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Abstract. In this paper, we introduce the concept of generalized ¢ - weakly contractive
random operators and study a new type of stability introduced by Kim [15] which is
called a comparably almost stability and then prove the comparably almost (S,T)- sta-
bility for the Jungck-type random iterative schemes. Our results extend and improve
the recent results in [15], [18], [32] and many others. We also give stochastic version of
many important known results.
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1. Introduction

The theory of random operator is an important branch of probabilistic anal-
ysis which plays a key role in many applied areas. The study of random fixed
points forms a central topic in this area. Research of this direction was initiated
by the Prague School of probabilists in connection with random operator theory
[7, 8, 29]. Random fixed point theory has attracted much attention in recent times
since the publication of the survey article by Bharucha-Reid [6] in 1976, in which
the stochastic versions of some well-known fixed point theorems were proved. A lot
of efforts have been devoted to random fixed point theory and applications (see e.g.
[2, 3, 4, 5, 13, 24, 30]) and many others.

In (1953) Mann [16] introduced an iterative scheme and employed it to approx-
imate the solution of a fixed point problem defined by non-expansive mapping
where Picard iterative scheme failed to converge. After that in (1974) Ishikawa
[12] introduced an iterative scheme and employed it to obtain the convergence of
a Lipschitzian pseudo-contractive operator when Manns iterative scheme is not ap-
plicable. Later in (2000) Noor [17] introduced the iterative algorithm to solve vari-
ational inequality problems. Recently, Phuengrattana and Suantai [25] introduced
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SP iterative scheme and proved that it has a better convergence rate as compared
to Mann, Ishikawa and Noor iterative schemes.

About Jungck iterative, in (1976), Jungck [14] introduced the Jungck iterative pro-
cess as follows:

Suppose that X is a Banach space, Y an arbitrary set and S, T : Y — X are such
that T(Y) C S(Y). For zg € Y, consider the iterative scheme:

Stpy1 =Tzy,n=0,1,....

He used this iterative process to approximate the common fixed points of the map-
pings S and T satisfying the Jungck contraction. Clearly, this iterative process
reduces to the Picard iteration when S = I (identity mapping) and Y = X. Later,
Singh et al. [28] introduced the Jungck- Mann iterative process as:

Stpi1 = (1 — ap)Szy + anTa,, an €[0,1].

For au,, Bn, 1 € [0, 1], Olatinwo [21] defined the Jungck-Ishikawa and Jungck-Noor
iterative processes as follows:

Swn-{-l = (1 - Oén)an + oy Ty,
Syn = (1 = Bn)Stpn + BnTxy.

Stpi1 = (1 — an)Sxn + anTyn,
Syn = (1 - ﬂn)an + ﬁnTZna
Sz, = (1 - ’Yn)sxn + ’YnTxn'

The concept of the ¢- weak contraction was introduced by Alber and Guerre-
Delabriere [1] in 1997, who proved the existence of fixed points in Hilbert spaces.
Later Rhoades [27] in 2001, extended the results of [1] to metric spaces. In 2016,
Xue [31] introduced a kind of generalized ¢-weak contraction as follows:

Definition 1.1. [31]. Let (X,d) be a metric space. A mapping T : X — X is
a generalized ¢-weak contraction if there exists a continuous and nondecreasing
function ¢ : [0, 00] — [0, 00] with ¢(0) = 0 such that

(1.1) d(Tz,Ty) < d(z,y) — ¢(d(Tx,Ty)),Vz,y € X.

The concept of stable fixed point iterative scheme was introduced and studied by
Harder [9], Harder and Hicks [10, 11]. Many other stability results for several fixed
point iterative schemes and various classes of nonlinear mappings were obtained.

Definition 1.2. [11] Let (X, d) be a metric space, T : X — X be a self-mapping
and xg € X. Assume that the iterative scheme

(1.2) Tny1 = f(T,2,),n > 0.
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converges to a fixed point p of T. Let z, be an arbitrary sequence in X and define
(1.3) en = d(znt1, f(T, 2,)),n > 0.

The iterative scheme defined by (1.2) is said to be T-stable or stable with respect
to T if and only if

(1.4) lim ¢, =0= lim z, =p.
n—oo

n—r oo
Osilike [23] introduced a weaker concept of stability.

Definition 1.3. [23] Let (X, d) be a metric space, T : X — X be a self-mapping
and o € X. Assume that the iterative scheme (1.2) converges to a fixed point p of
T. Let zy, be an arbitrary sequence in X and defined by (1.3). The iterative scheme
defined by (1.2) is said to be almost T-stable or almost stable with respect to T if
and only if

(1.5) Zan < oo = nll)rgo Zn =P

n=0

Remark 1.1. It is obvious that any stable iterative scheme is also almost stable but the
reverse is not true in general. For examples see [23].

