
FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. Vol. 34, No 1 (2019), 137–147

https://doi.org/10.22190/FUMI1901137M

COMPUTING TRIANGULATIONS OF THE CONVEX POLYGON
IN PHP/MYSQL ENVIRONMENT

Sead H. Mašović, Muzafer H. Saračević, Predrag S. Stanimirović
and Predrag V. Krtolica

Abstract. In this paper we implement the Block method for convex polygon triangula-
tion in the web environment (PHP/MySQL). Our main aim is to show the advantages
of the usage of web technologies in performing complex algorithm from computer graph-
ics. The basic assumption is that once obtained, the results can be stored in a database
and used for other calculations. Databases are convenient and structured methods of
sharing and retrieving data. We have performed a comparative analysis of the devel-
oped program with respect to two criteria: CPU time in generating triangulation and
CPU time in reading results from the database.
Keywords: Computer graphics, Polygon triangulation, Block method, PHP/MySQL.

1. Introduction and preliminaries

Polygon triangulation is an important problem applicable in computer graphics.
Restricted to the convex case, the decomposition of a polygon is done into triangles
by a maximal set of non-intersecting diagonals.

Let Pn denote a polygon with n vertices. The total number Tn of n-gon trian-
gulations is

(1.1) Tn = Cn−2 =
1

n− 1

(

2n− 4

n− 2

)

=
(2n− 4)!

(n− 1)!(n− 2)!
, n > 3.

Here, Cn represents the nth Catalan number (see e.g. [9]).

The set of all triangulations of the convex polygon Pn is denoted by Tn. Diagonal
connecting vertices i and j are denoted by δi,j . An outer face edge can be considered
as a diagonal, while nonadjacent vertices are connected by an internal diagonal.

Received June 10, 2018; accepted January 29, 2019
2010 Mathematics Subject Classification. Primary 32B25; Secondary 68N15, 68P15

137

138 S.H. Mašović, M.H. Saračević, P.S. Stanimirović and P.V. Krtolica

Many authors deal with the problem of how to generate the triangulation of
a convex polygon based on some criterion. In this paper we implement the Block
method for convex polygon triangulation [6] in the web environment using PH-
P/MySQL technologies.

The combination of PHP and MySQL is the most convenient approach to dy-
namic, database-driven web design application. Due to its open source roots, it is
free to implement and is therefore an extremely popular option for web development.

PHP is extremely powerful and exceptionally fast it can run on even the most
basic hardware, and it hardly puts a dent in the system resources. The main
characteristics of PHP are described in [2].

According to the TIOBE Programming Community index1, the PHP program-
ming language is one of the top 10 most popular programming languages. Eighty
percent of the top 10 million websites use PHP in one way or the other, including
Facebook and Wikipedia.

PHP, as a scripting language, is popular among web developers because of its
ability to interact with database systems.

MySQL is probably the most popular database management system for web
servers.

MySQL is a fast and powerful, yet easy-to-use, database system that offers just
about anything a website would need in order to find and serve up data to browsers.

The combination of PHP and MySQL can be used to build simple or com-
plex and high traffic websites (see for e.g. [1, 7]). Similarly, the authors [4] used
PHP/MySQL environment for computing the weighted Moore-Penrose inverse em-
ploying the partitioning method, as well as for storing the generated results.

This paper is organized as follows. In the Section 2 we present the main parts
of the Block method for convex polygon triangulation. In Section 3 we describe
the implementation of the algorithm in the PHP/MySQL environment. Section 4
includes a comparative analysis of the obtained numerical results.

2. Block method for convex polygon triangulation

Here we restate the Block method for convex polygon triangulation [6] which is
the subject of our implementation.

The general strategy of the method is to decompose the problem into smaller
dependant subproblems. Each subproblem is solved only once and used many times
avoiding unnecessary repetitions of calculation.

The method is based on the usage of the previously generated triangulations for
polygon with a smaller number of vertices. More precisely, the algorithm generates
the set Tn using all the previously generated triangulations Tb, where b < n. The
set Tb is used as many times as necessary as a block, i.e. it is repeated several times
in Tn.

