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Abstract. The purpose of the present paper is to study generalized ¢-recurrent, gen-
eralized concirculary ¢-recurrent N (x)-paracontact metric manifolds and generalized
¢-recurrent paracontact metric manifolds of constant curvature.
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1. Introduction

Almost paracontact metric structures are the natural odd-dimensional analogue
to almost paraHermitian structures, just like almost contact metric structures corre-
spond to the almost Hermitian ones. The study of almost paracontact geometry was
introduced by Kaneyuki and Williams in [6] and then it was continued by many other
authors. A systematic study of almost paracontact metric manifolds was carried out
in paper of Zamkovoy, [10]. An important class among paracontact metric manifolds is
that of the k-spaces, which satisfy the nullity condition [2]. This class includes the para-
Sasakian manifolds [6, 10], the paracontact metric manifolds satisfying R(X,Y)¢ =0
for all X,Y vector fields on the manifold [11], etc.

Let M be an 2n + 1-dimensional connected semi-Riemannian manifold with semi-
Riemannian metric g and Levi-Civita connection V. M is called locally symmetric
if its curvature tensor is parallel with respect to V. The notion of locally symmetric
manifold has been weakend such as recurrent manifold by Walker [9], in 1977 Takahashi
[8] introduced the notion of local ¢ -symmetry on a Sasakian manifold. Generalizing
the notion of local ¢-symmetry, De et al. [3] introduced and studied the notion of
¢-recurrent Sasakian manifold. Then in [4] and [7], De and Gazi and Peyghan et al.
studied ¢-recurrent N (k)-contact metric manifolds. Dubey [5] introduced the notion of
generalized recurrent manifold.

Motivated by these considerations, the author make the first contribution to study
generalized ¢-recurrent N (k)-paracontact metric manifolds (which includes both the
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notion of local ¢-symmetry and also ¢-recurrence) and generalized concirculary ¢-
recurrent N (k)-paracontact metric manifolds.

The paper is organized as follows:

Section 2 is preliminary section, where we recall basic facts which we will need
throughout the paper. In Section 3, we prove that a generalized ¢-recurrent N(k)-
paracontact metric manifold (M?"*! g) is an n-Einstein manifold for x # —1,0. We
show that in a generalized ¢-recurrent N (k)-paracontact metric manifold, the charac-
teristic vector field £ and the vector field pik + p2 associated to the 1-form Ax + B
are co-directional. We find the relation between associated 1-forms A and B for a
three dimensional generalized ¢-recurrent N (x)-paracontact metric manifold. In Sec-
tion 4, we mainly give the relation between associated 1-forms A and B in a gen-
eralized ¢-recurrent N(x # 0)-paracontact metric manifold (M?"' g) of constant
curvature ¢ # 0. In Section 5, we prove that a generalized concirculary ¢-recurrent
N (x)-paracontact metric manifold (M?"*!, g) is an n-Einstein manifold for & # —1,0.
We give the relation between associated 1-forms A and B for a generalized concircu-
lary ¢-recurrent N (k)-paracontact metric manifold and we show that in a generalized
concirculary ¢-recurrent N (k)-paracontact metric manifold, the characteristic vector
field £ and the vector field pic + p2 associated to the 1-form Ac+ B are co-directional.
Finally, we show that for a three dimensional generalized concirculary ¢-recurrent N (k)-
paracontact metric manifold, r is not necessarily be a constant.

2. Preliminaries

Let M be a (2n + 1)-dimensional differentiable manifold and ¢ is a (1,1) tensor
field, € is a vector field and 7 is a one-form on M. Then (¢, &,n) is called an almost
paracontact structure on M if

() ¢*=Id—neg nE) =1,
(ii) the tensor field ¢ induces an almost paracomplex structure on the distribution D =

ker n, that is the eigendistributions D:E7 corresponding to the eigenvalues 41, have
equal dimensions, dim DT = dim D™ = n.

