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INEXTENSIBLE FLOWS OF CURVES IN THE EQUIFORM GEOMETRY OF
4-DIMENSIONAL GALILEAN SPACE G4

Hülya Gün Bozok and Handan Öztekin

Abstract. In this paper, inextensible flows of curves in the equiform geometry of Galilean
space G4 are investigated. Necessary and sufficient conditions for inextensible flows of
curves are expressed as a partial differential equation involving the equiform curvature
in a 4-dimensional Galilean space G4.

1. Introduction

The flow of a curve is said to be inextensible if its arc length is preserved. Inex-
tensible flow of curves has many applications such as computes vision or computer
animation. Inextensible flows of curves and developable surfaces were first studied
by Kwon et al. [6]. There have been a lot of studies in the literature on inextensible
flows. Latifi et al. [5] studied inextensible flows of curves in Minkowski 3-space.
Ögrenmis et al.[1] studied inextensible curves in Galilean space G3 , Öztekin et al.
[8] studied inextensible flows of curves in G4, moreover, inelastic flows of curves
according to equiform in a Galilean space given by D.Y. Woon [7].

A Galilean space may be considered as the limit case of a pseudo-Euclidean
space in which the isotropic cone degenerates to a plane. Differential geometry of
Galilean space was studied by Röschel [10]. The Frenet formulas of a curve in G4 are
given by S. Yilmaz [11]. Theory of curves and the curves of constant curvature in
the equiform differential geometry of the isotropic space I1

3 and I2
3 and the Galilean

space G3 are described in [2] and [3], respectively. Also, Divjak et al.[4] studied
the equiform differential geometry of curves in a pseudo-Galilean space.Then the
equiform differential geometry of curves in a 4-dimensional Galilean space G4 is
studied in [9].
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In this paper we investigate inextensible flows of curves according to equiform
geometry in a 4-dimensional Galilean space G4 and then we obtain partial differ-
ential equations in terms of inextensible flows of curves in the equiform geometry
of G4.

2. Preliminaries

Let α : I ⊂ R → G4 be an arbitrary curve in a 4-dimensional Galilean space G4

defined by
α (t) =

(
x (t) , y (t) , z (t) ,w (t)

)
(2.1)

where x (t) , y (t) , z (t) ,w (t) are smooth functions.

For any vector x =
(
x1, y1, z1,w1

)
and y =

(
x2, y2, z2,w2

)
in G4the Galilean scalar

product is defined by

〈
x, y

〉
=

{
x1x2 , i f x1 � 0 or x2 � 0
y1y2 + z1z2 + w1w2 , i f x1 = 0 and x2 = 0 .(2.2)

For any vector x =
(
x1, y1, z1,w1

)
, y =

(
x2, y2, z2,w2

)
and z =

(
x3, y3, z3,w3

)
in G4 the

Galilean cross product is defined by

x ∧ y ∧ z =

∣∣∣∣∣∣∣∣∣∣

0 e2 e3 e4
x1 y1 z1 w1

x2 y2 z2 w2

x3 y3 z3 w3

∣∣∣∣∣∣∣∣∣∣
(2.3)

where ei are standard basis vectors.

Let α : I ⊂ R → G4 , α (s) =
(
s, y (s) , z (s) ,w (s)

)
be a curve parametrized by arc

length s in G4. Here we denote differentiation with respect to s by a dash. The first
vector of the Frenet-Serret frame, that is, the tangent vector of α is defined by

t (s) = α′ (s) =
(
1, y′ (s) , z′ (s) ,w′ (s)

)
Similar to space G3 we define the principal vector and binormal vector,

n (s) =
1
κ (s)

(
0, y′′ (s) , z′′ (s) ,w′′ (s)

)
,

b (s) =
1
τ (s)

⎛⎜⎜⎜⎜⎝0,
(
y′′ (s)
κ (s)

)′
,

(
z′′ (s)
κ (s)

)′
,

(
w′′ (s)
κ (s)

)′⎞⎟⎟⎟⎟⎠ ,
where κ (s) is the first curvature and τ (s) is the second curvature of the curve α.
The fourth unit vector is defined by

e (s) = μt (s) ∧ n (s) ∧ b (s) .
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Here the coefficient μ is taken ±1 to make +1 determinant of the matrix [t, n, b, e].
For the curve αin G4 , we have the following Frenet-Serret equations

t′ = κ (s) n (s)(2.4)
b′ = −τ (s) n (s) + σ (s) e (s)(2.5)
n′ = τ (s) b (s)(2.6)
e′ = −σ (s) b (s)(2.7)

where σ (s) is the third curvature of the curve α .