1https://www.tiobe.com/tiobe-index/

Computing Triangulations of the Convex Polygon in PHP/MySQL Environment 139

The formal statement of the subject method is given by the following equation

(2.1) Tn = 2Tn−1 + rest(Rn).

The general idea of the Block method uses Tn−1 to generate Tn, which is il-
lustrated in Figure 2.1, where one case of the transformation process from a P5

triangulation into two corresponding P6 triangulations is presented. In part (a) we
see that the diagonals δ2,4 and δ2,5 make all vertices closed except the vertices 1, 2,
5, and 6 which form a quadrilateral. The parts (b) and (c) show two ways to trian-
gulate a quadrilateral, which gives two P6 triangulations having a P5 triangulation
as a starting block.

Fig. 2.1: Transformation from a P5 into the corresponding P6 triangulations.
P5 = {(2, 4), (2, 5)} → P6 = {(2, 4), (2, 5), (1, 5)&(2, 4), (2, 5), (2, 6)}

Starting from the assumption that triangulation has at least two ears and that,
in the worst case, one ear can be a vertex n, then we always have at least one ear
among the rest of the vertices.

For the correctness of the algorithm in the procedure used for finding and elim-
inating closed vertices, the authors introduced a list of ordered pairs of the form

(2.2) L = {(1, 1), (2, 2), . . . , (n, n)}.

After the elimination of n− l pairs the list L becomes

(2.3) L = {(s, is), s = 1, . . . , l}, 4 ≤ l ≤ n, il = n.

The values is, s = 1, . . . , l are the vertex marks, while the values 1, . . . , l represent
the relative vertex positions in the list L.

Here we restate two additional algorithms 2.1 - Pair elimination & 2.2 - Form a
quadrilateral, which are part of the Block Method Algorithm 2.3.

140 S.H. Mašović, M.H. Saračević, P.S. Stanimirović and P.V. Krtolica

Algorithm 2.1 Pair elimination

Require: List L of the form (2.3) and vertices ip and iq, where d(p, q) = 2.
1: Remove from the list L the pair placed between the pairs (p, ip) and (q, iq) in a circular

manner.
2: Decrease by one the first pair members in the pairs following the eliminated one.

Algorithm 2.2 Form a quadrilateral

Require: List L of the form (2.2), integer n and array of n− 4 diagonals (i.e a row in the
table for Tn).

1: Find a diagonal δip,iq where d(p, q) = 2 in the list L.
2: Call Algorithm 2.1 for the parameters ip and iq .
3: Repeat Steps 1–2 n− 4 times.

The main algorithm for the Block method is presented below.

Algorithm 2.3 Algorithm for the Block method

Require: An integer n and Tb with rowb = Cn−3 rows and colb = n− 4 columns

1: Create an empty table for Tn with rown = Cn−2 rows and coln = n− 3 columns.

2: Fill the table for Tn by the triangulations from Tb duplicating each row from Tb.

3: Fill the rest of the entered blocks (the last column in the first 2rowb rows) in the
following way.

for (i = 1; i <= 2rowb; i+ = 2)
{
Make a list L of the form (2.2).
Call Algorithm 2.2 with row i from the table for Tn as a parameter.
From the remaining four vertices in the list L make a diagonal δi1,i3 and place
it in the last column of the row i and diagonal δi2,i4 and place it in the last
column of the row i+ 1.
}

4: Fill the rest of the table for Tn containing Tn − 2Tb rows.

4.1 Filling the first n− 4 columns in the last rown − 2rowb rows.
i = 2 ∗ rowb + 1;
Make the list L of the form (2.2).
Eliminate the vertices adjacent to n calling Algorithm 2.1 for the parameters
1 and n− 1.
Fill the current table row i by diagonals δ2,n, δ3,n, . . . , δn−2,n.
The first n− 4 columns in the rest rown − 2rowb − 1 rows should be filled with
the diagonals with the last vertex n, while the first vertices are combinations of
the (n−4)th class in the set {2, 3, . . . , n−2}. The number of these combinations
is

(

n−3

n−4

)

= n− 3.