The definition of (S, T)-stability can be found in Singh et al. [28].

Definition 1.4. [28] Let S,T : Y — X be non-self operators for an arbitrary set Y
such that T(Y") C S(Y) and p a point of coincidence of S and T. Let {Sz,}22, C X
be the sequence generated by an iterative procedure

(1.6) Stpi1=f(T,2,),n=0,1,2,...,

where z¢ € X is the initial approximation and f is some functions. Suppose that
{Sz,}5%, converges to p. Let{Sy,}>>, C X be an arbitrary sequence and set

En = d(Syna f(Tv yn))yn = O, 1, 2, et

Then, the iterative procedure (1.6) is said to be (S,T)-stable if and only if lim,, o0 €5, =
0 implies lim,,o Sy, = p-

In 2017, Kim [15] introduced a new concept of stability which is called comparably
almost T- stability defined as:

Definition 1.5. Let (X,d) be a metric space, T : X — X be a self-mapping and
xo € X. Assume that the iterative scheme (1.2) converges to a fixed point p of T.
Let z, be an arbitrary sequence in X and defined by (1.3). The iterative scheme
defined by (1.2) is said to be comparably almost T-stable or comparably almost
stable with respect to T if and only if

> 1 = 1 =
(1.7) Z(@n +en) <o00,0,>0= nler;O Zn = P, nh_)rrgo 0, = 0.

n=0
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Also, he proved some convergence results of Mann and Ishikawa iterative schemes
containing a generalized ¢- weak contractive self maps defined as in (1.1).

Remark 1.2. 1. It is obvious that any almost stable iterative scheme is also compa-
rably almost stable. See [15].

2. If 6, = 0in (1.7), then (1.7) reduces to (1.5). So an almost stable iterative scheme
is a special case of comparably almost stable iterative scheme.

The aim of this paper is to introduce the concept of generalized ¢- weakly contrac-
tive random operators and study a new type of stability which is called compara-
bly almost stability and then prove the comparably almost (S, T)- stability for the
Jungck- type and SP-Jungck-type random iterative schemes. Our results extend,
improve and unify the recent results in [15], [18], [32] and many others. We also
give the stochastic version of many important known results.

2. Preliminaries

Let (€2, X) be a measurable space, E be nonempty subset of a separable Banach space
X. A mapping ¢ : Q — FE is called measurable if {~1(BN E) € ¥ for every Borel
subset B of X. A mapping T': Q x E — FE is said to be random mapping if for each
fixed € E, the mapping T(.,z) : Q@ — E is measurable. A measurable mapping
& 1 Q — F is called a random fixed point of the random mapping T : Q x £ — E
if T(w,£*(w)) = &*(w) for each w € Q. Let S,T : Q x E — E be two random
self-maps. A measurable map £* is called a common random fixed point of the pair
(S,T) if £*(w) = S(w, & (w)) = T'(w, £*(w)), for each w €  and some £*(w) € E.
let S,T :Q x E < E be two random operator defined on E and E a nonempty
subset of a separable Banach space X. Let zo(w) € E be arbitrary measurable
mapping for w € Q,n =0,1,... with T(w, X) C S(w, X), S is injective.

The Jungck-Noor type random iterative scheme is a sequence {S(w,z,(w))}52,
defined by

S(w,znt1(w)) =  (I—ap)S(w,zn(w))+anT(w,yn(w)),
S(wyyn(w)) = (1=Bn)S(w,zn(w))+BnT (w,2n(w)),
(21) S(w,zn(w)) = (1=7n)S(w,xn(w))+vn T (w,zn(w)),

where {152, {8,152, and {v,}22, are real sequences in (0,1).
The Jungck-SP type random iterative scheme is a sequence {S(w,x,(w))}>2, de-
fined by

S(w,zn+1(w)) = (I—ap)S(w,yn(w))+anT(w,yn(w)),
S(w,yn(w)) = (1=Bn)S(w,zn(w))+BnT(w,2n(w)),
(22) S(w,zn(w)) =  (1=7n)S(w,xn(w))+vn T (w,zn(w)),

where {1520, {8,152, and {7, }22, are real sequences in (0,1).
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Remark 2.1. 1. If v, = 0 for each n € Nin (2.1), then the Jungck-Noor type random
iterative scheme reduce to Jungck-Ishikawa type random iterative scheme.
S(w,:cn+1(w)) = (1 - an)S(w,:cn(w)) +anT(w,yn(w)),
(2.3) S(w,yn(w)) = (1= Bn)S(w, zn(w)) + BuT (w, n(w)),

where {an }nro and {Br}neo are real sequences in (0,1).