The manifold M is said to be an almost paracontact manifold if it is endowed with
an almost paracontact structure [10].

Let M be an almost paracontact manifold. M will be called an almost paracontact
metric manifold if it is additionally endowed with a pseudo-Riemannian metric g of a
signature (n + 1,n), i.e.

(2.1) 9(6X,0Y) = —g(X,Y) +n(X)n(Y).

For such manifold, we have
(2.2) n(X) = 9(X,£),6(§) = 0,n0¢ = 0.

Moreover, we can define a skew-symmetric tensor field (a 2-form) ® by
(2:3) (X, Y) = g(X, 0Y),

usually called fundamental form.
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For an almost paracontact manifold, there exists an orthogonal basis { X1, ..., Xn, Y1,...,
Yn, &} such that g(Xs, X;) = &, g(Y5,Y;) = —di; and Y; = ¢X;, for any i,j €
{1,...,n}. Such basis is called a ¢-basis.

On an almost paracontact manifold, one defines the (1, 2)-tensor field N (1) by
(2.4) NU(X,Y) = [6,¢] (X, Y) = 2dn(X, Y)E,

where [¢, @] is the Nijenhuis torsion of ¢

[6,0] (X,Y) = ¢ [X,Y] + [¢X,0Y] — ¢ [pX, Y] — ¢ [ X, 0Y].

If N vanishes identically, then the almost paracontact manifold (structure) is said

to be normal [10]. The normality condition says that the almost paracomplex structure
J defined on M x R

d

JXAD) = (ox a6 n(x) ),

is integrable.

If dn(X,Y) = g(X, ¢Y), then (M, p,&,n,g) is said to be paracontact metric man-
ifold. In a paracontact metric manifold one defines a symmetric, trace-free operator
h = %£§¢7 where L¢, denotes the Lie derivative. It is known [10] that h anti-commutes
with ¢ and satisfies

(2:5) D)hE =0, di)trh=trhé =0, iii))VE=—¢+ ph,

where V is the Levi-Civita connection of the pseudo-Riemannian manifold (M, g).

Moreover h = 0 if and only if ¢ is a Killing vector field. In this case (M, ¢,&,n,g) is
said to be a K-paracontact manifold. Similarly as in the class of almost contact metric
manifolds [1], a normal almost paracontact metric manifold will be called para-Sasakian
if & = dn.

On an almost paracontact metric manifold M, if the Ricci operator satisfies

Q=aid+ Bn®E,

where both o and 8 are smooth functions, then the manifold is said to be an
n-FEinstein manifold. An n-Einstein manifold with 8 vanishing and « a constant is
obviously an Einstein manifold.

The k-nullity distribution N (k) of a semi-Riemannian manifold M is defined by
(2.6)  N(k):p—= Np(r) ={Z € LM | R(X,Y)Z = r(9(Y, Z2)X - g(X, 2)Y)},

for some real constant k. If the characteristic vector field £ belongs to N(k), then
we call a paracontact metric manifold an N(k)-paracontact metric manifold. For a
N (k)-paracontact metric manifold [2] we have,

(2.7) R(X,Y)S = w(n(Y)X —n(X)Y),
(2.8) S(X,§) = 2nkn(X),
(2.9) o= (1+k)e

for all XY vector fields on M, where « is constant and S is the Ricci tensor.
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Lemma 2.1. [2/In any (2n + 1)-dimensional paracontact (k,p)-manifold (M, ¢,&,n,g)
such that k # —1, the Ricci operator Q is given by

(210) Q= (2(1—n) + nu)I + (2(n — 1) + @h + (2(n — 1) + n(2k — 1))y D €.

Using (2.10), we have

(2.11)  S(¢X,9Y)=S(X,Y) —4(1 —n)g(X,Y) + (4(1 — n) — 2nk)n(X)n(Y).

