct sums.

We denote by F4
′ the subclass of F4 determined by θ(ξ) = −2n, i.e.

F4
′ =

{
F4 | θ(ξ) = −2n

}
.(4.4)

Then, the component F4
′ of F corresponding to the subclass F4

′ is

F4
′(x, y, z) = −g(φx, φy)η(z) − g(φx, φz)η(y).(4.5)

Theorem 4.1. Paracontact almost paracomplex Riemannian manifolds belong to
F4

′ or to its direct sums with F1, F2, F3, F7, F8 and F10.

Proof. Let us consider an arbitrary almost paracontact almost paracomplex
Riemannian manifold, i.e. F = F1 + . . .+F11. Using the expressions (2.8) of Fi for
the corresponding classes Fi (i = 1, . . . , 11) and the condition (4.1), we obtain

F = F1 + F2 + F3 + F4
′ + F7 + F8 + F10,(4.6)

where F4
′ is determined by (4.5).

Vice versa, if (4.6) holds true, then it implies (4.1) by (4.3), i.e. (M, φ, ξ, η, g)
is a paracontact almost paracomplex Riemannian manifold. Supposing that (M,

φ, ξ, η, g) belongs to some of Fi (i = 1, 2, 3, 7, 8, 10) or their direct sum, it follows
that g is degenerate. Therefore, the component F4

′ is indispensable and we get the
statement.

Let us remark that F4
′ and F0 are subclasses of F4 without common elements.

Moreover, bearing in mind Corollary 4.1 and Theorem 4.1, we conclude that
paracontact almost paracomplex Riemannian manifolds with a Killing vector field
ξ do not exist, i.e. for the manifolds studied, there is no analogue of a K-contact
manifold.
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In [13], it is introduced the notion of a para-Sasakian Riemannian manifold of
an arbitrary dimension by the condition φx = ∇xξ. The same condition determines
a special kind of paracontact almost paracomplex Riemannian manifolds. These
manifolds we call para-Sasakian paracomplex Riemannian manifolds. Then, using
(4.4), we obtain the truthfulness of the following

Theorem 4.2. The class of the para-Sasakian paracomplex Riemannian manifolds
is F4

′.

5. The Nijenhuis tensor

5.1. Introduction of the Nijenhuis tensor

Let us consider the product manifold M̌ of an almost paracontact almost para-
complex manifold (M, φ, ξ, η) and the real line R, i.e. M̌ = M× R. We denote a
vector field on M̌ by

(
x, a d

dr

)
, where x is tangent to M̌, r is the coordinate on R

and a is a function on M×R. Further, we use the denotation ∂r = d
dr for brevity.

Following [10], we define an almost paracomplex structure P̌ on M̌ by:

P̌ (x, a∂r) =
(
φx +

a

r
ξ, rη(x)∂r

)
(5.1)

that implies

P̌ x = φx, P̌ ξ = r∂r , P̌ ∂r =
1

r
ξ.

Further, we use the setting ζ = r∂r . It easy to check that P̌ 2 = I and trP̌ = 0.
In the case when P̌ is integrable, it is said that the almost paracontact structure
(φ, ξ, η) is normal.

It is known, the vanishing of the Nijenhuis torsion
[
P̌ , P̌

]
of P̌ is a necessary

and sufficient condition for integrability of P̌ . According to [10], the condition of
normality is equivalent to vanishing of the following four tensors:

N (1)(x, y) = [φ, φ](x, y) − dη(x, y)ξ,

N (2)(x, y) = (Lφxη)(y)− (Lφyη)(x),

N (3)(x) = (Lξφ)(x),
N (4)(x) = (Lξη)(x),

(5.2)

where the Nijenhuis torsion of φ is determined by:

[φ, φ](x, y) = [φx, φy] + φ2[x, y]− φ[φx, y] − φ[x, φy](5.3)

and dη is the exterior derivative of η given by:

dη(x, y) = (∇xη)y − (∇yη)x.(5.4)

According to (2.6) and (5.4), dη is expressed by F as follows:

dη(x, y) = −F (x, φy, ξ) + F (y, φx, ξ).(5.5)
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Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional almost paracontact almost para-
complex Riemannian manifold.

In [10], it is proved that the vanishing of N (1) implies the vanishing of N (2),
N (3), N (4). Then N (1) is denoted simply by N , i.e.