2. If Bn = vn = 0 for each n € N in (2.1), then the Jungck-Noor type random iterative
scheme reduce to Jungck-Mann type random iterative scheme.

24)  Swean@) = (1-an)Sw,a.w) + anT (w2, w)),

where {an }neo is real sequence in (0,1).

Zhang et al. [32] in (2011), studied the almost sure T-stability and convergence
of Ishikawa-type and Mann-type random iterative processes for certain ¢- weakly
contractive-type random operators in a separable Banach space. The following is
the contractive condition studied by Zhang et al. [32].

Definition 2.1. [32] Let (Q,X%, 1) be a complete probability measure space and
E be a nonempty subset of a separable Banach space X. A random operator T :
Q x E < FE is called a ¢- weakly contractive-type random operator if there exists
a continuous and non- decreasing function ¢ : RT — Rt with ¢(¢) > 0 for each
t € (0,00) and ¢(0) = 0 such that for each z,y € F,w € Q,

(2.5) Jo IT(w,2) =T (w,y) ldu(w) < [, |z—ylldu(w)=¢([q le—ylldu(w))

Recently, in (2015) Okeke and Abbas [18] introduced the concept of generalized ¢-
weakly contraction random operators and then proved the convergence and almost
sure T-stability of Mann-type and Ishikawa-type random iterative schemes. Their
results improved the results of Zhang et al. [32] and Olatinwo [22] and others. The
generalized ¢- weakly contraction is defined as follows:

Definition 2.2. [18] Let (2,X%, 1) be a complete probability measure space and
E be a nonempty subset of a separable Banach space X. A random operator T :
Q x E + FE is called a ¢- weakly contractive-type random operator if there exists
L(w) > 0 and a continuous and non- decreasing function ¢ : RT™ — RT with ¢(¢) > 0
for each t € (0,00) and ¢(0) = 0 such that for each z,y € E,w € Q,

(2.6)  [o IT(w,2) =T (w,y) | du(w) <L N0l [ fla—ylldu(w)—d( [, lz—ylldu(w)))

If L(w) =0 for each w € 2 in (2.6), then it reduces to condition (2.5).

Furthermore, Okeke and Kim in [19] introduced the random Picard-Mann hybrid
iterative process. They established strong convergence theorems and summable al-
most T-stability of the random PicardMann hybrid iterative process and the random
Mann-type iterative process generated by a generalized class of random operators in
separable Banach spaces. Their results improved and generalized several well-known



180 D.M. Albageri and R.A. Rashwan

deterministic stability results in a stochastic version. In addition, Okeke and Kim
[20] proved some convergence and (S, T)- stability results for random Jungck-Mann
type and random Ishikawa type iterative processes. Rashwan et al. [26] studied the
convergence and almost sure (S,T)- stability for the random Jungck-Noor type and
the random Jungck-SP type under some contractive conditions.

Keeping in mind the generalized ¢-weakly contractive conditions (1.1) and (2.6),
we introduce the following generalized ¢-weakly contractive condition:

Definition 2.3. Let (€,3) be a measurable space and E be a nonempty subset
of a separable Banach space X. Let 5,7 : Q) x E < E be random operators such
that T'(w, X) C S(w,X). Then the random operators S and T are satisfying the
following generalized ¢- weakly contractive-type if there exist L(w) > 0 and a
continuous and non- decreasing function ¢ : R™ — R* with ¢(t) > 0 for each
t € (0,00) and ¢(0) = 0 such that for each z,y € F,w € Q,

(2.7) 17 (w,@) =T (w,y) || <eH NS =T DN (15 (w,2) =S (w,y) | = $(|T (w,2) =T (w,y)|))

If L(w) = 0 for each w € Q and S = I; (identity random mapping) in the condition
(2.7), then it reduces to the stochastic version of the condition (1.1).

Motivated by the definition of a comparably almost stability in [15] together with the
definition of (S, T)-stability in [28], we state the stochastic version of the comparably
almost (S,T)- stability as follows:

Definition 2.4. Let (Q2,X) be a measurable space and E be a nonempty subset
of a separable Banach space X. Let S,T : Q) x E < E be random operators such
that T'(w, X) C S(w, X) and £*(w) be a common random fixed point of S and T.
For any given random variable xg : 2 — E. Define a random iterative scheme with
the functions {S(w, z,(w))}52, as follows:

(2.8) S(w, Tnt1(w)) = f(Tizp(w)) n=0,1,2, ...,

where f is some function measurable in the second variable.
Suppose that {S(w, z,(w))}5%, converges to £*(w), and Let {S(w, &, (w))}o2y, C E
be an arbitrary sequence of a random variable. Denote by

en(w) = 15w, &ny1(w)) = F(T;6n (W)