Definition 2.1. A N(k)-paracontact metric manifold is said to be a generalized ¢-
recurrent if its curvature tensor R satisfies the condition

(2.12)  ¢*(VwR)(X,Y)Z) = AW)R(X,Y)Z + B(W)(9(Y, 2)X — (X, Z)Y),
where A and B are two 1-forms, B is non zero and they are defined by
(2.13) A(X) = g9(X,p1), B(X)=g(X, p2),

where p1 and po are vector fields associated with 1-forms A, B respectively.

Definition 2.2. A (2n+1)-dimensional N (k)-paracontact metric manifold is called a gen-
eralized concircular ¢-recurrent if its concircular curvature tensor C'

r

(2.14) CXY)Z=RXYV)Z - 5m =

(Y, 2)X — g(X, 2)Y],
satisfies the condition
(2.15)  *((VwC)(X,Y)Z) = AW)C(X,Y)Z + B(W)(g(Y, 2)X — g(X, 2)Y),

where A and B are defined as (2.13) and r = ¢tr(S) is the scalar curvature.

In the above definitions, X,Y, Z, W are arbitrary vector fields and not necessarily
orthogonal to &.

Remark 2.1. A flat manifold satisfies R = 0 and VR = 0, so flat manifolds are trivial
examples of generalized ¢-recurrent paracontact metric manifolds.

3. Generalized ¢-recurrent N(k) -paracontact metric manifolds

Theorem 3.1. For k # —1,0, a generalized ¢-recurrent N (k)-paracontact metric mani-
fold (M>"* g) is an n-Einstein manifold.

Proof. In view of (2.12), we get

(3.1) (Vw R)(X,Y)Z —n((Vw R)(X,Y)Z)¢
= AW)R(X,Y)Z + B(W)(g(Y,Z2)X — g(X,2)Y).
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Taking the inner product on both sides of (3.1) with U, we obtain

9g(VwR)(X,Y)Z,U) =n((VwR)(X,Y)Z)n(U) = AW)g(R(X,Y)Z,U)
+B(W)(g(Y,2)g9(X,U)

(3.2) —9(X,2)g(Y,U)).
Let e;, 1 < i < 2n + 1 be an orthonormal basis of the tangent space at any point of the
manifold. Then putting X = U = e; in (3.2) and getting the summation over 4, one can
get

2n—+1

(VwS)(Y.2) = Y en((VwR)(ei,Y) Z)n(e:)

i=1
(3.3) = AW)S(Y,Z)+2nBW)g(Y, Z).
Now, let calculate the second term of the left hand side of the above equation by replacing
Z by &. Using (2.6) and the fact that (Vwg) = 0, we get

(3.4) ig((VwR)(es, Y)E, ) = 0.
Putting Z = ¢ in (3.3) and using (2.8) and (3.4), we obtain
(3.5) (VwS)(Y,§) = 2nn(Y ) (rA(W) + B(W)).

Using the property (iii) of (2.5) and (2.8) in (VwS)(Y,¢) = VwS(Y, &) — S(VwY,§) —
S(Y,Vw¢), we have

(VwS)(Y,6) = 2ns(Vwn)(Y) + S(Y, oW — ¢ohW)
(3.6) = 2nkg(—9pW 4+ ohW,Y) + S(Y, oW — phW).

Comparing equations (3.5) and (3.6), we get
(3.7  2nm(Y)(kA(W) 4+ B(W)) = 2nkg(—¢pW + ¢hW,Y) + S(Y, oW — ¢hW).
Replacing Y by ¢Y in the last equation and using (2.1) and (2.11), we obtain

0 = (2ne—4(1—n))g(W,Y) + (—2nk +4(1 —n))g(W,hY)
(3.8) +(=2nk +4(1 —n) = 2nx)n(Y)n(W) + S(Y,W) — S(Y,hWV).
Employing (2.9) and (2.10) in (3.8),we get
SY,W) = 2(—n—-x+1)gW,Y)+2(nk+n—1)g(hW,Y)
(3.9) +2(n(k + 1)+ k — D)n(Y)n(W).