N(x, y) = [φ, φ](x, y) − dη(x, y)ξ,(5.6)

and it is called the Nijenhuis tensor of the structure (φ, ξ, η). Therefore, an almost
paracontact structure (φ, ξ, η) is normal if and only if its Nijenhuis tensor is zero.

Obviously, N is an antisymmetric tensor, i.e. N(x, y) = −N(y, x). According to
(5.3), (5.4) and (5.6), the tensor N has the following form in terms of the covariant
derivatives of φ and η with respect to ∇:

N(x, y) = (∇φxφ)y − (∇φyφ)x− φ(∇xφ)y + φ(∇yφ)x− (∇xη)y ξ + (∇yη)x ξ.

The corresponding tensor of type (0,3) of the Nijenhuis tensor on (M, φ, ξ, η, g)
is defined by equality N(x, y, z) = g (N(x, y), z). Then, using (2.4) and (2.6), we
express N in terms of the fundamental tensor F as follows:

N(x, y, z) = F (φx, y, z)− F (φy, x, z)− F (x, y, φz) + F (y, x, φz)
+ η(z) {F (x, φy, ξ) − F (y, φx, ξ)} .

(5.7)

Proposition 5.1. The Nijenhuis tensor on an almost paracontact almost para-
complex Riemannian manifold has the following properties:

N(φ2x, φy, φz) = −N(φ2x, φ2y, φ2z), N(φ2x, φ2y, φ2z) = N(φx, φy, φ2z),
N(x, φ2y, φ2z) = −N(x, φy, φz), N(φ2x, φ2y, z) = N(φx, φy, z),
N(ξ, φy, φz) = −N(ξ, φ2y, φ2z), N(φx, φy, ξ) = N(φ2x, φ2y, ξ).

Proof. The equalities from the above follow by direct computations from the
properties (2.5) and the expression (5.7).

In [10], there are given the following relations between the tensors N (1), N (2),
N (3) and N (4):

N (2)(x, y) = −η
(
N (1)(x, φy)

)
− η

(
N (1)(φx, ξ)

)
η(y),

N (3)(x) = −N (1)(φx, ξ),
N (4)(x) = −N (2)(φx, ξ), N (4)(x) = −η

(
N (3)(φx)

)
.

(5.8)

Applying the expression (5.7) to equalities (5.8), we obtain the form of N (2),
N (3) and N (4) in terms of the fundamental tensor F :

N (2)(x, y) = −F (x, y, ξ) + F (y, x, ξ)− F (φx, φy, ξ) + F (φy, φx, ξ),
N (3)(x, y) = F (ξ, x, y)− F (x, y, ξ) + F (φx, φy, ξ),

N (4)(x) = −F (ξ, ξ, φx),

(5.9)

where it is used the denotation N (3)(x, y) = g
(
N (3)(x), y

)
.
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Table 5.1: Nijenhuis tensors

N(1)(x, y, z) N(2)(x, y) N(3)(x, y) N(4)(x)

F1 0 0 0 0
F2 0 0 0 0

F3 −2
{
F (φx, φy, φz) + F (φ2x, φ2y, φz)

}
0 0 0

F4 0 0 0 0
F5 0 0 0 0
F6 0 0 0 0
F7 4F (x, φy, ξ)η(z) −4F (x, y, ξ) 0 0

F8 2
{
η(x)F (y, φz, ξ)− η(y)F (x, φz, ξ)

}
0 −2F (x, y, ξ) 0

F9 2
{
η(x)F (y, φz, ξ)− η(y)F (x, φz, ξ)

}
0 −2F (x, y, ξ) 0

F10 −η(x)F (ξ, y, φz) + η(y)F (ξ, x, φz) 0 F (ξ, x, y) 0

F11 η(z)
{
η(x)ω(φy) − η(y)ω(φx)

}
η(y)ω(x) − η(x)ω(y) η(y)ω(x) −ω(φx)

Proposition 5.2. Let (M, φ, ξ, η, g) be an Fi-manifold (i = 1, 2, . . . , 11). Then
the four tensors N (k) (k = 1, 2, 3, 4) on this manifold have the form in the respective
cases, given in Table 5.1.

Proof. We apply direct computations, using (2.8), (5.7) and (5.9).