Then the iterative scheme (2.8) is a comparably almost (S, T)- stable or comparably
almost stable with respect to (S,T) if and only if for w € Q,

Z(@n(w) +en(w)) < o0, Op(w) > 0= S(w,&(w)) =&, 0h(w) = 0 as n — co.

n=0

The following lemma is useful for proving our results
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Lemma 2.1. [1] Let {\,} and {y,} be two sequences of nonnegative real numbers
and {o,} be a sequence of positive numbers satisfying

)\n-i-l S )\n - O'n(b()\n) + Yn s n 2 17

where ¢ : [0,00) — [0, 00) is a continuous and nondecreasing function with $(0) = 0.

oo
If 3 0n =00 and lim, o 2= =0, then {\,} converges to 0 as n — oc.
n=1 "

3. Main Results

In this section, we present our main results. First, we prove the comparably almost
(S,T)- stability of the Jungck-Noor type random iterative scheme.

Theorem 3.1. Let (2,X) be a measurable space and E be a nonempty subset
of a separable Banach space X and let S, T : Q x E +» E be two random operators
defined on E satisfying a generalized ¢- weakly contractive-type (2.7) with T'(w, X) C
S(w, X). Let £ (w) be a common random fized point of (S,T) and {S(w,x,(w))}22,
be a Jungck-Noor type random iterative scheme defined by (2.1) converging strongly
to £*(w), where {an},{Bn} and {yn} are sequences of positive numbers in [0,1]
satisfying

d Z:],O:l aanWn = 00,

e an(l+ B+ Bnvn) < 1.
Let {S(w, & (w)) 152, be any sequence of random variable in E and define

en = [|S(w, &ni1(w)) — (1 — an)S(w, &n(w)) — anT(w, nn(w))|,
S(w, np(w)) = (1-Bn)S(w,n (W) +BnT(w,Cn(w)),
S(w, G (W) = A=70)S(W,En (W) +yn T (w,En (w)).

Then
1If Y (05 + £5) < 00, where

On = OIS (w, & (w)) = & (W)]) = anBrnynd(IT(w, &n(w)) — £ (w)]])
—anBn(|T(w, G (w)) = & (w)]]) = and(IT(w, 1 (w)) = & (w)]])-

Then the Jungck-Noor type random iterative scheme {S(w,x,(w))}32, is a
comparably almost (S,T)- stable.

2. If the sequence {S(w, &, (w))}22, converge to the fized point &*(w) of (S,T),
then lim,,—yoo €, = 0.



182

D.M. Albageri and R.A. Rashwan

Proof. Using the random Jungck-Noor iterative scheme (2.1) and the sequence
{S(w, &, (w))}22, defined in (3.1), we have

15 (w,&nt1(w)) =€ (w)|

(3.1)

15 (w,&nt1(w)) =(1=an)S(w,én(w)) —an T (w,nn (w)) |

<
T (—an)lIS(w,gn(w))—€" (W) +an | T(w,mm (w)) =€ (w) |
= ent(I—an)||S(w,én () =&* (W) [+an T (w,nn (w)) —€* (w) |

Now, we compute the last estimate of (3.1) by using (2.7) and (3.1)

1T (w,mn (w)) =€ (w)]|

(3.2)

IN

I+ IA + IA I ~ IA IN

I (w,€" () =T (w,mn (w)) |
eL(w)IIS(w,ﬁ* (w)) =T (w,&* (w))]| (HS(w@*(w))—S(wmn(w))H
ST (w,€* (w) =T (w,nn (w))])))

1€ (w) =S (w,mn (w)) | = S(IT (w,€* (w)) =T (w7 (w))[])

(=B IS (w,En (w)) =€ (W) |- +Bn | T (w,Cn (w) — £ (w) |

B(I1€" (w) =T (w,nn (w))]])

(1=B) 1S (w,&n (w)) =" (w) || 4B [eZ ()15 (w7 () =T (w67 (W)
118 (w,€* (w)) =8 (w,n (W) | = (I T(w,E* () =T (w,Cn (w))1))]
B(I1€" (w) =T (w,nn (w))]])

(1=B) 1S (w,En (w)) =€ (w) | +Bn 1€ (w) =S (w,n (w))

B (16" (w) =T (w,Cn (w)) )~ S(I€" (1) =T (w7 (w)) |)

(=B IS (w,En (w)) =€ (w) | +Bn [(1—4n) 1S (w,En (w))—E* (w) |
A 1T (w,n (w) — € (W) 1= B d(|€7 (w) =T (w,n (w))])

B(I1€" (w) =T (w,nn (w))])

