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Ser. Math. Inform. Vol. 34, No 2 (2019), 231–252

https://doi.org/10.22190/FUMI1902231L

SOME COMMON FIXED POINT RESULTS

FOR RATIONAL CONTRACTION TYPE VIA

THE C-CLASS FUNCTIONS ON METRIC SPACES

Nguyen Thi Thanh Ly and Nguyen Trung Hieu
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Abstract. The purpose of this paper is to prove some common fixed point results for
rational contraction type via the C-class functions on metric spaces. As an application,
we study the existence of solutions to the system of nonlinear integral equations.
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1. Introduction

The Banach contraction principle [2] is a basic tool in studying the existence
of solutions to many problems in mathematics and many different fields. In re-
cent times, the contraction principle has been extended in many various directions.
Geraghty’s theorem [7] is one of the generalized result. In 2013, Cho et al. [5]
introduced the notion of α-Geraghty contraction type maps and proved some fixed
point theorems for such maps in complete metric spaces. In 2014, Popescu [14]
extended the results in [5] by proving certain fixed point theorems for generalized
α-Geraghty contraction type maps. Later, Karapina [12] introduced the notion
of α-ψ-Geraghty contraction type maps and proved the existence and uniqueness
of fixed points for such maps in metric spaces. In 2016, Chuadchawna et al. [6]
improved and generalized the results in [12, 14] by proving some fixed point the-
orems for α-η-ψ-Greraghty contraction type maps in α-η complete metric spaces.
Recently, Ansari and Kaewcharoen [1] extended the results in [12] and proved the
fixed point theorems for α-η-ψ-ϕ-F contraction type maps in α-η complete metric
spaces by using the C-class function.

In 1977, Jaggi [11] also extended the Banach contraction principle by prov-
ing some fixed point theorems for a contractive condition of rational type in metric
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spaces. After that, some authors extended the main results in [11] by many different
ways. Furthermore, certain fixed point results for rational contractions were estab-
lished in metric spaces and generalized metric spaces (see, for example, [4, 8, 9, 13]
and the references therein).

In this paper, we state some common fixed point theorems for rational con-
traction type via the C-class functions on metric spaces. The obtained results are
generalizations of the main results in [1, 12, 14]. In addition, we study the existence
of solutions to the system of nonlinear integral equations.

2. Preliminaries

First, we recall some symbols that

1. C is the family of all functions F : [0,∞) × [0,∞) −→ R such that for all
s, t ∈ [0,∞),

(a) F is continuous.

(b) F (s, t) ≤ s.

(c) F (s, t) = s implies that either s = 0 or t = 0.

2. Ψ is the family of all functions ψ : [0,∞) −→ [0,∞) such that

(a) ψ is nondecreasing and continuous.

(b) ψ(t) = 0 if and only if t = 0.

3. Φ the family of all functions ϕ : [0,∞) −→ [0,∞) such that

(a) ϕ is continuous.

(b) ϕ(t) > 0 for all t > 0.

In [1], the authors gave some functions which are elements in C.

Example 2.1. ([1], Example 1.12) The following functions F : [0,∞)× [0,∞) −→ R are
elements in C.

1. F (s, t) = s− t for all s, t ∈ [0,∞).

2. F (s, t) = ms for all s, t ∈ [0,∞) where 0 < m < 1.

3. F (s, t) =
s

(1 + t)r
for all s, t ∈ [0,∞) where r ∈ (0,∞).

4. F (s, t) = sβ(s) for all s, t ∈ [0,∞) where β : [0,∞) −→ [0, 1) is a continuous func-
tion.

5. F (s, t) = s − ϕ(s) for all s, t ∈ [0,∞) where ϕ : [0,∞) −→ [0,∞) is a continuous
function such that ϕ(t) = 0 iff t = 0.

In 2014, Popescu [14] introduced the notion of α-orbital admissible mappings
and triangular α-orbital admissible mappings as follows.
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Definition 2.1. ([14], Definition 5) Let X be a non-empty set and f : X −→ X ,
α : X × X −→ [0,∞) be two mappings. Then f is called an α-orbital admissible
mapping if for all x ∈ X ,

α(x, fx) ≥ 1 implies α(fx, f2x) ≥ 1.

Definition 2.2. ([14], Definition 6) Let X be a non-empty set and f : X −→ X ,
α : X × X −→ [0,∞) be two mappings. Then f is called a triangular α-orbital
admissible mapping if

1. f is an α-orbital admissible.

2. For all x, y ∈ X , α(x, y) ≥ 1, α(y, fy) ≥ 1 imply α(x, fy) ≥ 1.

In 2016, Chuadchawna et al [6] introduced the notion of α-orbital admissible
mappings respect to η and triangular α-orbital admissible mappings respect to η
as follows.

Definition 2.3. ([6], Definition 2.1) Let X be a non-empty set and f : X −→ X ,
α : X × X −→ [0,∞) be two mappings. Then f is called an α-orbital admissible
mapping respect to η if for all x ∈ X ,

α(x, fx) ≥ η(x, fx) implies α(fx, f2x) ≥ η(fx, f2x).

Definition 2.4. ([6], Definition 2.2) Let X be a non-empty set and f : X −→ X ,
α : X×X −→ [0,∞) be mappings. Then f is called a triangular α-orbital admissible
mapping respect to η if

1. f is an α-orbital admissible respect to η.

2. For all x, y ∈ X , α(x, y) ≥ η(x, y), α(y, fy) ≥ η(y, fy) imply α(x, fy) ≥
η(x, fy).

In 2014, Hussain et al. [10] introduced the notion of α-η-complete metric spaces
and α-η-continuous functions.

Definition 2.5. ([10], Definition 4) Let (X, d) be a metric space, α, η : X×X −→
[0,∞) be mappings. Then

1. (X, d) is called α-η-complete if every Cauchy sequence {xn} in X with
α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N is a convergent sequence in (X, d).

2. (X, d) is called α-complete if X is α-η-complete with η(x, y) = 1 for all
x, y ∈ X.

Remark 2.1. Every complete metric space is an α-η-complete metric space. However,
[6, Example 1.12] proves that there exists an α-η-complete metric space which is not a
complete metric space.
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Definition 2.6. ([10], Definition 7) Let (X, d) be a metric space, f : X −→ X and
α, η : X ×X −→ [0,∞) be mappings. Then f is called an α-η-continuous mapping
on (X, d) if for all x ∈ X , lim

n→∞

xn = x, α(xn, xn+1) > η(xn, xn+1) for all n ∈ N

imply lim
n→∞

fxn = fx.