By virtue Proposition 5.2, we have the following

Theorem 5.1. An almost paracontact almost paracomplex Riemannian manifold
(M, φ, ξ, η, g) has:

a) vanishing N (1) if and only if it belongs to some of the basic classes F1, F2,
F4, F5, F6 or to their direct sums;

b) vanishing N (2) if and only if it belongs to some of the basic classes F1, . . . ,F6,
F8, F9, F10 or to their direct sums;

c) vanishing N (3) if and only if it belongs to the basic classes F1, . . . ,F7 or to
some of their direct sums;

d) vanishing N (4) if and only if it belongs to some of the basic classes F1, . . . ,F10

or to their direct sums.

Bearing in mind Theorem 5.1, we conclude the following

Corollary 5.1. The class of normal almost paracontact almost paracomplex Rie-
mannian manifolds is F1 ⊕F2 ⊕F4 ⊕F5 ⊕F6.

5.2. The exterior derivative of the structure 1-form

According to (2.3), the 2-form dη on (M, φ, ξ, η, g) can be decomposed as follows:

dη = ℓ1(dη) + ℓ3(dη),
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ℓ1(dη)(x, y) = dη(hx, hy), ℓ2(dη)(x, y) = 0,
ℓ3(dη)(x, y) = dη(vx, hy) + dη(hx, vy).

(5.10)

The next proposition gives geometric conditions for vanishing the components
of dη.

Proposition 5.3. Let (M, φ, ξ, η, g) be an almost paracontact almost paracomplex
Riemannian manifold. Then we have:

a) the paracontact distribution H of (M, φ, ξ, η, g) is involutive if and only if
ℓ1(dη) = 0;

b) the integral curves of ξ are geodesics on (M, φ, ξ, η, g) if and only if ℓ3(dη) = 0.

Proof. It is said that H is an involutive distribution when [x, y] belongs to H
for x, y ∈ H, i.e. η ([hx, hy]) = 0 holds for arbitrary x and y. By virtue of the
identity η ([hx, hy]) = −dη(hx, hy) and (5.10), we have the equality η ([hx, hy]) =
−ℓ1(dη)(x, y). This accomplishes the proof of a).

As it is known, the integral curves of ξ are geodesics on (M, φ, ξ, η, g) if and
only if ∇ξξ vanishes. The equality (5.10) implies that ℓ3(dη) = 0 is valid if and only
if dη(x, ξ) = 0 holds. Applying (5.4) and (2.6), we obtain the equality dη(x, ξ) =
−g (∇ξξ, x). Then, it is clear that b) holds true.

Next, we compute dη on the considered manifold belonging to each of the basic
classes and obtain the following

Proposition 5.4. Let (M, φ, ξ, η, g) be an almost paracontact almost paracomplex
Riemannian manifold. Then we have:

a) dη(x, y) = 0 if and only if (M, φ, ξ, η, g) belongs to Fi (i = 1, . . . , 6, 9, 10) or
to their direct sums;

b) dη(x, y) = ℓ1(dη)(x, y) = 2
(
∇xη

)
y if and only if (M, φ, ξ, η, g) belongs to F7,

F8 or F7 ⊕F8;

c) dη(x, y) = ℓ3(dη)(x, y) = −η(x)ω(φy) + η(y)ω(φx) if and only if (M, φ, ξ,

η, g) belongs to F11.

By Proposition 5.3 and Proposition 5.4, we get the following theorem, which gives
a geometric characteristic of the manifolds of some classes with respect to the form
of dη.

Theorem 5.2. Let (M, φ, ξ, η, g) be an almost paracontact almost paracomplex
Riemannian manifold. Then we have:

a) the structure 1-form η is closed if and only if (M, φ, ξ, η, g) belongs to Fi

(i = 1, . . . , 6, 9, 10) or to their direct sums;

b) the paracontact distribution H of (M, φ, ξ, η, g) is involutive if and only if (M,

φ, ξ, η, g) belongs to Fi (i = 1, . . . , 6, 9, 10, 11) or to their direct sums;
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c) the integral curves of the structure vector field ξ are geodesics on (M, φ, ξ,

η, g) if and only if (M, φ, ξ, η, g) belongs to Fi (i = 1, . . . , 10) or to their
direct sums.