(=B IS (w,En (w)) =€ (W) |- +Bn (L=7n) |8 (w,&n (w)) —€" (w)]|
BrYn [GL(w)HS(wwﬁ*(w))fT(wyﬁ* (w)l (IS (w,&n (w))—E* (w)]|
SIT (w6 (w)) —€* () [N] = Br b (| T (w,Cn (w)) —€* (w) )

SIT (w,mn (w)) =€ (w)]])

(1B Bn—BaAn+Bnrn) | (w,En (w)) —€* (w)

B An (I (w,En (w)) =€ (w) 1) =B S| (w,Cn (w)) —€* (w)[])
S(IT (w,mn (w))—€* (w)]])

118 (w,6n (w)) —€* (w) | = By (I T (w,En () —€* (w) )

Brd (1T (w,Cn (w)) =€ (w) ) = S| T (w7 (w)) —€* (w) )

Applying (3.2) in (3.1), we obtain
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IS 1) =€ @) < ent(—an)[IS(wén () —€" (W) +anllS(w,En (w)—€* (w)]
— B d(IT(w,En () =€ () ]) =B d(IT(wCn () —€" (w)]))
an (I (w,nn () €™ (w)]))
= I15(wkn () =€ (@)l =SS (w,&n () ~€" () )+(En+0n),
(3.3)

where, 0, =¢(||S(w,&n (w)) =" (W) ) =an B Yn O (I T (w,&n (w)) =€ (W) ) —n Brd (| T (w,Cn (w)) =€ (w) )
— and (|7 (w,nn (w))—=£" (w)]))-
Now, we want to prove that 6, > 0, note that

IT(w,&n(w)=€* (w)]| < IS N =T (w & DI (|5 (w,€" (w)) =S (w,&n () |
— T (w,&" (W) =T (w,En(w))I]))
(3.4) < IS (w,En (w) =€ (w) -

Also, we have by (3.4)

1T (w,G (w)) —€" (w) | 1T (w,€" () =T (w,Gn (w))

EL(w)IIS(wyﬁ* (W) =T (w,&* (w))| (IS (w,&* (w)) =8 (w,Cn (w))]|
ST (w,&" (w)) =T (w,Cn(w)]))

115 (.G (w)) —€" (w)|

(L=9m) 1 (w,&n () ~€ (W) ||+ | T (w €n () ~£" (w) |
(L) 18 (w, & () =€ (w) |+ [| S (w,En (w)) —E* (w) |
(3.5) = |S(w.én(w)—€" (w)].

IN

IN NN

Similarly, from (3.5), we get

1T (w1 () € ()| 1T (w6 (w)) =T (w1 ()|
eL(w)IIS(w,ﬁ* (W) =T (w,&* (w))| (1S (w,&* (w)) =S (w,nn (w))||
S(IIT (w,&" (w)) T (w,7n (w))[))

15 (w1 () —€* ()|

(1B 18 (& ()~ €7 (W) |+ | T (w G (w)) € (w) |
(1B 15 (w,En (w))~E" (w) [+ B2 | (w,En (w)) ~€" (w)|
(3.6) = (1S .&n(w))—€* W)l

IN

VANVANVAN

Now, we can study the sign of 6,, by using (3.4), (3.5), (3.6) and the condition
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an(14 By + Bnyn) <1 as:

0 = O(S(w,En(w))—€" (W) ) —nBnyn p(IT(w,En (w))—£™ (w)]])
= anBnd(IT(w,Cn(w)) =" (w) ) —an d (I T (w,mn (w)) —£* (w)]])
IS (w,&n (w) =& (w)])) —0tn Bryn (IS (w,€n (w)) €™ (w) )
= anBnd(||S(w,6n () =" (W)[]) —am (IS (w,€n (w)) =& (w)I)
= [D=an(148n+Bnvn)1o(I|S(w,&n(w)) =" (w)])
> 0.

Y

Since Y0 (0 + £5) < 00, we have limy, o0 (6, +,) = 0 . Back to the relation
(3.3) and by Lemma 2.1, we get

(3.7) 1ty o 00 ||S(w,&n (w))—E£* (w)]|=0 or S(w,&n(w))—E* (w) as n—oo.
From (3.4) and (3.7), we get

(3.8) <1 (w & (w))—€" ()| K|S (w,En (w))—€™ (w) |50 S n—00.
Similarly, from (3.5), (3.6) and using (3.7)

(3.9) 0|1 T (w,Cn (w))—€* (W) | SIS (w,&m (w)) —€* (w) || =0 AS n—oo.