Remark 2.2. 1. Every continuous mapping is an α-η-continuous mapping. How-
ever, there exists an α-η-continuous mapping is not a continuous mapping, (see [6,
Example 1.14]).

2. T is called α-continuous if T is α-η-continuous with η(x, y) = 1 for all x, y ∈ X.

In 2016, Ansari and Kaewcharoen [1] introduced the notion of a generalized α-
η-ψ-ϕ-F -contraction type and stated some fixed point results for such contraction
type in metric spaces as follows.

Definition 2.7. ([1], Definition 2.1) Let (X, d) be a metric space, α, η : X×X −→
[0,∞) and f : X −→ X be mappings. Then f is called a generalized α-η-ψ-ϕ-F -
contraction type if there exist ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C such that for all x, y ∈ X

with α(x, y) > η(x, y), we have

ψ
(

d(fx, fy)
)

6 F
(

ψ(M(x, y)
)

, ϕ(M(x, y)
))

where

M(x, y) = max
{

d(x, y), d(x, fx), d(y, fy)
}

.

Theorem 2.1. ([1], Theorem 2.3, Theorem 2.4, Theorem 2.5) Let (X, d) be a
metric space, f : X −→ X and α, η : X ×X −→ [0,∞) be mappings such that

1. (X, d) is an α-η-complete metric space.

2. f is triangular α-orbital admissible respect to η.

3. f is an α-η-ψ-ϕ-F -contraction type.

4. There exists x0 ∈ X such that α(x0, fx0) ≥ η(x0, fx0).

5. (a) Either f is α-η-continuous or

(b) If {xn} is a sequence in X and lim
n→∞

xn = x such that α(xn, xn+1) >

η(xn, xn+1) for all n ∈ N, then there exists a subsequence {xn(k)} of
{xn} such that α(xn(k), x) > η(xn(k), x) for all k ∈ N.

Then f has a fixed point. Moreover, if for all x, y ∈ X, x 6= y there exists z ∈ X

such that α(z, fz) ≥ η(z, fz), α(x, z) ≥ η(x, z) and α(y, z) ≥ η(y, z), then f has a
unique fixed point.



Some Common Fixed Point Results for Rational Contraction Type 235

3. Main results

First, we generalize the notion of triangular α-orbital admissible mappings to a
pair of mappings as follows.

Definition 3.1. Let X be a non-empty set, f, g : X −→ X and α : X × X −→
[0,∞) be mappings. Then the pair (f, g) is called triangular α-orbital admissible if
for all x, y, z ∈ X ,

1. (L1) α(x, fx) ≥ 1 implies α(fx, gfx) ≥ 1.

2. (L2) α(x, y) ≥ 1 and α(y, fy) ≥ 1 imply α(x, fy) ≥ 1.

3. (L3) α(x, gx) ≥ 1 implies α(gx, fgx) ≥ 1.

4. (L4) α(x, y) ≥ 1 and α(y, gy) ≥ 1 imply α(x, gy) ≥ 1.

Lemma 3.1. Let X be a non-empty set, f, g : X −→ X and α : X×X −→ [0,∞)
be mappings such that

1. The pair (f, g) is triangular α-orbital admissible.

2. There exists x0 ∈ X such that α(x0, fx0) ≥ 1.

Then the sequence {xn} defined by x2n+1 = fx2n and x2n+2 = gx2n+1 satisfies
α(xm, xn) ≥ 1 for all m,n ∈ N with m 6= n.

Proof. Since α(x0, x1) = α(x0, fx0) ≥ 1 and the property (L1) of the pair (f, g),
we obtain α(x1, x2) = α(fx0, gfx0) ≥ 1. Since α(x1, x2) > 1 and x2 = gx1,

we get α(x1, gx1) ≥ 1. By using the property (L3) of the pair (f, g), we ob-
tain α(gx1, fgx1) ≥ 1. This implies that α(x2, x3) > 1. Since x3 = fx2, we
obtain α(x2, fx2) ≥ 1. By using the property (L1) of the pair (f, g), we obtain
α(fx2, gfx2) ≥ 1. This implies α(x3, x4) > 1. By continuing the process as above,
we obtain α(xn, xn+1) ≥ 1 for all n ∈ N.

Now, suppose that α(xn, xm) ≥ 1 form > n.We will prove that α(xn, xm+1) ≥ 1
for m > n. If m is odd, α(xm, gxm) = α(xm, xm+1) ≥ 1. Note that α(xn, xm) ≥ 1.
From the property (L4) of the pair (f, g), we have α(xn, xm+1) = α(xn, gxm) ≥ 1.
If m is even, α(xm, fxm) = α(xm, xm+1) ≥ 1. Note that α(xn, xm) ≥ 1. From the
property (L2) of the pair (f, g), we get α(xn, xm+1) = α(xn, fxm) ≥ 1. Therefore,
α(xn, xm) ≥ 1 for all m > n.

Next, we introduce the notion of a pair of ψ-ϕ-F -rational contraction type map-
pings in metric space.
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Definition 3.2. Let (X, d) be a metric space, α : X × X −→ [0,∞) and f, g :
X −→ X be mappings. Then the pair (f, g) is called a ψ-ϕ-F -rational contraction
type if there exist ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C such that for all x, y ∈ X, x 6= y with
α(x, y) > 1, we have

(3.1) ψ
(

d(fx, gy)
)

6 F
(

ψ(H(x, y)
)

, ϕ(H(x, y)
))

where

H(x, y) = max
{

d(x, y), d(x, fx), d(y, gy),
d(x, gy) + d(y, fx)

2
,
d(x, fx)d(y, gy)

d(x, y)

}

.

Definition 3.3. Let (X, d) be a metric space, α : X × X −→ [0,∞) and f, g :
X −→ X be mappings. Then the pair (f, g) is called a ψ-ϕ-Fk-rational contraction
type if there exist k > 0, ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C such that for all x, y ∈ X with
α(x, y) > 1, we have

(3.2) ψ
(

d(fx, gy)
)

6 F
(

ψ(Hk(x, y)
)

, ϕ(Hk(x, y)
))

where

Hk(x, y) = max
{

d(x, y), d(x, fx), d(y, gy),
d(x, gy) + d(y, fx)

2
,
d(x, fx)d(y, gy)

k + d(x, y)

}

.