5.3. The Nijenhuis torsion of the structure endomorphism of the

paracontact distribution

Proposition 5.5. Let (M, φ, ξ, η, g) be an almost paracontact almost paracomplex
Riemannian manifold. Then for the Nijenhuis torsion of φ we have:

a) [φ, φ](x, y) = 0 if and only if (M, φ, ξ, η, g) belongs to Fi (i = 1, 2, 4, 5, 6, 11)
or to their direct sums;

b) [φ, φ](x, y) = −2
{
φ (∇φxφ)φy + φ

(
∇φ2xφ

)
φ2y

}
if and only if (M, φ, ξ, η, g)

belongs to F3;

c) [φ, φ](x, y) = −2 (∇xη) (y) ξ if and only if (M, φ, ξ, η, g) belongs to F7;

d) [φ, φ](x, y) = −2 {η(x)∇yξ − η(y)∇xξ − (∇xη) (y) ξ} if and only if (M, φ, ξ,

η, g) belongs to F8;

e) [φ, φ](x, y) = −2 {η(x)∇yξ − η(y)∇xξ} if and only if (M, φ, ξ, η, g) belongs to
F9;

f) [φ, φ](x, y) = −η(x)φ (∇ξφ) y + η(y)φ (∇ξφ)x if and only if (M, φ, ξ, η, g)
belongs to F10.

Proof. Using (5.6) and the forms of the Nijenhuis tensor N and the 2-form dη,
given in Proposition 5.2 and Proposition 5.4, respectively, we get the statements
from the above by direct computations.

Now, we specialize the form of [φ, φ] for the class of paracontact almost para-
complex Riemannian manifolds and we find its subclasses of manifolds whose almost
paracomplex structure φ on H is integrable.

Theorem 5.3. Let (M, φ, ξ, η, g) be a paracontact almost paracomplex Rieman-
nian manifold. Then it has:

a) an integrable almost paracomplex structure φ, i.e. [φ, φ] = 0, if and only if the
manifold belongs to F4

′ or to its direct sums with F1 and F2;

b) an nonintegrable almost paracomplex structure φ, i.e. [φ, φ] 6= 0 if and only if
the manifold belongs to the rest of the classes, given in Theorem 4.1.

Proof. We establish the truthfulness of the statements using Theorem 4.1 and
Proposition 5.5.

Bearing in mind Theorem 5.3 a), the manifolds from the classes F4
′, F1 ⊕ F4

′,
F2⊕F4

′ and F1⊕F2⊕F4
′ we call paracontact paracomplex Riemannian manifolds.

In the other case, the manifolds from the rest of the classes, given in Theorem 4.1,
we call paracontact almost paracomplex Riemannian manifolds.
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6. The associated Nijenhuis tensor

By analogy with the skew-symmetric Lie bracket (the commutator), determined
by [x, y] = ∇xy −∇yx, let us consider the symmetric braces (the anticommutator),
defined by {x, y} = ∇xy+∇yx as in [5]. Bearing in mind the definition of the
Nijenhuis torsion

[
P̌ , P̌

]
of an almost paracomplex structure P̌ on M̌, we give a

definition of a tensor
{
P̌ , P̌

}
of type (1, 2) as follows:

{
P̌ , P̌

}
(x̌, y̌) = {x̌, y̌}+

{
P̌ x̌, P̌ y̌

}
− P̌

{
P̌ x̌, y̌

}
− P̌

{
x̌, P̌ y̌

}
,

where the action of P̌ is given in (5.1) and the anticommutator on the tangent
bundle of M̌ is determined by:

{
(x, a∂r) , (y, b∂r)

}
=

(
{x, y}, (x(b) + y(a)) ∂r

)
.

We call
{
P̌ , P̌

}
an associated Nijenhuis tensor of the almost paracomplex manifold(

M̌, P̌
)
. Obviously, this tensor is symmetric with respect to its arguments, i.e.{

P̌ , P̌
}
(x̌, y̌) =

{
P̌ , P̌

}
(y̌, x̌).