(3.10) O || T (wymn (w)) —&* (w) | < || S (w,,n (w))—&* (w) || =0 aS n—soo.
Since ¢ is continuous, from (3.7)-(3.10), we obtain

limp, s co O =limn — oo [¢ (|| S (w,En (w)) =€ (W) ) =t Br Y (| T (w,En (w)) =& (w)]])
n B d(|T(w,Cn (w)) =€ (W) |) —an ¢ (| T'(w,nn (w)) =€ (w) )]
= 0.

Hence the Jungck-Noor type random iterative scheme {S(w,z,(w))}22, is a com-
parably almost (S,T)- stable.

Next, suppose that S(w, &, (w)) = £*(w) as n — oo, and using (3.6) and (3.7), then
we can write

15 (w,&n+1(w))=(1—an)S(w,&n (w)) —anT(w,nn (w))|
15 (w,&n+1(w)) €™ (w)[|+ (A=) [|S(w,n (w)) =™ (w) |
an[|T(w,nn (w))—£" (w) ||

15 (w,&n+1(w))=&* (w)[[+(1—an) || S (w,€n (w)) =& (w) |
an [|S(w,&n (w)) =€ (w) |

19 (w,&ng1(w)) =€ (W) [ +]1S (w,&n (W) =" (w)].

En

+ IAN + IA

Hence, we get ¢, - 0asn —o0o. O
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From Theorem 3.1, we can present the following corollaries.

Corollary 3.1. Let (,X) be a measurable space and E be a monempty subset
of a separable Banach space X and let S,T : QQ x E <> E be two random oper-
ators defined on E satisfying a generalized ¢- weakly contractive-type (2.7) with
T(w,X) C S(w,X). Let &(w) be a common random fized point of (S,T) and
{S(w, xn (W)}, be a Jungck-Ishikawa type random iterative scheme defined by
(2.8) converging strongly to £*(w), where {an} and {Bn} are sequences of positive
numbers in [0,1] satisfying

hd 220:1 0 B = 00,

o a,(1+p5,) <1.
Let {S(w, & (w)) 52, be any sequence of random variable in E and define

en = [IS(w, &1 (w)) = (1= an)S(w, & (w)) — anT (w, nn(w)) |,
S(w,nn(w)) = (1= Bn)S(w, & (w)) + BT (w, &n(w)).

Then
1If Y (0 + £5) < 00, where

On=0(l|S(w,&n (w)) =& (W) ) —an Bn d(I T (w,&n (w)) =€" () ) —an ¢ (I T (w,nn (w)) —€" (w) )

Then the Jungck-Ishikawa type random iterative scheme {S(w,x,(w))}22, is
a comparably almost (S,T)- stable.

2. If the sequence {S(w, &, (w))}52, converge to the fixed point £*(w) of (S,T),
then lim,,_, o €, = 0.

Proof. Putting v, = 0 in the Jungck-Noor type random iterative scheme in Theorem
3.1. Then we obtain the Jungck-Ishikawa type random iterative scheme and then
can be prove the Corollary 3.1 by following the same steps of proofing of Theorem
3.1. O

Corollary 3.2. Let (Q,%) be a measurable space and E be a nonempty subset
of a separable Banach space X and let S, T : Q) x E <> E be two random operators
defined on E satisfying a generalized ¢- weakly contractive-type (2.7) with T (w, X) C
S(w, X). Let £*(w) be a common random fized point of (S,T) and {S(w, x,(w))}o2,
be a Jungck-Mann type random iterative scheme defined by (2.4) converging strongly
to & (w), where {a, } is a sequence of positive numbers in [0,1] such that Y.~ | a, =
oo. Let {S(w, &, (w)) 8%, be any sequence of random variable in E and define

en = [|S(w, &ni1(w)) — (1 = o) S(w, &n(w)) — o T (w, &n (w)) ],
Then
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1. If Zzozo(en + &n) < 00, where
On=¢(||S(w,&n (w)) —E" (w)]]) —an ¢([| T (w,En (w)) —E" (w)]])-

Then the Jungck-Mann iterative scheme {S(w,z,(w))}2, is a comparably
almost (S,T)- stable.

2. If the sequence {S(w, &, (w))}22, converge to the fized point &*(w) of (S,T),
then lim,,—y oo €, = 0.

Proof. If v, = B, = 0 in the Jungck-Noor type random iterative scheme in Theorem
3.1. Then we obtain the Jungck-Mann type random iterative and then the proof of
the Corollary 3.2 is similar to that of Theorem 3.1. O

Remark 3.1. If the random mapping S = I (Identity random mapping) and L(w) =0
in Corollary 3.1 and Corollary 3.2. Then Corollary 3.1 and Corollary 3.2 are random
versions of Theorem 3.2 and Corollary 3.3 respectively of Kim in [15].