3. Frenet Formulas in Equiform Geometry in G4

Let α : I ⊂ R→ G4 be a curve parametrized by arc length s. We define the equiform
parameter of α by

σ =

∫
ds
ρ
=

∫
κds ,

where ρ = 1
κ is the radius of curvature of the curve α. It follows

dσ
ds
=

1
ρ

i.e.
ds
dσ
= ρ

Let h be a homothety with the center in the origin and the coefficient λ. If we put
α̃ = h (α), then it follows

s̃ = λs and ρ̃ = λρ

where s̃ is the arc length parameter of α̃ and ρ̃ the radius of curvature of this curve.
Therefore, σ is an equiform invariant parameter of α[6]. From now on, we define
the Frenet formula of the curve αwith respect to the equiform invariant parameter
σ inG4.
If we take

V1 =
dα
ds

then using (2.2) we have

V1 =
dα
ds
.
ds
dσ
= ρ.

dα
ds
= ρt .

Further, we define the the vectors V2,V3,V4 by

V2 = ρn , V3 = ρb , V4 = ρe .

It is easy to check that the tetrahedron {V1,V2,V3,V4} is an equiform invariant
tetrahedron of the curve α.

Definition 3.1. The function Ki : I→ Rdefined by

K1 = ρ̇ , K2 =
τ
κ
, K3 =

σ
κ

is called the equiform curvature of the curve α.
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Then the formulas analogous to the Frenet formulas in the equiform geometry of
the 4-dimensional Galilean space G4 have the following form

V
′
1 = K1V1 + V2 ,

V
′
2 = K1V2 +K2V3 ,

V
′
3 = −K2V2 +K1V3 +K3V4 ,

V
′
4 = −K3V3 +K1V4 .

(3.1)

where the functionsK1,K2,K3 are the equiform curvatures of this curve [9].

4. Inextensible Flows of Curves According to Equiform in G4

Throughout this paper, we assume that α (u, t) is a one-parameter family of smooth
curves in a 4-dimensional Galilean space G4. The arc length of αis given by

σ (u) =
∫ u

0

∣∣∣∣∣∂α∂u
∣∣∣∣∣ du(4.1)

where ∣∣∣∣∣∂α∂u
∣∣∣∣∣ =

∣∣∣∣∣∣
〈
∂α
∂u
,
∂α
∂u

〉∣∣∣∣∣∣
1
2

(4.2)

The operator ∂
∂σ is given in terms of u by

∂
∂σ
=

1
v
∂
∂u

(4.3)

where v =
∣∣∣ ∂α
∂u

∣∣∣ and the arc length parameter is dα = vdu. Any flow of αcan be
represented as

∂α
∂t
= f1V1 + f2V2 + f3V3 + f4V4(4.4)

we put

σ (u, t) =
∫ u

0
vdu ,

it is called the arc length variation of α.
In a 4-dimensional Galilean space G4 the requirement that the curve not be subject
to any elongation or compression can be expressed by the condition

∂

∂t
σ (u, t) =

∫ u

0

∂v
∂t

du = 0(4.5)

for all u ∈ [0, l].

Definition 4.1. A curve evolutionα (u, t)and its flow ∂α
∂t in a 4-dimensional Galilean

space G4 are said to be inextensible if

∂
∂t

∣∣∣∣∣∂α∂u
∣∣∣∣∣ = 0.
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Lemma 4.1. Let ∂α∂t = f1V1 + f2V2 + f3V3 + f4V4 be a smooth flow of the curve αin a
4-dimensional Galilean space G4. The flow is inextensible if and only if

∂v
∂t
=
∂ f1
∂u
+ f1vK1(4.6)

Proof. Suppose that ∂α∂t be a smooth flow of the curve α in a 4-dimensional Galilean
space G4. From the definition of v, we obtain

v
∂v
∂t
=

〈
∂α

∂u
,
∂

∂u
(
f1V1 + f2V2 + f3V3 + f4V4

)〉
.(4.7)

By the formulas analogous to the Frenet formulas in the equiform geometry of the
4-dimensional Galilean space G4, we have

∂v
∂t
=

〈
V1,

(
∂ f1
∂u + f1vK1

)
V1 +

(
∂ f2
∂u + f1v + f2vK1 − f3vK2

)
V2

+
(
∂ f3
∂u + f2vK2 + f3vK1 − f4vK3

)
V3 +

(
∂ f4
∂u + f3vK3 + f4vK1

)
V4

〉

Making necessary calculations from the above equation, we have (4.6), which
proves the lemma.