Putting W = hW in (3.9) and using again (2.9) and (2.10), we have

2kg(MW,Y) = 2nk(k + 1)g(W,Y) — 2nk(k + 1)n(Y)n(W).
By the assumption of k # 0, the last equations returns to
(3.10) g(WW,Y) = n(k+1)(g(W,Y) = n(Y)n(W)).
Using (3.10) in (3.9), we get
SY, W) =ag(W,Y) + Bn(Y)n(W),

where @ = 2[(—n—k+1)+n(k+1)(nk+n—1)], 8 = 2[n(k+1)+(k—1)—n(k+1)(nk+n—1)].
Hence, we can conclude that the manifold is #-Einstein manifold. O
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Theorem 3.2. For a generalized ¢-recurrent N (k)-paracontact metric manifold (M1 g),
the characteristic vector field & and the vector field p1k+ p2 associated to the 1-form Ak+ B
are co-directional.

Proof. Two vector fields P and @ are said to be co-directional if P = f@Q, where f is a
non-zero scalar, that is g(P, X) = fg(Q, X) for all X.

Taking inner product of (3.1) with &, we have
(3.11) AW)g(R(X,Y)Z,£) + BW)(g(Y, Z)n(X) — g(X, Z)n(Y)) = 0.
Then by the use of second Bianchi identity, we can write
AW)g(R(X,Y)Z,€) + BIW)(9(Y, 2)n(X) — g(X, Z)n(Y))
+AY)g(RW, X)Z, &) + B(Y)(9(X, Z)n(W) — g(W, Z)n(X))
TAX)g(R(Y,W)Z, &) + B(X)(g(W, Z)n(Y) — g(Y, Z)n(W))
(3.12) =

e

From (2.6), it follows that
(3.13) 9(R(X,Y)Z,§) = r(—n(Y)g(X, Z) + n(X)g(Y, Z)).
Using (3.13) in (3.12), we get

(3.14) = 0.

Replacing Y = Z by e; in (3.14) and taking summation over ¢, 1 <7 < 2n 4+ 1, we obtain
(815) (20— 1) [K(A(W)n(X) — ACX)n(W)) + B(W)n(X) — B(X)n(W)] = 0.

Putting X = £ in the last equation, we have

KAW) =n(W)n(pr)) = —(BW) —n(W)n(p2))
(3.16) nW)(kn(p1) +nlp2)) = r~AW)+ B(W).

where n(p1) = g(§,p1) = A(§) and n(p2) = g(§,p2) = B(§). From (3.16), we complete
the proof of the theorem. [

Theorem 3.3. Let (M?,g) be a generalized ¢-recurrent N(k)-paracontact metric mani-
fold. Then B(W) = —kA(W).

Proof. We recall that the curvature tensor of a 3-dimensional pseudo-Riemannian manifold

satisfies

R(X,Y)Z = g(¥, 2)QX~g(X, 2)QY +9(QY, 2)X~g(QX, )Y =% (4(Y, Z) X ~g(X, Z)Y).
(3.17)
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where @ is the Ricci-operator, g(QX,Y) = S(X,Y) and r is the scalar curvature of the
manifold. Let (M3, g) be a generalized ¢-recurrent N (k)-paracontact metric manifold.
Replacing Z by ¢ in (3.17) and using (2.8), we have

(818)  RX.Y)E = (28— D)X —n(X)Y) +n(Y)QX —n(X)QY.
Comparing (2.7) with (3.18), we get

(3.19) (k= 5)O(Y)X = n(X)Y) = n(X)QY - n(Y)QX.
Putting Y = £ in (3.19) and using (2.8), we obtain

(3.20) QX = (5~ ®)X + 3k — (XS,

which gives

(3.21) S(X,Y) = (5 = ®)g(X,Y) + 8k = HIn(X)n(Y).
By taking account of (3.20) and (3.21) in (3.17), one can get

RX,Y)Z = (3k-— 5)( 9(Y, Z)n(X)§ — g(X, Z)n(Y)E +n(Y)n(Z2)X — n(X)n(2)Y)
(3.22) +(g —2)(g(Y, 2)X — g(X, Z)Y).