4.2 Filling the last column in the last (rown − 2rowb) rows.
for (i = 2rowb + 2; i <= rown; i++)

{
Make the list L of the form (2.2).

Computing Triangulations of the Convex Polygon in PHP/MySQL Environment 141

Call Algorithm 2.2 with the row i from the table for Tn as a parameter.
From the remaining four vertices in the list L make a diagonal δi1,i3 and
place it in the last column of the row i.
}

3. PHP/MySQL implementation of Block method

The most used architecture for development of web applications is three-tier
architecture (Figure 3.1). Three-tier web architecture is a unique system for devel-
oping web database applications which work around the three-tier model comprising
the database tier at the bottom, the application tier in the middle and the client
tier on top.

Fig. 3.1: Three-tier Web Architecture

The web interface of our application is given in Figure 3.2

Fig. 3.2: Web interface of the application

According to the three-tier architecture, our application is organized as follows:

• On the client tier we have the web interface;

• Algorithm for the Block method is performed on application tier ;

• Generated triangulations are stored on database tier ;

In what follows, we presents a detailed view of the application scenario:

142 S.H. Mašović, M.H. Saračević, P.S. Stanimirović and P.V. Krtolica

First, we have to enter the value n for which convex polygon we want to calculate
triangulation.

Preconditions : n ≥ 4

Second, when we press the submit button, Application search in database:
Case 1: Force Generation = Not marked
Have we already calculated triangulations of n in the database;

- If we have, the application displays the results of Tn in the browser;
- If we have not, the application checks if we have the results of Tn−1 in the

database:
* If we have, then call Algorithm 2.3
* If we do not, the preconditions of Algorithm 2.3 are not fulfilled;

Case 2: Force Generation = Marked
Have we already calculated triangulations of n− 1 in the database;

- If we have, then call Algorithm 2.3
- If we have not, the preconditions of Algorithm 2.3 are not fulfilled;

Third, the output results can be downloaded in a CSV format if we mark ”Down-
load Triangulation”.

Example 3.1. Let us illustrate how the application works on generating hexagon trian-
gulations using the already known pentagon triangulations.

First, n = 6;
Preconditions fulfilled: 6 ≥ 4;

Second, the submit button is pressed
Case 1: Force Generation = Not marked

- The application checks if we have the results of T5 in the database:
* If we have, then call Algorithm 2.3

→ Generating triangulations and displaying results in browsers (Figure 3.3)

Fig. 3.3: Generating results for T6

Computing Triangulations of the Convex Polygon in PHP/MySQL Environment 143

4. Comparative analysis and experimental results

The main idea of our implementation is to provide an appropriate client-server
web application, in the free open source PHP/MySQL development environment,
utilizing the minimum of resources: an internet browser and an operating system.

For a comparative analysis in presenting the advantages of web technologies, we
implement an additional algorithm from the field of computer graphics (Orbiting
Triangle method [8]).

Both algorithms are based on the usage of the previously generated triangula-
tions for a polygon with a smaller number of vertices.

The execution times with respect to two criteria are presented in Table 4.1. The
table column ”Speedup” shows the quotient of the values contained in the previous
two columns.

The testing is performed on the following configuration*: CPU - Inter(R) Core(TM)
i5-4210U CPU @ 1.70GHz 2.40GHz, RAM memory 8GB, Graphics card: NVIDIA
GeForce 820M.

Table 4.1: The execution times of computing triangulations (in seconds)

n
Number of BM in BM in reading

Speedup
OTM in OTM in reading

Speeduptriangulations generating from DB generating from DB

5 5 0.256 0.003 85.33 0.067 0.001 67.00
6 14 0.345 0.003 115.00 0.088 0.001 88.00
7 42 0.391 0.003 130.33 0.123 0.001 123.00
8 132 0.457 0.004 114.25 0.185 0.002 92.50
9 429 0.756 0.008 94.50 0.927 0.002 463.50