Since the almost paracomplex manifold
(
M̌, P̌

)
is generated from the almost

paracontact almost paracomplex manifold (M, φ, ξ, η), we seek to express the asso-
ciated Nijenhuis tensor

{
P̌ , P̌

}
by tensors for the structure (φ, ξ, η). Since

{
P̌ , P̌

}

is a tensor field of type (1,2) on M̌, it suffices to compute the following two expres-
sions:
{
P̌ , P̌

} (
(x, 0), (y, 0)

)
=

{
(x, 0), (y, 0)

}
+
{
P̌ (x, 0), P̌ (y, 0)

}
− P̌

{
P̌ (x, 0), (y, 0)

}

− P̌
{
(x, 0), P̌ (y, 0)

}

=
(
{x, y}, 0

)
+
{
(φx, η(x)ζ), (φy, η(y)ζ)

}

− P̌
{
(φx, η(x)ζ), (y, 0)

}
− P̌

{
(x, 0), (φy, η(y)ζ)

}

=
(
{φ, φ}(x, y)− (Lξg)(x, y)ξ,
((Lξg)(φx, y) + (Lξg)(x, φy)) ζ

)

and
{
P̌ , P̌

} (
(x, 0), (0, ζ)

)
=

{
(x, 0), (0, ζ)

}
+
{
P̌ (x, 0), P̌ (0, ζ)

}
− P̌

{
P̌ (x, 0), (0, ζ)

}

− P̌
{
(x, 0), P̌ (0, ζ)

}

=
{
(φx, η(x)ζ), (ξ, 0)

}
− P̌

{
(φx, η(x)ζ), (0, ζ)

}

− P̌
{
(x, 0), (ξ, 0)

}

= ({φx, ξ} − φ{x, ξ}, (Lξg)(x, ξ)ζ) .

In the latter expressions, we use the Lie derivative (Lξg)(x, y), determined by (4.2),
of the Riemannian metric g of (M, φ, ξ, η, g).

Then, we define the following four tensors N̂ (k) (k = 1, 2, 3, 4) of type (1,2),
(0,2), (1,1), (0,1), respectively:

N̂ (1)(x, y) = {φ, φ}(x, y)− (Lξg)(x, y)ξ,

N̂ (2)(x, y) = (Lξg)(φx, y) + (Lξg)(x, φy),

N̂ (3)(x) = {φx, ξ} − φ{x, ξ},

N̂ (4)(x) = (Lξg)(x, ξ),

(6.1)
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where {φ, φ} is the symmetric tensor of type (1,2) determined by:

{φ, φ}(x, y) = {φx, φy} + φ2{x, y} − φ{φx, y} − φ{x, φy}.(6.2)

By direct converting their definitions, we find relations between the four tensors
N̂ (k) as follows:

N̂ (2)(x, y) = −η
(
N̂ (1)(x, φy)

)
− η

(
N̂ (1)(φx, ξ)

)
η(y),

N̂ (3)(x) = N̂ (1)(φx, ξ) − η(x)φN̂ (1)(ξ, ξ)

N̂ (4)(x) = −η
(
N̂ (1)(x, ξ)

)
= 1

2g
(
N̂ (1)(ξ, ξ), x

)
,

N̂ (4)(x) = N̂ (2)(φx, ξ), N̂ (4)(x) = −η
(
N̂ (3)(φx)

)
.

(6.3)

Theorem 6.1. For an almost paracontact almost paracomplex Riemannian man-
ifold we have:

a) if N̂ (1) vanishes, then all the other tensors N̂ (2), N̂ (3) and N̂ (4) vanish;

b) if any one of N̂ (2) and N̂ (3) vanishes, then N̂ (4) vanishes.

Proof. The statements above are consequences of the relations (6.3) between

N̂ (k) (k = 1, 2, 3, 4).

Therefore, N̂ (1) plays a main role between them and we denote it simply by N̂ ,
i.e.

N̂(x, y) = {φ, φ}(x, y)−(Lξg)(x, y)ξ(6.4)

and we call it an associated Nijenhuis tensor of the structure (φ, ξ, η, g). Obviously,

N̂ is symmetric, i.e. N̂(x, y) = N̂(y, x). Applying the expressions (6.2), (4.2) and
(6.4), the associated Nijenhuis tensor has the following form in terms of ∇φ and
∇η:

N̂(x, y) = (∇φxφ)y + (∇φyφ)x− φ(∇xφ)y − φ(∇yφ)x− (∇xη)y ξ − (∇yη)x ξ.

The corresponding tensor of type (0,3) is defined by N̂(x, y, z) = g
(
N̂(x, y), z

)
.