The first main result is a sufficient condition for the existence of a common
fixed point of a pair of mappings satisfying ψ-ϕ-F -rational contraction type in
metric spaces.

Theorem 3.1. Let (X, d) be a metric space, f, g : X −→ X and α : X × X −→
[0,∞) be mappings such that

1. (X, d) is an α-complete metric space.

2. The pair (f, g) is triangular α-orbital admissible.

3. The pair (f, g) is a ψ-ϕ-F -rational contraction type.

4. There exists x0 ∈ X such that α(x0, fx0) ≥ 1.

5. f and g are α-continuous.

Then f or g has a fixed point, or f and g have a common fixed point.

Proof. We define a sequence {xn} in X by x2n+1 = fx2n and x2n+2 = gx2n+1 for
all n ∈ N, where α(x0, fx0) ≥ 1. If there exists n ∈ N such that x2n = x2n+1,
then x2n = fx2n, that is, x2n is a fixed point of f . Similarly, if there exists n ∈ N

such that x2n+1 = x2n+2, then x2n+1 = gx2n+1, that is, x2n+1 is a fixed point of
g. Therefore, we assume that xn 6= xn+1 for all n ∈ N. Since the pair (f, g) is
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triangular α-orbital admissible, by using Lemma 3.1, we obtain the following for all
m,n ∈ N,m > n,

(3.3) α(xn, xm) ≥ 1.

Since (f, g) is a ψ-ϕ-F -rational contraction type and using (3.3), we have

ψ
(

d(x2n+1, x2n+2)
)

= ψ
(

d(fx2n, gx2n+1)
)

≤ F
(

ψ(H(x2n, x2n+1)
)

, ϕ(H(x2n, x2n+1)
))

(3.4)

where

H(x2n, x2n+1)

= max
{

d(x2n, x2n+1), d(x2n, fx2n), d(x2n+1, gx2n+1),

d(x2n, gx2n+1) + d(x2n+1, fx2n)

2
,
d(x2n, fx2n)d(x2n+1, gx2n+1)

d(x2n, x2n+1)

}

= max
{

d(x2n, x2n+1), d(x2n+1, x2n+2),
d(x2n, x2n+2)

2

}

≤ max
{

d(x2n, x2n+1), d(x2n+1, x2n+2),
d(x2n, x2n+1) + d(x2n+1, x2n+2)

2

}

= max
{

d(x2n, x2n+1), d(x2n+1, x2n+2)
}

.

If there exists n ∈ N such that

max
{

d(x2n, x2n+1), d(x2n+1, x2n+2)
}

= d(x2n+1, x2n+2) > 0,

then (3.4) becomes

ψ
(

d(x2n+1, x2n+2)
)

≤ F
(

ψ(d(x2n+1, x2n+2)
)

, ϕ(d(x2n+1, x2n+2)
))

< ψ
(

d(x2n+1, x2n+2)
)

.

It is a contradiction. Therefore,

max
{

d(x2n, x2n+1), d(x2n+1, x2n+2)
}

= d(x2n, x2n+1) > 0

for all n ∈ N. Then (3.4) becomes

ψ
(

d(x2n+1, x2n+2)
)

≤ F
(

ψ(d(x2n, x2n+1)
)

, ϕ(d(x2n, x2n+1)
))

(3.5)

< ψ
(

d(x2n, x2n+1)
)

for all n ∈ N. Moreover, since ψ is nondecreasing, we have

(3.6) d(x2n+1, x2n+2) ≤ d(x2n, x2n+1)

for all n ∈ N. Also, from (3.3) and(f, g) is a ψ-ϕ-F -rational contraction type,
we have

ψ
(

d(x2n+1, x2n)
)

= ψ
(

d(fx2n, gx2n−1)
)

≤ F
(

ψ(H(x2n, x2n−1)
)

, ϕ(H(x2n, x2n−1)
))

.
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Similar to the above arguments, we also have

(3.7) d(x2n+1, x2n) < d(x2n, x2n−1)

for all n ∈ N, n ≥ 1. Therefore, from (3.6) and (3.7), we obtain {d(xn, xn+1)}
is a decreasing sequence of positive numbers. Hence, there exists r ≥ 0 such that
lim
n→∞

d(xn, xn+1) = r. Then, taking the limit as n → ∞ in (3.5), we obtain

ψ(r) ≤ F
(

ψ(r), ϕ(r)
)

. This implies that F
(

ψ(r), ϕ(r)
)

= ψ(r). Then, ψ(r) = 0 or
ϕ(r) = 0. So, we have r = 0. Therefore,

(3.8) lim
n→∞

d(xn, xn+1) = 0.

Next, we will prove that {xn} is a Cauchy sequence. It is sufficient to show that
{x2n} is a Cauchy sequence. On the contrary, suppose that {x2n} is not a Cauchy
sequence. Then, there exist ε > 0 and two sequences of positive integers {m(k)}
and {n(k)} where n(k) is the smallest index for which n(k) > m(k) > k and

(3.9) d(x2m(k), x2n(k)) ≥ ε.

It implies that

(3.10) d(x2m(k), x2n(k)−2) < ε.

Then, from (3.9) and (3.10), we have

ε ≤ d(x2m(k), x2n(k))(3.11)

≤ d(x2m(k), x2n(k)−2) + d(x2n(k)−2, x2n(k)−1) + d(x2n(k)−1, x2n(k))

< ε+ d(x2n(k)−2, x2n(k)−1) + d(x2n(k)−1, x2n(k)).

Taking the limit as k → ∞ in (3.11) and using (3.8), we get

(3.12) lim
k→∞

d(x2m(k), x2n(k)) = ε.

Moreover, we have

(3.13) |d(x2m(k), x2n(k)−1)− d(x2m(k), x2n(k))| ≤ d(x2n(k)−1, x2n(k)).

(3.14) |d(x2m(k), x2n(k)−1)− d(x2n(k)−1, x2m(k)+1)| ≤ d(x2m(k), x2m(k)+1).