Taking the covariant derivative of the last equation according to W, we deduce that

wwr)(x )z = W oy 2(x)E — g(X, 20+ 02X~ n(Xn(2)Y)
+d”(2W)( (Y, 2)X — g(X, 2)Y)
G
r n n
(329 #5026 n(2 )T

+((Y)X = n(X)Y)(Vwn)(2).

Now, let Y be a non-zero vector field orthogonal to £ and X = Z = £. Using (2.5), (3.23)
follows that

(3.24) (VwR)(£,Y)E = —2(3k — —)(an)(f)Y =0.

By virtue of (2.12) and (3.24), we obtain
(3.25) AW)R(£,Y)E — B(W)Y = 0.

From (2.7), we have
(3.26) R(£,Y)E = —KY.

If we use (3.26) in (3.25), it follows that the requested relation holds. This completes the
proof of the theorem. [
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4. Generalized ¢-recurrent paracontact metric manifolds of constant
curvature
Theorem 4.1. [10]If a paracontact manifold M is of constant sectional curvature c

and dimension 2n 4+ 1 > 5, then ¢ = —1 and |h|> = 0.

Theorem 4.2. If a generalized ¢-recurrent paracontact metric manifold (M>*"T, g) is of
constant curvature and (2n+ 1) > 5, then A(W) = B(W).

Proof. Let (M?"*! g) be a generalized ¢-recurrent paracontact metric manifold of con-

stant curvature ¢ and (2n + 1) > 5. From Theorem 4.1, we have ¢ = —1. So, we can
write
(4.1) R(X,Y)Z = =(9(Y,2)X —g(X,2)Y).

Taking the covariant derivative of the last equation according to W, we deduce that
(4.2) (VwR)(X,Y)Z =0.

Now, let Y be a non-zero vector field orthogonal to £ and X = Z = £. From (4.1), we
have

(4.3) R Y)E =Y.
By using (2.12), (4.2) and (4.3), we have

0= A(W)— B(W)

which completes the proof. [

Theorem 4.3. If a generalized ¢-recurrent N (x # 0)-paracontact metric manifold (M>"*!, g)
is of constant curvature ¢ # 0, then B(W) = —kA(W).

Proof. Let us consider a (2n+1)-dimensional generalized ¢-recurrent N (x # 0)-paracontact
metric manifold which has constant curvature c. So, we have

(4.4) R(X,Y)Z = c(g(Y, Z2)X — g(X, Z)Y).
Replacing Z by € in (4.4), we get

(4.5) R(X,Y)¢ = c(n(Y)X - n(X)Y).
From (2.7) and (4.5), we obtain

(4.6) e(n(Y)X = (X)) = (n(Y)X — n(X)Y).

Now, let Y be a non-zero vector field orthogonal to £ and X = £. So, (4.6) returns to
¢ = k # 0. Because of the manifold is N(k)-paracontact metric manifold, we have

(4.7) R(X,Y)Z = w(g(Y, 2)X — g(X, Z)Y).
Taking the covariant derivative of the last equation according to W, we deduce that

(4.8) (VwR)(X,Y)Z = —r((Vwg)(X, 2)Y = ((Vwg)(Y; 2)X)) = 0.



On Generalized ¢-Recurrent Metric Manifolds 667

Putting Y = Z = ¢ in (2.12), and taking account of (4.7) and (4.8), we obtain
(4.9) 0= (X =n(X))(AW)r + B(W)).