10 1,430 1.606 0.019 84.53 1.524 0.003 508.00
11 4,862 3.915 0.063 62.14 3.182 0.008 397.75
12 16,796 26.657 0.461 57.82 10.081 0.024 420.04
13 58,786 185.566 2.482 74.76 29.713 0.075 396.17
14 208,012 883.726 6.802 129.92 121.749 0.248 490.92
15 742,900 4,498.768 25.697 175.07 536.326 0.975 550.08

5. Conclusion

We implemented the Block method for convex polygon triangulation in the web
environment using the open source software (PHP/MySQL). With this implemen-
tation we presented the advantages of web technologies in preforming a complex
algorithm from computer graphics. The research also contributes to the manner
in which an MySQL database is used for storing the obtained results and utilizing
them for another calculation. As presented in the comparative analysis section, we
can conclude that the advantages of using a database in performing complex algo-
rithms are justified. This way of implementation provides a good basis for further
application of the web technology in computing other algorithms.

144 S.H. Mašović, M.H. Saračević, P.S. Stanimirović and P.V. Krtolica

A Important source code of the implementation

Source code for creating a MySQL database:

CREATE DATABASE IF NOT EXISTS triangulation;’;

if ($conn->query($sql)) {

$conn->select_db(’triangulation’);

} else {

die(’Could not create database: ’ . $conn->error . ’
’);

}

The source code for database connection:

// Connection

$conn = new mysqli(’localhost’, ’root’, ’’);

if ($conn->connect_errno) {

die(’Could not connect: (’ . $conn->connect_errno . ’)

’ . $conn->connect_error . ’
’);

}

In our implementation, we use only one table for storing generated triangula-
tions.

CREATE TABLE IF NOT EXISTS Triangulation

(

n int,

T int,

i int,

j int,

INDEX Triangulation_n_idx (n),

INDEX Triangulation_T_idx (T),

INDEX Triangulation_i_idx (i),

INDEX Triangulation_j_idx (j)

);

The source code of the implementation of Algorithm 2.3 - step 3:

// Step 3

// diagonal \delta_{i_1 ,i_3}

$sql .= ’

INSERT INTO Triangulation

SELECT DISTINCT a.n,

a.T,

1 AS i,

’ . ($n-1) . ’ AS j

FROM Triangulation a

WHERE a.n=’ . $n . ’

AND a.T%2=0;

’;

// diagonal \delta_{i_2 ,i_4}

$sql .= ’

INSERT INTO Triangulation

SELECT ’ . $n . ’ AS n,

a.T,

Computing Triangulations of the Convex Polygon in PHP/MySQL Environment 145

a.v AS i,

’ . $n . ’ AS j

FROM

(SELECT a.T,

a.j AS v

FROM Triangulation a

WHERE a.n=’ . $n . ’

AND a.T%2=1

AND a.i=1

UNION

SELECT DISTINCT a.T,

2 AS v

FROM Triangulation a

WHERE a.n=’ . $n . ’

AND a.T%2=1) a

INNER JOIN

(SELECT a.T,

a.i AS v

FROM Triangulation a

WHERE a.n=’ . $n . ’

AND a.T%2=1

AND a.j=’ . ($n-1) . ’

UNION

SELECT DISTINCT a.T,

’ . ($n-2) . ’ AS v

FROM Triangulation a

WHERE a.n=’ . $n . ’

AND a.T%2=1) b

ON a.T=b.T

AND a.v=b.v;

’;

The source code of the implementation of Algorithm 2.3 - step 4:

// Step 4

for ($k = 1; $k <= $n-4; $k++) {

$sql .= ’

INSERT INTO Triangulation

SELECT ’ . $n . ’ AS n,

(CASE a.T

WHEN @curTn_1 THEN @curTn

ELSE @curTn := @curTn + SIGN(@curTn_1 := a.T) * SIGN(@curK := 1)

* SIGN(@lastV := ’ . ($n-2) . ’)

END) + ’ . $N . ’ AS T,

(CASE

WHEN a.i=’ . $n . ’ THEN @lastV

ELSE a.i

END) AS i,

SIGN(

CASE WHEN a.j=’ . ($n-1) . ’ AND @curK = ’ . ($k+1) . ’