(3.15) |d(x2m(k)+1, x2n(k))− d(x2m(k)+1, x2n(k)−1)| ≤ d(x2n(k), x2n(k)−1).

Taking the limit as k → ∞ in (3.13), (3.14), (3.15) and using (3.8), (3.12) we obtain

(3.16) lim
k→∞

d(x2m(k), x2n(k)−1) = ε.
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(3.17) lim
k→∞

d(x2n(k)−1, x2m(k)+1) = ε.

(3.18) lim
k→∞

d(x2m(k)+1, x2n(k)) = ε.

Since lim
k→∞

d(x2m(k), x2n(k)−1) = ε > 0, we have d(x2m(k), x2n(k)−1) > 0 for all

k > k0 with some k0 ∈ N. For all k > k0, since 2m(k) < 2n(k)− 1 and using (3.3),
we obtain α(x2m(k), x2n(k)−1) ≥ 1. By using (3.1), we have

ψ
(

d(x2m(k)+1, x2n(k))
)

= ψ
(

d(fx2m(k), gx2n(k)−1)
)

≤ F
(

ψ(H(x2m(k), x2n(k)−1)
)

, ϕ(H(x2m(k), x2n(k)−1)
))

(3.19)

where

H(x2m(k), x2n(k)−1)(3.20)

= max
{

d(x2m(k), x2n(k)−1), d(x2m(k), x2m(k)+1), d(x2n(k)−1, x2n(k)),

d(x2m(k), x2n(k)) + d(x2n(k)−1, x2m(k)+1)

2
,

d(x2m(k), x2m(k)+1)d(x2n(k)−1, x2n(k))

d(x2m(k), x2n(k)−1)

}

.

Taking the limit as k → ∞ in (3.20) and using (3.8), (3.12), (3.16), (3.17),
we obtain

lim
k→∞

H(x2m(k), x2n(k)−1) = max
{

ε, 0, 0,
ε+ ε

2
, 0
}

= ε.(3.21)

Taking the limit as k → ∞ in (3.19), using the continuity of F, ψ, ϕ and (3.18),
(3.21), we have

ψ(ε) ≤ F
(

ψ(ε), ϕ(ε)
)

.

It follows from the property of F that ψ(ε) = 0 or ϕ(ε) = 0. This implies that
ε = 0 which is a contradiction. Therefore, {xn} is a Cauchy sequence. Since X is
an α-complete metric space and α(xn, xn+1) ≥ 1 for all n ∈ N, there exists x ∈ X

such that lim
n→∞

xn = x. Since f and g are α-continuous mappings, we have

x = lim
n→∞

x2n+1 = lim
n→∞

fx2n = f( lim
n→∞

x2n) = fx

and
x = lim

n→∞

x2n+2 = lim
n→∞

gx2n+1 = g( lim
n→∞

x2n+1) = gx.

This implies that x is a common fixed point of f and g.

The second main result is a sufficient condition for the existence of a common
fixed point of a pair of mappings satisfying ψ-ϕ-Fk-rational contraction type in
metric spaces.
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Theorem 3.2. Let (X, d) be a metric space, f, g : X −→ X and α : X × X −→
[0,∞) be mappings such that

1. (X, d) is an α-complete metric space.

2. The pair (f, g) is triangular α-orbital admissible.

3. The pair (f, g) is a ψ-ϕ-Fk-rational contraction type.

4. There exists x0 ∈ X such that α(x0, fx0) ≥ 1.

5. If {xn} is a sequence in X such that lim
n→∞

xn = x and α(xn, xn+1) ≥ 1 for all

n ∈ N, then α(x2n, x) ≥ 1 and α(x, x2n+1) ≥ 1 for all n ∈ N.

Then f or g has a fixed point, or f and g have a common fixed point.

Proof. As in the proof of Theorem 3.1, we conclude that either f or g has a fixed
point or the sequence {xn} defined by x2n+1 = fx2n and x2n+2 = gx2n+1 for all
n ∈ N satisfies

(3.22) α(xn, xm) > 1,

(3.23) lim
n→∞

d(xn, xn+1) = 0

for all n,m ∈ N with n > m and there exists x ∈ X such that

(3.24) lim
n→∞

xn = x.

Then, from the assumption (5), we obtain α(x2n, x) ≥ 1 and α(x, x2n+1) ≥ 1 for
all n ∈ N. Since α(x2n, x) ≥ 1, (f, g) is triangular α-orbital admissible, we have

(3.25) ψ
(

d(x2n+1, gx)
)

= ψ
(

d(fx2n, gx)
)

≤ F
(

ψ(H(x2n, x), ϕH(x2n, x))
)

where

H(x2n, x) = max
{

d(x2n, x), d(x2n, x2n+1), d(x, gx),

d(x2n, gx) + d(x, x2n+1)

2
,
d(x2n, x2n+1)d(x, gx)

k + d(x, x2n)

}

.(3.26)

Taking the limit as n→ ∞ in (3.26) and using (3.23), (3.24), we get

(3.27) lim
n→∞

H(x2n, x) = d(x, gx).

Taking the limit as n → ∞ in (3.25), using the continuity of F, ψ, ϕ and (3.27),
we obtain

ψ
(

d(x, gx)
)

≤ F
(

ψ(d(x, gx), ϕ(d(x, gx)
)

.

By using the property of F, we have ψ
(

d(x, gx)
)

= 0 or ϕ
(

d(x, gx)
)

= 0. This implies
that d(x, gx) = 0. Hence, gx = x. Similarly, we also have fx = x. Therefore, x is a
common fixed point of f and g.
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The following theorems are the sufficient conditions for the existence of a unique
common fixed point of the pair of mappings satisfying ψ-ϕ-F -rational contraction
type and ψ-ϕ-Fk-rational contraction type in metric spaces.

Theorem 3.3. Suppose all assumptions of Theorem 3.1 hold. Assume that for
all x, y ∈ X, x 6= y, there exists z ∈ X such that α(z, fz) ≥ 1, α(x, z) ≥ 1 and
α(y, z) ≥ 1. Then f or g has a fixed point or f and g have a unique common
fixed point.