If X is a non-zero vector field orthogonal to &, from (4.9), we get

0= A(W)k + B(W).
O

Remark 4.1. If a generalized ¢-recurrent N (s # 0)-paracontact metric manifold (M?"*!, g)
is of constant curvature ¢ # 0, and (2n + 1) > 5, then Kk = —1.

5. Generalized concirculary ¢-recurrent N (k)-paracontact metric
manifolds

Theorem 5.1. For k # —1,0, a generalized concirculary ¢-recurrent N (k)-paracontact
metric manifold (M>" g) is an n-Binstein manifold.

Proof. Let us consider a generalized concirculary ¢-recurrent N (rk)-paracontact metric
manifold. From (2.15), we have

(VwCO)(X,Y)Z =n((VwC)(X,Y)Z)§ = AW)C(X,Y)Z+B(W)(g(Y, 2)X —g(X, 2)Y).
(5.1)
Taking the inner product on both sides of (5.1) with U, we obtain
9(VwC)(X,Y)Z,U) = n((VwC)(X,Y)Z)n(U) = ( )9(C(X,Y)Z,U)
(5:2) +BW)(9(Y,Z2)g(X,U)
—9(X, 2)g(Y, U)).

Let e;, 1 < i < 2n + 1 be an orthonormal basis of the tangent space at any point of the
manifold. Then putting X = U = ¢; in (5.2) and taking summation over i, we thus get

(VwS)(¥,2) = GLHa(Y.2) = e (0(Y.2) = n(Y)0(2)
(5:3) = AW)S(Y.2) ~ 0(Y.2)) + B(W)2ng(Y. 2).

If we make use of the property (iii) of (2.5) and (2.8) in (5.3), we obtain

(Vws)ve) = Sy

(5.4) + AW)nY) (271/{ — —> + B(W)2nn(Y).

On the other hand, using again the property (ii7) of (2.5) and (2.8), we can evaulate
(VwS)(Y,€) as

(VwS)(Y,§) = VwS(Y,§) —S(VwY,§) —S(Y, Vwé)
(5.5) = =2nkg(Y, oW — ohW) + S(Y, oW — phW).
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Comparing (5.4) to (5.5), we have

S(Y,¢W — 6hW) = 2nkg(Y,sW — ohW) + ;l;(ivin(y)
(5.6) FAW)n(Y) <2m - ﬁ) + B(W)2nn(Y).

If we use (2.9), (2.10) and (2.11) after putting ¢Y instead of ¥ in (5.6), we get

SY,W) = 2(—n—-x+1)g(Y,W)+2(n—1+nk)g(Y,hW)
(5.7) +2((n — 1) + k(n+ 1))n(Y)n(W).

If we replace W by hW in the last equation, we can immediately observe that
(5.8) g(Y,hW) = n(1+ k) (g(Y, W) —n(Y)n(W)).
Using (5.8) in (5.7), we have

SY, W) =ag(W,Y) + Bn(Y)n(W),

where a = 2((—n—k+1)+(n—14nk)n(1+k)), 8 = 2((n—1)+k(n+1)—(n—1+nk)n(1+k)).
Namely, manifold is n-Einstein manifold. [

Theorem 5.2. Let (M?"*!, g) be a generalized concirculary ¢-recurrent N (k)-paracontact

metric manifold. Then (G =5z, — K)AW) = B(W).

Proof. Putting Y = Z = e; in (5.2) and taking summation over %, one can get

(V) (%, 0) = 525 6, 0) = (Vw8)(X, m(U) + 50 n(xX)n(V)
(5.9) = AW)S(X,U) = 5ma(X, ) + BW)2ng(X,U).