THEN @lastV:= a.i

ELSE 1

END) *

(CASE

WHEN a.j=’ . ($n-1) . ’ AND @curK <= ’ . $k . ’

THEN ’ . $n . ’ * SIGN(@curK := @curK+1)

146 S.H. Mašović, M.H. Saračević, P.S. Stanimirović and P.V. Krtolica

ELSE a.j

END) AS j

FROM

(SELECT a.T,

a.i,

a.j

FROM Triangulation a

WHERE a.n=’ . ($n-1) . ’

AND a.T IN

(SELECT a.T

FROM Triangulation a

WHERE a.n=’ . ($n-1) . ’

AND a.j=’ . ($n-1) . ’

GROUP BY a.T

HAVING count(a.i)>=’ . $k . ’)

UNION SELECT a.T,

’ . $n . ’ AS i,

’ . $n . ’ AS j

FROM Triangulation a

WHERE a.n=’ . ($n-1) . ’

AND a.j=’ . ($n-1) . ’

GROUP BY a.T

HAVING count(a.i)>=’ . $k . ’) a ,

(SELECT @curTn := 0, @curTn_1 := 0, @curK := 0, @lastV := ’ . ($n-2) . ’) b

ORDER BY a.T,

a.i,

a.j;

’;

if ($result = $conn->query(’

SELECT a.T

FROM Triangulation a

WHERE a.n=’ . ($n-1) . ’

AND a.j=’ . ($n-1) . ’

GROUP BY a.T

HAVING count(a.i)>=’ . $k . ’;

’

)) {

$N += $result->num_rows;

$result->close();

}

else {

die(’Could not access Triangulation table: ’ . $conn->error . ’
’);

}

}

REFERENCES

1. D. Lane, H. Williams: Web Database Applications with PHP and MySQL, 2nd
Edition, O’Reilly Media, 2009.

2. M. Rahman: PHP 7 Data Structures and Algorithms: Implement Linked Lists, Stack,
and Queues Using PHP, Packt Publishing, 2017.

Computing Triangulations of the Convex Polygon in PHP/MySQL Environment 147

3. M. Saračević, P. Stanimirović, S. Mašović, E. Bǐsevac: Implementation of the
convex polygon triangulation algorithm, Facta Universitatis Math. Inform. 27 (2012),
pp. 213–228.

4. M. Tasić, P. Stanimirović, S. Pepić: Computation of generalized inverses using
Php/MySql environment, Int. J. Comput. Math. 88 (2011), pp. 2429–2446.

5. P. Krtolica, P.Stanimirović, M. Tasić, S. Pepić: Triangulation of Convex Poly-
gon with Storage Support, Facta Universitatis, 29:2 (2014), pp. 189–208.

6. P. Stanimirović, P. Krtolica, M. Saračević, S. Mašović: Block Method for
Convex Polygon Triangulation, Rom. J. Inf. Sci. Tech. 15:4 (2012), pp. 344–354.

7. R. Nixon: Learning PHP, MySQL & JavaScript, 5th Edition, O’Reilly Media, 2018.

8. S. Mašović, I. Elshaarawz, P. Stanimirović, P. Krtolica: Orbiting triangle
method for convex polygon triangulation, Applicable Analysis and Discrete Mathemat-
ics, 12 (2018), pp. 439–454.

9. T. Koshy: Catalan Numbers with Applications, Oxford University Press, New York,
2009.

Sead H. Mašović

University of Nǐs

Faculty of Science and Mathematics

Department of Computer Science

18000 Nǐs, Serbia

sead.masovic@pmf.edu.rs

Muzafer H. Saračević

University of Novi Pazar

Department of Computer Science

36300 Novi Pazar, Serbia

muzafers@uninp.edu.rs

Predrag S. Stanimirović

University of Nǐs

Faculty of Science and Mathematics

Department of Computer Science

18000 Nǐs, Serbia

pecko@pmf.ni.ac.rs

Predrag V. Krtolica

University of Nǐs

Faculty of Science and Mathematics

Department of Computer Science

18000 Nǐs, Serbia

krca@pmf.ni.ac.rs