According to (2.4) and (2.6), we express N̂ in terms of the fundamental tensor F

as follows:

N̂(x, y, z) = F (φx, y, z) + F (φy, x, z)− F (x, y, φz)− F (y, x, φz)

+ η(z) {F (x, φy, ξ) + F (y, φx, ξ)} .
(6.5)

Proposition 6.1. The associated Nijenhuis tensor on an almost paracontact al-
most paracomplex Riemannian manifold has the following properties:

N̂(φ2x, φy, φz) = −N̂(φ2x, φ2y, φ2z), N̂(φ2x, φ2y, φ2z) = N̂(φx, φy, φ2z),

N̂(x, φ2y, φ2z) = −N̂(x, φy, φz), N̂(φ2x, φ2y, z) = N̂(φx, φy, z),

N̂(ξ, φy, φz) = −N̂(ξ, φ2y, φ2z), N̂(φx, φy, ξ) = N̂(φ2x, φ2y, ξ).
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Table 6.1: Associated Nijenhuis tensors

N̂(1)(x, y, z) N̂(2)(x, y) N̂(3)(x, y) N̂(4)(x)

F1
2
n

{
g(x, φy)θ(φ2z)− g(φx, φy)θ(φz)

}
0 0 0

F2 −2
{
F (φx, φy, φz) + F (φ2x, φ2y, φz)

}
0 0 0

F3 0 0 0 0
F4

2
n
θ(ξ)g(x, φy)η(z) −

2
n
θ(ξ)g(φx, φy) 0 0

F5
2
n
θ∗(ξ)g(φx, φy)η(z) −

2
n
θ∗(ξ)g(x, φy) 0 0

F6 4F (x, φy, ξ)η(z) −4F (x, y, ξ) 0 0
F7 0 0 0 0

F8 −2
{
η(x)F (y, φz, ξ) + η(y)F (x, φz, ξ)

}
0 2F (x, y, ξ) 0

F9 −2
{
η(x)F (y, φz, ξ) + η(y)F (x, φz, ξ)

}
0 2F (x, y, ξ) 0

F10 −η(x)F (ξ, y, φz)− η(y)F (ξ, x, φz) 0 F (ξ, x, y) 0

F11 η(z)
{
η(x)ω(φy) + η(y)ω(φx)

}
−η(x)ω(y) − η(y)ω(x) ω(x)η(y) + 2η(x)ω(y) −ω(φx)

−2η(x)η(y)ω(φz)

Proof. The results follow form the properties (2.5) of F and the expression
(6.5).

Applying (6.5) to (6.3), we give the form of N̂ (2), N̂ (3) and N̂ (4) in terms of F :

N̂ (2)(x, y) = −F (x, y, ξ)− F (y, x, ξ)− F (φx, φy, ξ) − F (φy, φx, ξ),

N̂ (3)(x, y) = F (ξ, x, y) + F (x, y, ξ)− F (φx, φy, ξ),

N̂ (4)(x) = −F (ξ, φx, ξ),

(6.6)

where we use the denotation N̂ (3)(x, y) = g
(
N̂ (3)(x), y

)
.

Proposition 6.2. Let (M, φ, ξ, η, g) be an Fi-manifold (i = 1, 2, . . . , 11). Then

the four tensors N̂ (k) (k = 1, 2, 3, 4) on this manifold have the form in the respective
cases, given in Table 6.1.

Proof. The calculations are made, using (6.5), (6.6) and the expression (2.8)
of each of Fi for the corresponding class Fi.

As a result of Proposition 6.2, we establish the truthfulness of the following

Theorem 6.2. An almost paracontact almost paracomplex Riemannian manifold
(M, φ, ξ, η, g) has:

a) vanishing N̂ (1) if and only if it belongs to some of the basic classes F3, F7 or
to their direct sum;

b) vanishing N̂ (2) if and only if it belongs to some of the basic classes F1, F2,
F3, F7, . . ., F10 or to their direct sums;

c) vanishing N̂ (3) if and only if it belongs to some of the basic classes F1, . . . ,F7

or to their direct sums;
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d) vanishing N̂ (4) if and only if it belongs to some of the basic classes F1, . . . ,F10

or to their direct sums.