Proof. By Theorem 3.1, f or g has a fixed point or f and g have a common fixed
point. Suppose that x, y are two common fixed point of f, g such that x 6= y. By the
assumption, there exists z ∈ X such that α(z, fz) ≥ 1, α(x, z) ≥ 1. Since (f, g) is
triangular α-orbital admissible, we have α(x, fz) ≥ 1. Since α(z, fz) ≥ 1 and using
Theorem 3.1, we deduce that

lim
n→∞

zn = z∗(3.28)

where z∗ ∈ X and {zn} is defined by z0 = z, z2n+1 = fz2n and z2n+2 = gz2n+1 for
all n ∈ N.

Moreover, α(x, z1) = α(x, fz) ≥ 1, and (f, g) is triangular α-orbital admissi-
ble, we have α(x, z2) = α(fx, gz1) ≥ 1. This implies that α(x, z3) = α(gx, fz2) ≥ 1.
Continue this process, we have α(x, zn) ≥ 1 for all n ∈ N. We consider two follow-
ing cases.

Case 1. If there exists zn0
∈ X such that zn0

= x, then

lim
n→∞

zn = x.(3.29)

By using (3.28) and (3.29), we obtain x = z∗.

Case 2. If zn 6= x for all n ∈ N, then using (3.1), we obtain

ψ
(

d(x, z2n+2)
)

= ψ
(

d(fx, gz2n+1)
)

≤ F
(

ψ(H(x, z2n+1)
)

, ϕ(H(x, z2n+1)
))

(3.30)

where

H(x, z2n+1) = max
{

d(x, z2n+1), d(x, fx), d(z2n+1, gz2n+1),

d(x, gz2n+1) + d(z2n+1, fx)

2
,
d(x, fx)d(z2n+1, gz2n+1)

d(x, z2n+1)

}

= max
{

d(x, z2n+1), d(z2n+1, z2n+2),
d(x, z2n+2) + d(z2n+1, x)

2

}

.(3.31)

Taking the limit as n→ ∞ in (3.31), we have

(3.32) lim
n→∞

H(x, zn+1) = d(x, z∗).
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Taking the limit as n→ ∞ in (3.30) and (3.32), we have

(3.33) ψ
(

d(x, z∗)
)

≤ F
(

ψ(d(x, z∗)), ϕ(d(x, z∗))
)

.

By using the property of F, we have ψ(d(x, z∗)) = 0 or ϕ(d(x, z∗)) = 0. This implies
that d(x, z∗) = 0. This means x = z∗.

From the above cases, we conclude that x = z∗. Similar, we also obtain y = z∗.

Therefore, x = y and hence the common fixed point of f and g is unique.

Theorem 3.4. Suppose all assumptions of Theorem 3.2 hold. Assume that for
all x, y ∈ X, x 6= y, there exists z ∈ X such that α(z, fz) ≥ 1, α(x, z) ≥ 1 and
α(y, z) ≥ 1. Then f or g has a fixed point or f and g have a unique common
fixed point.

Proof. The proof is similar to the proof of Theorem 3.3.

By choosing f = g in Theorem 3.1, Theorem 3.2, Theorem 3.3 and Theorem 3.4,
we get the following results.

Corollary 3.1. Let (X, d) be a metric space, f : X −→ X and α : X × X −→
[0,∞) be mappings such that

1. (X, d) is an α-complete metric space.

2. f is a triangular α-orbital admissible mapping.

3. For all x, y ∈ X, x 6= y with α(x, y) ≥ 1, there exist ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C
such that

α(x, y)ψ
(

d(fx, fy)
)

6 F
(

ψ(Hf (x, y)
)

, ϕ(Hf (x, y)
))

where

Hf(x, y) = max
{

d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2
,
d(x, fx)d(y, fy)

d(x, y)

}

.

4. There exists x0 ∈ X such that α(x0, fx0) ≥ 1.

5. f is α-continuous.

Then f has a fixed point. Moreover, if for all x, y ∈ X, x 6= y, there exists z ∈ X

such that α(z, fz) ≥ 1, α(x, z) ≥ 1 and α(y, z) ≥ 1, then f has a unique fixed point.

Corollary 3.2. Let (X, d) be a metric space, f : X −→ X and α : X × X −→
[0,∞) be mappings such that

1. (X, d) is an α-complete metric space.
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2. f is a triangular α-orbital admissible mapping.

3. For all x, y ∈ X with α(x, y) ≥ 1, there exist k > 0, ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C
such that

α(x, y)ψ
(

d(fx, fy)
)

6 F
(

ψ(Hf
k (x, y)

)

, ϕ(Hf
k (x, y)

))

where

H
f
k (x, y) = max

{

d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2
,
d(x, fx)d(y, fy)

k + d(x, y)

}

.

4. There exists x0 ∈ X such that α(x0, fx0) ≥ 1.

5. If {xn} is a sequence in X such that lim
n→∞

xn = x and α(xn, xn+1) ≥ 1 for all

n ∈ N, then α(xn, x) ≥ 1 for all n ∈ N.

Then f has a fixed point. Moreover, if for all x, y ∈ X, x 6= y, there exists z ∈ X

such that α(z, fz) ≥ 1, α(x, z) ≥ 1 and α(y, z) ≥ 1, then f has a unique fixed point.

By using the arguments as in the proof of [3, Theorem 2.2], from Corollary 3.1
and Corollary 3.2, we obtain the following results. These can be viewed as extending
analogues of Theorem 2.1.

Corollary 3.3. Let (X, d) be a metric space, f : X −→ X and α, η : X ×X −→
[0,∞) be mappings such that

1. (X, d) is an α-η-complete metric space.

2. f is a triangular α-orbital admissible mapping respect to η.

3. For all x, y ∈ X, x 6= y with α(x, y) ≥ η(x, y), there exist ψ ∈ Ψ, ϕ ∈ Φ and
F ∈ C such that

ψ
(

d(fx, fy)
)

6 F
(

ψ(Hf (x, y)
)

, ϕ(Hf (x, y)
))

where

Hf(x, y) = max
{

d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2
,
d(x, fx)d(y, fy)

d(x, y)

}

.

4. There exists x0 ∈ X such that α(x0, fx0) ≥ η(x0, fx0).

5. f is α-η-continuous.

Then f has a fixed point. Moreover, if for all x, y ∈ X, x 6= y, there exists z ∈ X

such that α(z, fz) ≥ η(z, fz), α(x, z) ≥ η(x, z) and α(y, z) ≥ η(y, z), then f has a
unique fixed point.
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Corollary 3.4. Let (X, d) be a metric space, f : X −→ X and α, η : X ×X −→
[0,∞) be mappings such that

1. (X, d) is an α-η-complete metric space.