Putting U = ¢ in (5.9) and using (2.8), we have

(5.10) AW)(2nk — n(X) + 2nB(W)n(X) = 0.

r
2n+1
Setting X = £ in the last equation, we get the requested relation which completes the
proof of the theorem. [

Theorem 5.3. For a generalized concirculary ¢-recurrent N (k)-paracontact metric man-
ifold (M*"' g), the characteristic vector field & and the vector field p1y + p2 associated
to the 1-form Ay + B are co-directional.

Proof. Two vector fields P and @ are said to be co-directional if P = f@Q, where f is a
non-zero scalar, that is g(P, X) = fg(Q, X) for all X.

Taking inner product of (5.1) with &, we have

(5.11) AW)g(C(X,Y)Z,8) + BIW)(g(Y, Z)n(X) — g(X, Z)n(Y)) = 0.
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In virtue of (2.14) and (5.11), we get
AW)g(R(X,Y)Z, &) =
(5.12) (A(W)

r

Gntion BW))(g(Y, Z)n(X) — g(X, Z)n(Y)).
Then by the use of second Bianchi identity, we obtain

AW)g(R(X,Y)Z,8) + A(Y)g(R(W, X)Z, &) + A(X)g(R(Y,W)Z,¢)

= A Gy — BV, 2)n(X) = g(X, 2)n(¥)) +
(A 1y~ BOD@X, Zyn() = g(W, Z2)n(X) +
613) (A Gy~ BEDGOW, 2n(Y) = o(Y, Zyn(0))

From (2.6), it follows that

Using the last equation in (5.13), we get

AW)(=n(Y)g(X, Z) + n(X)g(Y. 2))] +
AW [e(=n(X)g(W, Z) +n(W)g(X, 2))] +
AC)IR(=n(W)g(Y, 2) + (Y )g(W, 2))]
= (AW) Gygy — BV 20n(X) = g(X, 2)n(Y) +
(AW) g3~ BN 2)n(0) = (W, 2)(X)) +
(5.14) (AC) Gy — BEON G, 200(Y) = g(¥, Z)n(W).

Replacing Y = Z by e; in (5.14) and taking summation over i, 1 <7 < 2n 4 1, we obtain

(5 — g ) AC)N(W) — AW)(X)) \
(5:15) (=2 (T ) =0

Putting X = ¢ in the last equation, we have
(5.16) n(W)(n(p2) +yn(p1)) = AW)vy + B(W),

where v = (K — mz7), 1(p1) = g(§,p1) = A(§) and n(p2) = g(§, p2) = B(§). From
(5.16), we complete the proof of the theorem. [

Theorem 5.4. Let (M3 g) be a generalized concirculary ¢-recurrent N(k)-paracontact
metric manifold. Then B(W) = —%W) + (5 — r)AW).

Proof. Using (3.22) in (2.14), we get
CX,Y)z = (k- g)(g(K 2n(X)€ = g(X, Z)n(Y)E +n(Y)n(2)X — n(X)n(2)Y)
(5.17) +(5 — 20)(9(Y, 2)X — g(X, 2)Y).
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It is readily taken that the covariant derivative of the above expression

wo)x )z = =T (v 2m(x)E — 9(X. (Y )E + 0V I(2)X — n(XIm(2)Y)
+d’"(:,,W)<<YZ>X 9(X. 2)Y)
R
r -n w1
519 -5 K 2 w20 @wn)
FOX = n(X)Y)(Vwn)(2).

Let us assume that Y is a non-zero vector field orthogonal to £ and X = Z = £. Using the
property (iii) of (2.5) and (5.18), we have

dr(W)

(519) (VwC)(EV)E =

Y.

It follows (2.12) and (5.19) from that

dr(W)

(5.20) AW)CEY)E = BINY = —

Y.
From (2.7) and (2.14), we have

(5.21) CEY)E= (—r+ =

6V

If we employ (5.21) in (5.20), we immediately see that one is able to get the requested
equation. []

Remark 5.1. Ina three dimensional generalized concirculary ¢-recurrent N (x)-paracontact
metric manifold, r is not necessarily be a constant.
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