By virtue of Theorem 6.2, we obtain the following

Corollary 6.1. The class of almost paracontact almost paracomplex Riemannian
manifolds with a vanishing associated Nijenhuis tensor N̂ is F3 ⊕F7.

7. The pair of Nijenhuis tensors and the classification of the

considered manifolds

In the previous two sections, by (5.7) and (6.5), we give the expressions of the

Nijenhuis tensor N and its associated N̂ by the tensor F , respectively. Here, we
find how the fundamental tensor F is determined by the pair of Nijenhuis tensors.
Since F is used for classifying the manifolds studied, we can expressed the classes
Fi i = (1, 2, . . . , 11) only by the pair (N, N̂).

Theorem 7.1. Let (M, φ, ξ, η, g) be an almost paracontact almost paracomplex

Riemannian manifold. Then its fundamental tensor is expressed by N and N̂ by
the formula:

F (x, y, z) = 1
4

[
N(φx, y, z) +N(φx, z, y) + N̂(φx, y, z) + N̂(φx, z, y)

]

− 1
2η(x)

[
N(ξ, y, φz) + N̂(ξ, y, φz) + η(z)N̂(ξ, ξ, φy)

]
.

(7.1)

Proof. Taking the sum of (5.7) and (6.5), we obtain:

F (φx, y, z)− F (x, y, φz) =
1

2

[
N(x, y, z) + N̂(x, y, z)

]
− η(z)F (x, φy, ξ).(7.2)

The identities (2.5) together with (2.1) imply:

F (x, y, φz) + F (x, z, φy) = η(z)F (x, φy, ξ) + η(y)F (x, φz, ξ).(7.3)

A suitable combination of (7.2) and (7.3) yields:

F (φx, y, z) =
1

4

[
N(x, y, z) +N(x, z, y) + N̂(x, y, z) + N̂(x, z, y)

]
.(7.4)

Applying (2.1), we obtain from (7.4) the following:

F (x, y, z) = 1
4

[
N(φx, y, z) +N(φx, z, y) + N̂(φx, y, z) + N̂(φx, z, y)

]

+ η(x)F (ξ, y, z).
(7.5)

Set x = ξ and z → φz into (7.2) and use (2.1) to get:

F (ξ, y, z) = −
1

2

[
N(ξ, y, φz) + N̂(ξ, y, φz)

]
+ η(z)ω(y).(7.6)

Finally, using (6.5) and the general identities ω(ξ) = 0, we obtain:

ω(z) = −
1

2
N̂(ξ, ξ, φz).(7.7)

Substitute (7.7 )into (7.6) and the obtained identity insert into (7.5) to get (7.1).
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Corollary 7.1. The class of almost paracontact almost paracomplex Riemannian
manifolds with vanishing tensors N and N̂ is the special class F0.

8. A family of Lie groups as manifolds of the studied type

Let L be a (2n+1)-dimensional real connected Lie group and let its associated Lie
algebra with a global basis {E0, E1, . . . , E2n} of left invariant vector fields on L be
defined by:

[E0, Ei] = −aiEi − an+iEn+i, [E0, En+i] = −an+iEi + aiEn+i,(8.1)

where a1, . . . , a2n are real constants and [Ej , Ek] = 0 in other cases.

Let (φ, ξ, η) be an almost paracontact almost paracomplex structure determined
for any i ∈ {1, . . . , n} by:

φE0 = 0, φEi = En+i, φEn+i = Ei,

ξ = E0, η(E0) = 1, η(Ei) = η(En+i) = 0.
(8.2)

Let g be a Riemannian metric defined by:

g(E0, E0) = g(Ei, Ei) = g(En+i, En+i) = 1,
g(E0, Ej) = g(Ej , Ek) = 0,

(8.3)

where i ∈ {1, . . . , n} and j, k ∈ {1, . . . , 2n}, j 6= k. Thus, since (2.1) is satisfied,
the induced (2n + 1)-dimensional manifold (L, φ, ξ, η, g) is an almost paracontact
almost paracomplex Riemannian manifold.

Let us remark that in [8] the same Lie group is considered with an appropriate
almost contact structure and a compatible Riemannian metric. Then, the generated
almost cosymplectic manifold is studied. On the other hand, in [3], the same Lie
group is equipped with an almost contact structure and B-metric. Then, the ob-
tained manifold is characterized. Moreover, in [4], the case of the lowest dimension
is considered and properties of the constructed manifold are determined.