2. f is a triangular α-orbital admissible mapping respect to η.

3. For all x, y ∈ X with α(x, y) ≥ η(x, y), there exist k > 0, ψ ∈ Ψ, ϕ ∈ Φ and
F ∈ C such that

ψ
(

d(fx, fy)
)

6 F
(

ψ(Hf
k (x, y)

)

, ϕ(Hf
k (x, y)

))

where

H
f
k (x, y) = max

{

d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2
,
d(x, fx)d(y, fy)

k + d(x, y)

}

.

4. There exists x0 ∈ X such that α(x0, fx0) ≥ η(x0, fx0).

5. If {xn} is a sequence in X such that lim
n→∞

xn = x and α(xn, xn+1) ≥ η(xn, xn+1)

for all n ∈ N, then α(xn, x) ≥ η(xn, x) for all n ∈ N.

Then f has a fixed point. Moreover, if for all x, y ∈ X, x 6= y, there exists z ∈ X

such that α(z, fz) ≥ η(z, fz), α(x, z) ≥ η(x, z) and α(y, z) ≥ η(y, z), then f has a
unique fixed point.

In Corollary 3.1 and Corollary 3.2, by choosing F (s, t) = sβ(s) for all s, t ∈
[0,∞) where β : [0,∞) −→ [0, 1) is a continuous function, we obtain the following
corollaries. These results can be viewed as the extending analogues of [12, 14]
with the condition ” lim

n→∞

β(tn) = 0 implying that lim
n→∞

tn = 1” replaced by ”β is

continuous”.

Corollary 3.5. Let (X, d) be a complete metric space, f : X −→ X and α : X ×
X −→ [0,∞) be mappings such that

1. f is a triangular α-orbital admissible mapping.

2. For all x, y ∈ X, x 6= y with α(x, y) ≥ 1, there exist ψ ∈ Ψ, ϕ ∈ Φ and
β : [0,∞) −→ [0, 1) is a continuous function such that

α(x, y)ψ
(

d(fx, fy)
)

6 ψ
(

Hf (x, y)
)

.β
(

ψ(Hf (x, y)
)

where

Hf(x, y) = max
{

d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2
,
d(x, fx)d(y, fy)

d(x, y)

}

.

3. There exists x0 ∈ X such that α(x0, fx0) ≥ 1.
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4. f is continuous.

Then f has a fixed point. Moreover, if for all x, y ∈ X, x 6= y, there exists z ∈ X

such that α(z, fz) ≥ 1, α(x, z) ≥ 1 and α(y, z) ≥ 1, then f has a unique fixed point.

Corollary 3.6. Let (X, d) be a complete metric space, f : X −→ X and α : X ×
X −→ [0,∞) be mappings such that

1. f is a triangular α-orbital admissible mapping.

2. For all x, y ∈ X with α(x, y) ≥ 1, there exist k > 0, ψ ∈ Ψ, ϕ ∈ Φ and
β : [0,∞) −→ [0, 1) is a continuous function such that

α(x, y)ψ
(

d(fx, fy)
)

6 ψ
(

H
f
k (x, y)

)

.β
(

ψ(Hf
k (x, y)

)

where

H
f
k (x, y) = max

{

d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2
,
d(x, fx)d(y, fy)

k + d(x, y)

}

.

3. There exists x0 ∈ X such that α(x0, fx0) ≥ 1.

4. If {xn} is a sequence in X such that lim
n→∞

xn = x and α(xn, xn+1) ≥ 1 for all

n ∈ N, then α(xn, x) ≥ 1 for all n ∈ N.

Then f has a fixed point. Moreover, if for all x, y ∈ X, x 6= y, there exists z ∈ X

such that α(z, fz) ≥ 1, α(x, z) ≥ 1 and α(y, z) ≥ 1, then f has a unique fixed point.

In Corollary 3.3 and Corollary 3.4, by choosing F (s, t) = sβ(s) for all s, t ∈
[0,∞) where β : [0,∞) −→ [0, 1) is a continuous function, we obtain the following
corollaries. These results can be viewed as extending analogues of [6, Theorem 2.7,
Theorem 2.8, Theorem 2.9] with the condition ” lim

n→∞

β(tn) = 0 implies lim
n→∞

tn = 1”

replaced by ”β is continuous” .

Corollary 3.7. Let (X, d) be a complete metric space, f : X −→ X and α, η :
X ×X −→ [0,∞) be mappings such that

1. f is a triangular α-orbital admissible mapping respect to η.

2. For all x, y ∈ X, x 6= y with α(x, y) ≥ η(x, y), there exist ψ ∈ Ψ, ϕ ∈ Φ and
β : [0,∞) −→ [0, 1) is a continuous function such that

ψ
(

d(fx, fy)
)

6 ψ
(

Hf (x, y)
)

.β
(

ψ(Hf (x, y)
)

where

Hf(x, y) = max
{

d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2
,
d(x, fx)d(y, fy)

d(x, y)

}

.
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3. There exists x0 ∈ X such that α(x0, fx0) ≥ η(x0, fx0).

4. f is continuous.

Then f has a fixed point. Moreover, if for all x, y ∈ X, x 6= y, there exists z ∈ X

such that α(z, fz) ≥ η(z, fz), α(x, z) ≥ η(x, z) and α(y, z) ≥ η(y, z) then f has a
unique fixed point.

Corollary 3.8. Let (X, d) be a complete metric space, f : X −→ X and α, η :
X ×X −→ [0,∞) be mappings such that

1. f is a triangular α-orbital admissible mapping respect to η.

2. For all x, y ∈ X with α(x, y) ≥ η(x, y), there exist k > 0, ψ ∈ Ψ, ϕ ∈ Φ and
β : [0,∞) −→ [0, 1) is a continuous function such that

ψ
(

d(fx, fy)
)

6 ψ
(

H
f
k (x, y)

)

.β
(

ψ(Hf
k (x, y)

)

where

H
f
k (x, y) = max

{

d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2
,
d(x, fx)d(y, fy)

k + d(x, y)

}

.