Next, we prove that the Jungck- SP type random iterative scheme {S(w, z,, (w))}22,
is a comparably almost (S,T)- stable.

Theorem 3.2. Let (2,X) be a measurable space and E be a nonempty subset
of a separable Banach space X and let S, T : Q x E <> E be two random operators
defined on E satisfying a generalized ¢- weakly contractive-type (2.7) with T (w, X) C
S(w, X). Let &*(w) be a common random fized point of (S,T) and {S(w, z,(w))}22,
be a Jungck-SP type random iterative scheme defined by (2.2) converging strongly
to &*(w), where {an},{Bn} and {yn} are sequences of positive numbers in [0,1]
satisfying

o> X =00 01y 00 B =00 0r> o Y = 0.

o a,(14 8, +7) <1
Let {S(w, &, (w))}52, be any sequence of random variable in E and define

en = [IS(wényr(w))—(1—an)S(wmn(w))—onT(w,nn(w))]l,
S(w,nn (w)) (1=8n)S(w,Cn (w))+Bn T (w,Cn (w)),
(311) S(wan(w)) (l—vn)S(w,ﬁn(w))—i—vnT(w,ﬁn(w)).

Then
1If Y (05 + £5) < 00, where

On=¢(|| S (w,&n (w)) =& (w) ) —tnvn (| T (w,En (w)) =" (w) )
—anBnd([|T(w,¢n (w)) =& (w) ) —and (I T (w,nn (w)) =&* (w)]])-

Then the Jungck-SP iterative scheme {S(w,xn(w))}22 is a comparably al-
most (S,T)- stable.
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2. If the sequence {S(w, & (w))}nZg converge to the fized point £ (w) of (S,T),
then lim,,—yoo €, = 0.

Proof. By the same steps of proofing of Theorem 3.1, using the random Jungck-SP
iterative scheme (2.2) and the sequence {S(w, &, (w))}52, defined in (3.11), we have

S 1S(wgnr1 (W)= (1=an) S (w,nn (w)) —an T (w,nn ()|
T (A—an)lIS(wnm (w) =" (w)ll+om | T (w,nn (w)) =€ (w) |

ent(1—an)|[|S(w,nn (w)) =€ (W) [+an | (w,nn (w)) —€* (w) |

19 (w€nt1 (w)) =€ (w)]|

(3.12)

Using (2.7) to compute the following

1T (w,mn (w)) =€ (w)] 1T (w,£" (w)) =T (w,nn (w)) |
eL (W) 18 (w, &% (W) =T (w, " (W)l (|| S (w,£* (w)) =S (w1 (w))]|
ST (w£" (w)) =T (w,mn(w))]))

= [1S(wnn (w)) =& (W)= (I T (w,nn (w)) =& (w)]])

IN

(3.13)

Applying (3.13) in (3.12), we obtain
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IS(w,Ent1(w)—€* W) < ent(1—an)[lS(w,nn(w))—€ (w)]|
+ anlllS(w,mn (W) =€ ()= (I T (w,mn (w)) —€" (w)])]
n 1S (w,mn (W) =& (W) || —an d (|| T (w,nn (w)) —€* (w)])
ent(1=B) 1S (w,Cn (w)) =& (W) || +8n | T (w,¢n () —€* (w) |
an d(|| T (w,np (w))—€* (w)])
Ent+(1=Bn) | (w,Cn (w)) —€" (w) || 48y, [ )1 (w7 (w)) =T (w7 (w))]
118 (w,€* (w)) =8 (w,n (W) [| =S| T (w,E* (W) =T (w,Cn (w))[1))]
an (|| T (w,nm (w))—€* (w)]])
nt(1=Bn) 1S (w,Cn (w)) =& (W) || +Bn |18 (w,Cn (w)) —€* (w)|
= B (I T (w,¢n (W) =€ (w) ) —an (| T (w,mn (w)) —€* (w) )
= entlIS(w,Cn () =€ (W) | = Brd(I T (w,Cn (w)) —€* (w)]])
an d(|| T (w,nm (w))—€* (w)]])
ent(1=7) 1S (w,&n (w)) =€ () [+ | T (w,En (w)) =€ (w)|
— B (I T (w,Gn () =€ (w) ) = (| T (w,mn () —€* (w) )
ent(1=7n) S (w &n (w)) —€" ()]
[ B (IS (087 D =T &7 (]| § (w0, (w)) — S (w,En (w)) |
ST (w,€* (W) =T (w,&n (w)) N = Br (I T(w,Cn (w)) —€* (w) )
an (| T (w,nn (w))—€* (w)]])
entl1S (w,En (W) —€" (W) |~ (| (w,En (w)) —€* (w)]])