Let us consider the constructed almost paracontact almost paracomplex Rie-
mannian manifold (L, φ, ξ, η, g) of dimension 3, i.e. for n = 1.

According to (8.1) and (8.3) for n = 1, by the Koszul equality

2g (∇Ei
Ej , Ek) = g ([Ei, Ej ], Ek) + g ([Ek, Ei], Ej) + g ([Ek, Ej ], Ei)

for the Levi-Civita connection ∇ of g, we obtain:

∇E1
E0 = a1E1 + a2E2, ∇E2

E0 = a2E1 − a1E2,

∇E1
E1 = −∇E2

E2 = −a1E0, ∇E1
E2 = ∇E2

E1 = −a2E0,
(8.4)

and the others ∇Ei
Ej are zero.

Then, using (8.4), (8.2), (2.4) and (3.3), we get the following components Fijk =
F (Ei, Ej , Ek) of the fundamental tensor:

F101 = F110 = F202 = F220 = −a2, F102 = F120 = −F201 = −F210 = −a1,
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and the other components of F are zero. Thus, we have the expression of F for
arbitrary vectors x = xiEi, y = yiEi, z = ziEi as follows:

F (x, y, z) = −a2
{
x1

(
y0z1 + y1z0

)
+ x2

(
y0z2 + y2z0

)}

−a1
{
x1

(
y0z2 + y2z0

)
− x2

(
y0z1 + y1z0

)}
.

(8.5)

Bearing in mind the latter equality, we obtain that F has the following form:

F (x, y, z) = F4(x, y, z) + F9(x, y, z),

by virtue of (3.3) for µ = −a1, θ0 = −2a2. Therefore, we have proved the following

Proposition 8.1. The constructed 3-dimensional almost paracontact almost para-
complex Riemannian manifold (L, φ, ξ, η, g) belongs to:

a) F4 ⊕F9 if and only if a1 6= 0, a2 6= 0;

b) F4 if and only if a1 = 0, a2 6= 0;

c) F9 if and only if a1 6= 0, a2 = 0;

d) F0 if and only if a1 = 0, a2 = 0.

Finally, we get the following

Proposition 8.2. The constructed 3-dimensional almost paracontact almost para-
complex Riemannian manifold (L, φ, ξ, η, g) has the following properties:

a) It has vanishing N (4) and N̂ (4);

b) It is a normal almost paracontact almost paracomplex Riemannian manifold

with vanishing N̂ (3) if and only if a1 = 0 and arbitrary a2;

c) It is a para-Sasakian paracomplex Riemannian manifold if and only if a1 = 0,
a2 = 1;

d) It has vanishing N̂ (2) if and only if a2 = 0 and arbitrary a1.

Proof. According to (8.5), (3.3) and Proposition 5.2, we find the following form
of the Nijenhuis tensor of (L, φ, ξ, η, g):

N(x, y, z) = −2a1
{(

x1y2 − x2y1
)
z0 +

(
x0y1 − x1y0

)
z1 −

(
x0y2 − x2y0

)
z2
}
.

From the latter equality and (5.8) (or alternatively from (8.5) and (5.9)), we have:

N (2)(x, y) = 2a1(x
1y1 − x2y2), N (3)(x, y) = 2a1(x

1y2 − x2y1), N (4)(x) = 0.

Similarly, for the associated Nijenhuis tensor of (L, φ, ξ, η, g) we obtain:

N̂(x, y, z) = −4a2
(
x1y2 + x2y1

)
z0 + 2a1

{(
x0y1 + x1y0

)
z1 −

(
x0y2 + x2y0

)
z2
}
.
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By virtue of (6.3) and the equality from above (or in other way by (8.5) and (6.6)),
we get:

N̂ (2)(x, y) = 4a2
(
x1y1 + x2y2

)
, N̂ (3)(x, y) = −2a1

(
x1y2 − x2y1

)
, N̂ (4)(x) = 0.

As a conclusion, the obtained results imply the propositions in a), b) and d).
Moreover, the case of the F4

′-manifold, i.e. the proposition in c), follows from
Proposition 8.1 b).
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11. I. Satō: On a structure similar to almost contact structure II. Tensor (N.S.) 31

(1977), 199–205.
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