3. There exists x0 ∈ X such that α(x0, fx0) ≥ η(x0, fx0).

4. If {xn} is a sequence in X such that lim
n→∞

xn = x and α(xn, xn+1) ≥ η(xn, xn+1)

for all n ∈ N, then α(xn, x) ≥ η(xn, x) for all n ∈ N.

Then f has a fixed point. Moreover, if for all x, y ∈ X, x 6= y, there exists z ∈ X

such that α(z, fz) ≥ η(z, fz), α(x, z) ≥ η(x, z) and α(y, z) ≥ η(y, z), then f has a
unique fixed point.

The following example shows that there exist f, F, α, η, ψ, ϕ such that Corol-
lary 3.3 can be applied.

Example 3.1. Let X = {1, 2, 3, 4, 5} and metric d on X as follows.

d(x, y) =























1

4
if (x, y) ∈ {(2, 4); (3, 4); (3, 5); (4, 2); (4, 3); (4, 5); (5; 3); (5, 4)}

0 if x = y

1

2
otherwise.

Define f : X −→ X,α, η : X×X −→ [0,∞), F : [0,∞)×[0,∞) −→ R and ϕ, ψ : [0,∞) −→
[0,∞) by

f1 = f4 = 1; f2 = 3; f3 = f5 = 2,

α(x, y) =







1

2
if (x, y) ∈ {(1, 1); (3, 5); (4, 1); (4, 2); (4, 3); (4, 5); (5, 3)}

0 otherwise,
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η(x, y) =
1

2
for all x, y ∈ X,

F (s, t) = s− t for all s, t ∈ [0,∞),

ψ(t) = t, ϕ(t) =
t2

4
for all t ∈ [0,∞).

Then Corollary 3.3 can be applied to f, F, α, η, ψ, ϕ.

Proof. For all x, y ∈ X, x 6= y with α(x, y) > η(x, y), we obtain

(x, y) ∈ {(3, 5); (4, 1); (4, 2); (4, 3); (4, 5); (5, 3)}.

We consider the following cases.

Case 1. (x, y) ∈ {(3, 5); (4, 1); (5, 3)}. Then ψ
(

d(f(x), f(y))
)

= 0 and

Hf (3, 5) = max
{

d(3, 5), d(3, f3), d(5, f5),
d(3, f5) + d(5, f3)

2
,
d(3, f3)d(5, f5)

d(3, 5)

}

= max
{1

4
,
1

2
,
1

2
,
1

2
, 1
}

= 1,

Hf (4, 1) = max
{

d(4, 1), d(4, f4), d(1, f1),
d(4, f1) + d(1, f4)

2
,
d(4, f4)d(1, f1)

d(4, 1)

}

= max
{1

2
,
1

2
, 0,

1

4
, 0
}

=
1

2
,

Hf (5, 3) = max
{

d(5, 3), d(5, f5), d(3, f3),
d(5, f3) + d(3, f5)

2
,
d(5, f5)d(3, f3)

d(5, 3)

}

= max
{1

4
,
1

2
, ,

1

2
, ,

1

2
, 1
}

= 1.

Therefore, F
(

ψ(Hf (x, y)), ϕ(Hf (x, y))
)

= Hf (x, y)− (Hf (x,y))2

4 > 0 = ψ
(

d(f(x), f(y))
)

.

Case 2. (x, y) ∈ {(4, 2); (4, 3); (4, 5)}. Then

ψ
(

d(f4, f2)
)

= ψ
(

d(1, 3)
)

=
1

2
,

ψ
(

d(f4, f3)
)

= ψ
(

d(1, 2)
)

=
1

2
,
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ψ
(

d(f4, f5)
)

= ψ
(

d(1, 2)
)

=
1

2
.

Hf (4, 2) = max
{

d(4, 2), d(4, f4), d(2, f2),
d(4, f2) + d(2, f4)

2
,
d(4, f4)d(2, f2)

d(4, 2)

}

= max
{1

4
,
1

2
,
1

2
,
3

8
, 1
}

= 1.

Hf (4, 3) = max
{

d(4, 3), d(4, f4), d(3, f3),
d(4, f3) + d(3, f4)

2
,
d(4, f4)d(3, f3)

d(4, 3)

}

= max
{1

4
,
1

2
,
1

2
,
3

8
, 1
}

= 1.

Hf (4, 5) = max
{

d(4, 5), d(4, f4), d(5, f5),
d(4, f5) + d(5, f4)

2
,
d(4, f4)d(5, f5)

d(4, 5)

}

= max
{1

4
,
1

2
,
1

2
,
3

8
, 1
}

= 1.

Therefore

F
(

ψ(Hf (x, y)), ϕ(Hf (x, y))
)

= Hf (x, y)−
(Hf (x, y))2

4
=

3

4
>

1

2
= ψ

(

d(f(x), f(y))
)

.

Hence, the inequality (3.1) is satisfied for all x, y ∈ X, x 6= y with α(x, y) > η(x, y).

Next, we claim that f is a triangular α-orbital admissible respect to η. Indeed,
since α(x, fx) > η(x, fx), we have x = 1 or x = 4. Then

α(f1, f21) = α(1, 1) > η(1, 1) = η(f1, f21), α(f4, f24) = α(1, 1) > η(1, 1) = η(f4, f24).

Hence, f is an α-orbital admissible respect to η. Since α(x, y) > η(x, y), α(y, fy) >
η(y, fy) implies (x, y) = (1, 1) or (x, y) = (4, 1). Then,

α(4, f1) = α(4, 1) > η(4, 1) = η(4, f1), α(1, f4) = α(1, 1) > η(1, 1) = η(1, f1).

Hence, f is a triangular α-orbital admissible respect to η. Furthermore, all as-
sumptions in Corollary 3.3 are satisfied. Then Corollary 3.3 can be applied to
f, F, α, η, ψ, ϕ given.

Finally, we apply Theorem 3.2 to study the existence of solutions to the system
of nonlinear integral equations.
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Theorem 3.5. Let C[a, b] be a set of all continuous functions on [a, b] and d be a
metric defined by

d(u, v) = sup
t∈[a,b]

|u(t)− v(t)|

for all u, v ∈ C[a, b]. Consider the system of nonlinear integral equations

(3.34)















u(t) = ϕ(t) +

∫ b

a

K1(t, s, u(s))ds

u(t) = ϕ(t) +

∫ b

a

K2(t, s, u(s))ds

where t ∈ [a, b], ϕ : [a, b] −→ R,K1,K2 : [a, b] × [a, b] × [a, b] −→ R. Suppose that
the following statements hold.