Theorem 4.1. Let ∂α∂t = f1V1 + f2V2 + f3V3 + f4V4 be a smooth flow of the curve α in a
4-dimensional Galilean space G4. The flow is inextensible if and only if

∂ f1
∂u
= − f1vK1.(4.8)

Proof. From (4.2) we have

∂
∂t
σ (u, t) =

∫ u

0

∂v
∂t

du =
∫ u

0

(
∂ f1
∂u
+ f1vK1

)
= 0.

Substituting (4.6) in (4.5) completes the proof of the theorem.

We now restrict ourselves to arc length parametrized curves. That is, v = 1 and the
local coordinate ucorrespond to the curve arc length s. We require the following
lemma.

Lemma 4.2. Let ∂α∂t = f1V1 + f2V2 + f3V3 + f4V4 be a smooth flow of the curve α in a
4-dimensional Galilean space G4. By the formulas analogous to the Frenet formulas in the
equiform geometry of the 4-dimensional Galilean space G4, we have

∂V1

∂t
=

(
∂ f2
∂s
+ f1 + f2K1 − f3K2

)
V2(4.9)

+

(
∂ f3
∂s
+ f2K2 + f3K1 − f4K3

)
V3 +

(
∂ f4
∂s
+ f3K3 + f4K1

)
V4(4.10)
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∂V2

∂t
= −

(
∂ f2
∂s
+ f1 + f2K1 − f3K2

)
V1 +Ψ1V3 +Ψ2V4(4.11)

∂V3

∂t
= −

(
∂ f3
∂s
+ f2K2 + f3K1 − f4K3

)
V1 −Ψ1V2 +Ψ3V4(4.12)

∂V4

∂t
= −

(
∂ f4
∂s
+ f3K3 + f4K1

)
V1 −Ψ2V2 −Ψ3V3(4.13)

whereΨ1 =
〈
∂V2
∂t ,V3

〉
, Ψ2 =

〈
∂V2
∂t ,V4

〉
, Ψ3 =

〈
∂V3
∂t ,V4

〉
provided that(

∂ f2
∂s + f1 + f2K1 − f3K2

)
= 0 and

(
∂ f3
∂s + f2K2 + f3K1 − f4K3

)
= 0.

Proof. Using the definition of α, we have

∂V1

∂t
=
∂

∂t
∂α

∂s
=
∂

∂s
(
f1V1 + f2V2 + f3V3 + f4V4

)
(4.14)

Using the formulas analogous to the Frenet formulas in the equiform geometry of
the 4-dimensional Galilean space G4, we have

∂V1
∂t =

(
∂ f1
∂s + f1K1

)
V1 +

(
∂ f2
∂s + f1 + f2K1 − f3K2

)
V2

+
(
∂ f3
∂s + f2K2 + f3K1 − f4K3

)
V3 +

(
∂ f4
∂s + f3K3 + f4K1

)
V4 .

On the other hand, using Theorem (4.1) in the above equation we get

∂V1

∂t
=

(
∂ f2
∂s
+ f1 + f2K1 − f3K2

)
V2 +

(
∂ f3
∂s
+ f2K2 + f3K1 − f4K3

)
V3

+

(
∂ f4
∂s
+ f3K3 + f4K1

)
V4.