= Bnd(IT(w,Cn (w) =& (w) ) —an d(|| T (w,mn (w))—£* (w)]])
(3.14) = [IS(w,En(w) =€ (W)= ¢(I| S (w,&n (w))—€* (w) ) +(Bn+en)

IN

Il ~ IA

IN

+ IA

where

0 =0 (|8 (w,&n (w)) =€ (W) ) =Yn G (|| T (w,€n (w)) =€" (w) )
“Bnd(|T (w,Cn(w)) =€ (w) ) —an ¢ (|| T'(w,nn (w)) =" (w) )

Note that,

IT(w,&n(w)=€" (w)]| < IS8T D =T o 7D (|8 (w,€* (1)) =S (w,En (w)) |
(T (w,€" (w)) =T (w,&n (w))))

(3.15) 18 (w&n (w)) =" (W)l

IN
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Also, from (3.15) , we get

1T (w,Cn (W) =€ ()l = [T (w,§" () =T (w,Cn(w))]]

L (IS (& (W) =T (.6 NI (|| § (w,£* (w)) — S (w,Cn (w)) |
ST (w,€" (w)) =T (w,Cn(w))))

15 (w,¢n (w)) =€ (w)]

A=) 18 (w,&n (w)) =" (W) 47 | T (w,&n (w)) =€* (w)]]
(A=) 1S (w,&n (w)) =& (W) [[+7n | S (w,&n (w)) =" (w) |

15 (w,&n (w)) =& (w)]]

IN

VANVAN VAN

(3.16)
Similarly, from (3.16), we get,

1T (wnn (W) =" ()| = T (w,&" (w)) =T (w,nn (w))]l

LIS (& (W) =T (& (@Dl (|| § (w,€* (w))— S (w7 ()|
(T (w,€" (w)) =T (w,nn (w))1))

15 (w,mn (w)) =£" (w) |

(=B 15 (w,¢n (w)) =€ (W) |48 T (w,Cn (w)) =€ (w) |
(A=Ba) 15 (w,&n (w)) =€ (w) |48 1S (w,&n (w)) =" (w)]|

15 (w,&n (w)) =€ (w)]|

IN

INIA N

(3.17)
Using (3.15), (3.16) and (3.17) with the condition oy, + 8, + v, < 1 we obtain,

0n = OIS (w,n(w))=E" (W) N =vn (|7 (w,&n (w)) =& (w)]])
= Bno(IT(w,¢n(w) =€ (w) [N —and (I T (w,nn (w)) =& (w) )

(1S (w,&n (w)) =€ (W) ) =¥ d (IS (w,&n (w)) —£" (w)]])

Brd (15 (w,&n () =&™ (W) ) —and (|15 (w,&n (w)) =& (w)]])

(1= (an+Bn+ya)]b (1S (w,&n (w)) =" (w))

> 0

(LY

Since Y07 1(6n + £,) < 00, then lim, 00 (fn + €5) = 0 and by Lemma 2.1, we get
(3.18) limy, s o0 [|S(w,En (w))—£€* (w)[|=0 or S(w,&n(w))—=E* (w) as n—oo.
Also, we have by using (3.15), (3.16), (3.17) and (3.18)

(3.19) 0|1 T (w,€n (w))—€* () || <|IS (w, & (w)) —€* (w)]|—0 A8 n—oo.
(3.20) 0|17 (w,Cn (w)) =€ (W) | <[] S (w,En () =& (w) ]| >0 &S n—o0.

(3.21) <17 (w,m (w)) —€* (W) || /IS (w,€ (w)) —€* (w) [ -0 &S n—o0.
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Since ¢ is continuous, from (3.18)- (3.21), we obtain

limp o0 O =

limp, s oo [([| S (w,6n (w)) =€ (W) [) =Yn (| T (w,€n (w)) =€" (w)])
Brd(IT (w,¢n (w))=£" (W) ) —n (|| T (w,mn (w)) —£" (w)[])]
0.

Hence the Jungck-SP type random iterative scheme {S(w,z,(w))}22, is a compa-
rably almost (S,T)- stable.
Next, suppose that S(w,&,(w)) — £*(w) as n — oo, and using (3.21), then we

obtain

en = [S(wint1(w))=(1—an)S(w,nn(w)) —an T (w,nm (w)) ||
SISt (0) =€ () I+ (1 =an) IS (w,n () =€ (w) |
T anllT(wnn(w)) =" (w)|l
SIS g1 (W) =€ ()| +(1—an) [[S(w,n (W) =" (w)]|
T om|IS(wgn(w) =" (w)]l
= I8 wibng1 (W) =€ (W) [ +]1S(w,&n (W) =£" (w) |
— 0 as n—oo.
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