1. K1(t, s, u(s)) and K2(t, s, u(s)) are integrable with respect to s on [a, b].

2. fu, gu ∈ C[a, b] for all u ∈ C[a, b], where

fu(t) = ϕ(t) +

∫ b

a

K1(t, s, u(s))ds,

gu(t) = ϕ(t) +

∫ b

a

K2(t, s, u(s))ds

for all t ∈ [a, b].

3. For all u ∈ C[a, b] such that u(t) ≥ 0 for all t ∈ [a, b], we have fu(t) ≥ 0 and
gu(t) ≥ 0 for all t ∈ [a, b].

4. For all s, t ∈ [a, b] and u, v ∈ C[a, b] such that u(t) 6= v(t) and u(t), v(t) ∈
[0,∞), we have

|K1(t, s, u(s))−K2(t, s, v(s))|

≤ φ(t, s)max
{

|u(s)− v(s)|, |u(s)− fu(s)|, |v(s)− gv(s)|,

|u(s)− gv(s)|+ |v(s)− fu(s)|

2
,
|u(s)− fu(s)||v(s)− gv(s)|

1 + |u(s)− v(s)|

}

where φ : [a, b]× [a, b] −→ [0,∞) is a continuous function satisfying

0 < sup
t∈[a,b]

(

∫ b

a

φ(t, s)ds
)

< 1.

5. There exists u0 ∈ C[a, b] such that u0(t) ≥ 0 for all t ∈ [a, b].

Then the system of nonlinear integral equations (3.34) has a solution u ∈ C[a, b].
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Proof. Consider f, g : C[a, b] −→ C[a, b] defined by

fu(t) = ϕ(t) +

∫ b

a

K1(t, s, u(s))ds and gu(t) = ϕ(t) +

∫ b

a

K2(t, s, u(s))ds

for all u ∈ C[a, b] and t ∈ [a, b]. It follows from assumptions (1) and (2) that f and
g are well-defined. Notice that the existence of a solution to (3.34) is equivalent to
the existence of the common fixed point of f and g. Now, we shall prove that all
assumptions of Theorem 3.2 are satisfied.

Define a mapping α : C[a, b]× C[a, b] −→ R by

α(u, v) =

{

1 if u(t), v(t) ∈ [0,∞) for all t ∈ [a, b]
0 otherwise.

(1) Since (C[a, b], d) is a complete metric space, (C[a, b], d) is a α-complete met-
ric space.

(2) We claim that the pair (f, g) is triangular α-orbital admissible. Indeed,

(L1) For all u ∈ C[a, b] such that α(u, fu) ≥ 1, we have u(t), fu(t) ∈ [0,∞) for
all t ∈ [a, b]. It follows from assumption (3), we conclude that gfu(t) ≥ 0 for all
t ∈ [a, b]. Therefore, α(fu, gfu) ≥ 1.

(L2) For all u, v ∈ C[a, b] such that α(u, v) ≥ 1 and α(v, fv) ≥ 1, we obtain
u(t), fv(t) ∈ [0,∞). Thus, α(u, fv) ≥ 1.

(L3) For all u ∈ C[a, b] such that α(u, gu) ≥ 1, we have u(t), gu(t) ∈ [0,∞) for
all t ∈ [a, b]. It follows from assumption (3), we conclude that fgu(t) ≥ 0 for all
t ∈ [a, b]. Therefore, α(gu, fgu) ≥ 1.

(L4) For all u, v ∈ C[a, b] such that α(u, v) ≥ 1 and α(v, gv) ≥ 1, we obtain
u(t), gv(t) ∈ [0,∞). Thus, α(u, gv) ≥ 1.

From the above, we conclude that the pair (f, g) is triangular α-orbital admis-
sible.

(3) We claim that the pair (f, g) is a ψ-ϕ-F -rational contraction mapping with
F (s, t) = λs for all s, t ∈ [a, b] and 0 < λ < 1. Indeed, let u, v ∈ C[a, b] with
u 6= v and α(u, v) ≥ 1. Then u(t), v(t) ∈ [0,∞) for all t ∈ [a, b]. Therefore, from
assumption (4), we have

|fu(t)− gv(t)| ≤

∫ b

a

|K1(t, s, u(s))−K2(t, s, v(s))|ds

≤

∫ b

a

(

φ(t, s)max
{

|u(s)− v(s)|, |u(s)− fu(s)|, |v(s)− gv(s)|,

|u(s)− gv(s)|+ |v(s)− fu(s)|

2
,
|u(s)− fu(s)||v(s)− gv(s)|

1 + |u(s)− v(s)|

})

ds

≤ H(u, v)

∫ b

a

φ(t, s)ds

≤ λH(u, v).



Some Common Fixed Point Results for Rational Contraction Type 251

where λ = sup
t∈[a,b]

(

∫ b

a

α(t, s)ds
)

and H(u, v) defined by (3.1). It implies that

d(fu, fv) ≤ λH(u, v).

Therefore, the pair (f, g) is a ψ-ϕ-F -rational contraction mapping with ψ(t) = t,
F (s, t) = λs for all s, t ∈ [0,∞), 0 < λ < 1.

(4) We claim that there exists u0 ∈ C[a, b] such that α(u0, fu0) ≥ 1. Indeed,
from assumption (5), there exists u0 ∈ C[a, b] such that u0(t) ≥ 0 for all t ∈ [a, b].
By using assumption (3), we see that fu0(t) ≥ 0 for all t ∈ [a, b]. Therefore,
α(u0, fu0) ≥ 1.

(5) We claim that assumption (5) in Theorem 3.2 holds. Indeed, let {un} be a
sequence in C[a, b] such that lim

n→∞

un = u and α(un, un+1) ≥ 1. Then u(t) ≥ 0 and

un(t) ≥ 0 for all t ∈ [a, b] and n ∈ N. Therefore, α(u2n, u) ≥ 1 and α(u, u2n+1) ≥ 1.

By the above, all assumptions of Theorem 3.2 are satisfied. Then, f and g have
a common fixed point u ∈ C[a, b] and the system of integral equations (3.34) has a
solution u ∈ C[a, b].
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