Now we differentiate the Frenet frame byt:

0 = ∂
∂t 〈V1,V2〉 =

(
∂ f2
∂s + f1 + f2K1 − f3K2

)
+

〈
V1,

∂V2
∂t

〉
,

0 = ∂
∂t 〈V1,V3〉 =

(
∂ f3
∂s + f2K2 + f3K1 − f4K3

)
+

〈
V1,

∂V3
∂t

〉
,

0 = ∂
∂t 〈V1,V4〉 =

(
∂ f4
∂s + f3K3 + f4K1

)
+

〈
V1,

∂V4
∂t

〉
,

0 = ∂
∂t 〈V2,V3〉 = Ψ1 +

〈
V2,

∂V3
∂t

〉
,

0 = ∂
∂t 〈V2,V4〉 = Ψ2 +

〈
V2,

∂V4
∂t

〉
,

0 = ∂
∂t 〈V3,V4〉 = Ψ3 +

〈
V3,

∂V4
∂t

〉
.

Then, a straightforward computation using the above system gives

∂V2

∂t
= −

(
∂ f2
∂s
+ f1 + f2K1 − f3K2

)
V1 +Ψ1V3 +Ψ2V4(4.15)

∂V3

∂t
= −

(
∂ f3
∂s
+ f2K2 + f3K1 − f4K3

)
V1 −Ψ1V2 +Ψ3V4(4.16)

∂V4

∂t
= −

(
∂ f4
∂s
+ f3K3 + f4K1

)
V1 −Ψ2V2 −Ψ3V3(4.17)
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whereΨ1 =
〈
∂V2
∂t ,V3

〉
, Ψ2 =

〈
∂V2
∂t ,V4

〉
, Ψ3 =

〈
∂V3
∂t ,V4

〉
provided that(

∂ f2
∂s + f1 + f2K1 − f3K2

)
= 0 and

(
∂ f3
∂s + f2K2 + f3K1 − f4K3

)
= 0.

Theorem 4.2. Let ∂α∂t be inextensible. Then, by the formulas analogous to the Frenet
formulas in the equiform geometry of the 4-dimensional Galilean space G4, the following
system of partial differential equations holds:

∂K1

∂t
= 0 ,(4.18)

∂K2

∂t
=
∂Ψ1

∂s
−K3Ψ2(4.19)

whereΨ1 =
〈
∂V2
∂t ,V3

〉
, Ψ2 =

〈
∂V2
∂t ,V4

〉
, Ψ3 =

〈
∂V3
∂t ,V4

〉
provided that(

∂ f2
∂s + f1 + f2K1 − f3K2

)
= 0 and

(
∂ f3
∂s + f2K2 + f3K1 − f4K3

)
= 0.

Proof. Using (4.9) we have

∂
∂s
∂V1

∂t
=
∂
∂s

⎡⎢⎢⎢⎢⎢⎣
(
∂ f2
∂s + f1 + f2K1 − f3K2

)
V2 +

(
∂ f3
∂s + f2K2 + f3K1 − f4K3

)
V3

+
(
∂ f4
∂s + f3K3 + f4K1

)
V4

⎤⎥⎥⎥⎥⎥⎦
On the other hand, from the formulas analogous to the Frenet formulas in the
equiform geometry of a 4-dimensional Galilean space G4, we have

∂
∂t
∂V1

∂s
=
∂
∂t

(K1V1 + V2) =
∂K1

∂t
V1 +K1

∂V1

∂t
+
∂V2

∂t

Hence we see that
∂K1

∂t
= 0 .

Similarly, using (4.11) we have

∂
∂s
∂V2

∂t
=
∂
∂s

[
−

(
∂ f2
∂s
+ f1 + f2K1 − f3K2

)
V1 +Ψ1V3 +Ψ2V4

]

On the other hand, from the formulas analogous to the Frenet formulas in the
equiform geometry of a 4-dimensional Galilean space G4, we have

∂
∂t
∂V2

∂s
=
∂
∂t

(K1V2 +K2V3) =
∂K1

∂t
V2 +K1

∂V2

∂t
+
∂K2

∂t
V3 +K2

∂V3

∂t

Hence we see that
∂K2

∂t
=
∂Ψ1

∂s
−K3Ψ2 ,

whereΨ1 =
〈
∂V2
∂t ,V3

〉
, Ψ2 =

〈
∂V2
∂t ,V4

〉
, Ψ3 =

〈
∂V3
∂t ,V4

〉
provided that(

∂ f2
∂s + f1 + f2K1 − f3K2

)
= 0 and

(
∂ f3
∂s + f2K2 + f3K1 − f4K3

)
= 0 .
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