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Abstract. In this study, it is specified the sequence space l (F (r, s) , p), (where p = (pk)
is any bounded sequence of positive real numbers) and researched some algebraic and
topological features of this space. Further, α−, β−, γ− duals and its Schauder Basis
are given. The classes of matrix transformations from the space l (F (r, s) , p) to the
spaces l∞, c, and c0 are qualified. Additionally, acquiring qualifications of some other
matrix transformations from the space l (F (r, s) , p) to the Euler, Riesz, difference, etc.,
sequence spaces is the other result of the paper.
Keywords. Matrix transformations; sequence space; Schauder Basis.

1. Introduction

In the first instance, let’s remember some basic concept definitions in summability
theory. The symbol w denotes the space of all real or complex valued sequences. A
subspace of w is entitled sequence space. Some of the most known sequence spaces
are l∞, c, c0 and lp (1 ≤ p ≤ ∞) known as classical sequence spaces. The spaces
which represented by these symbols are all bounded, convergent, null sequences
and absolutely p−summable sequences, respectively. The spaces l∞, c, c0 are Banach
spaces with the norm

(1.1) ‖z‖∞ = sup
r∈N

|zr| ,

and the space lp (1 ≤ p ≤ ∞) is Banach space with the norm

(1.2) ‖z‖p =

(
∑

r

|zr|p
) 1

p

.
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The spaces bs and cs are the space of the sequences that constitute the bounded
and convergent series, respectively. The space c0s is defined

(1.3) c0s =

{
y = (yr) ∈ w :

∑

r

yr = 0

}
,

the sequence space bv defined by

(1.4)

{
z = (zr) ∈ w :

∞∑

r=1

|zr − zr−1| < ∞
}
.

The space bv0 denotes bv0 = bv ∩ c0.

To straightforwardness in representation, the symbol
∑

r will be used instead
of the symbol

∑∞
r=0throughout this study. Also, the representations e and e(n)

denote (1, 1, ...) and the sequence n-th unit vector, respectively; where n ∈ N and
N = {0, 1, 2, ...} .

A sequence space ϑ with a linear topology is entitled a K-space ensured that
each of the maps pi : ϑ → C defined by pi (z) = zi is continuous for all i ∈ N, where
C demonstrates the complex field. A K-space ϑ is entitled an FK-space ensured
ϑ is a complete linear metric space. An FK-space whose topology is normable
is entitled a BK-space (see [1]) which comprises Φ, the set of all finitely nonzero
sequences. [12]

If algebraic operations are continuous in a linear T space fitted with a ρ metric,
then (T, ρ) is entitled linear metric space. (see [27]). That is, when (tn) and (zn) are
any two sequences in T and (kn) is a sequence of scalars, then provision of conditions
limn→∞ ρ (tn, t) = 0, limn→∞ ρ (zn, z) = 0 and limn→∞ ρ (kn) = k means provision
of results limn→∞ ρ (tn + zn, t+ z) = 0 and limn→∞ ρ (kntn, kt) = 0. If T linear
metric space is complete, it is named Frechet sequence space [28].

Let ν and η be a sequence space and A = (aij) an infinite matrix of real or
complex numbers and where i, j ∈ N. If for each sequence z = (zj) in ν, the
A−transform of z is in η, then A− is called a matrix transformation from ν into η
and we demonstrate it by writing A : ν → η, where for all i ∈ N,

(1.5) (Az)i =
∑

j

aijzj

The class of all matrices specified A : ν → η is denoted by the notation (ν : η) .
The infinite matrix A belongs to the class (ν : η) iff for each i ∈ N, and every z ∈ ν,∑

j aijzj series are convergent and (Az)i ∈ η.

The matrix domain νA of an infinite matrix A in a sequence space ν is specified
by

(1.6) νA = {z = (zk) ∈ w : Az ∈ ν} .

Let U is an infinite matrix. If the constituents on the principal diagonal of U are
non- zero and the constituents on the top of the principal diagonal are zero, U
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is entitled the triangular matrix. To study with triangular matrix domains has a
special significance because of the features that these matrices have. Here are some
of them: It is trivial that Z(Ty) = (ZT )y holds for the triangle matrices Z, T, and
a sequence y. Further, a triangular matrix U has an inverse matrix U−1 = V that
is only one and triangular. Then, y = U(V y) = V (Uy) holds for all y ∈ w. If Z is
triangle and ν is a BK-space, then νZ is also a BK-space with the norm given by
‖y‖νZ = ‖Zy‖ν for all y ∈ νZ .

If a function h : T → R fulfills the the undermentioned conditions, for all y, z ∈ T

i) h (y) = 0 if y = θ,

ii) h (y) = h (−y) ,

iii) h (y + z) ≤ h (y) + h (z)

iv) |βn − β| → 0 and h (yn − y) → 0 imply h (βnyn − βy) → 0, for all β’s in R
and all y’s in T, where θ is the zero vector in the linear space T.

Then, a linear topological space T defined on the real field R is entitled a para-
normed space.

Let (pr) be a bounded sequence of exactly positive real numbers with supr pr =
H and M = max {1, H} . Then, absolutely p−summable sequences space l (p) was
specified by Maddox [13] (see also [14] and [15]) such as

(1.7) l (p) =

{
y = (yr) ∈ w :

∑

r

|yr|pr < ∞
}
,

where 0 ≤ pr ≤ H < ∞. It is the complete space paranormed by

(1.8) h (y) =

(
∑

r

|yr|pr

)1/M

.

Throughout this study, F symbolizes the collection of all finite subsets of N and
any constituent with a negative index is considered to be zero.

Let us bring to mind the sequence (fn) of Fibonacci numbers given by the
linear iteration correlates: The first two constituents are taken as 1 and other index
constituent are found by summing up the last two constituent that preceded it.
Fibonacci numbers have many quirky features and practices in sciences, arts, and
architecture. For instance, the ratio sequences of Fibonacci numbers converges to
the golden ratio which is significant in sciences and arts. Also, some fundamental
features of Fibonacci numbers (fn) are given as below:

(1.9) lim
n→∞

fn+1

fn
=

1 +
√
5

2
= φ (Golden Ratio),

(1.10)

n∑

k=0

fk = fn+2 − 1, for each n ∈ N,
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(1.11)
∑

k

1

fk
< ∞,

(1.12) fn−1.fn+1 − f2
n = (−1)n+1 for each n ≥ 1 (Cassini Formula).

The practice forming a new sequence space through the medium of the matrix
domain of a special triangle has latterly been utilized by several authors in many
exploratory papers. One of them is Fibonacci matrix defined Kara [4]. Now, let us
familiarize aforementioned Fibonacci matrix F = (fnk)

(1.13) fnk =





− fn+1

fn
, (k = n− 1),

fn
fn+1

, (k = n),

0 , (0 ≤ k < n− 1 or k > n).

It can be demonstrated readily that the matrix F is conservative, but it is neither
regular nor coercive.

Let us acquaint some sequence spaces defined by the domain of a matrix and
will be named in this work:

(1.14) bv∞ = {y = (yr) ∈ w : (yr − yr−1) ∈ l∞} ,

was introduced by Başar and Altay [1].

(1.15) er∞ = {y = (yk) ∈ w : Ery ∈ l∞} ,

was introduced by Altay, Başar and Mursaleen [6].

(1.16) erc = {y = (yk) ∈ w : Ery ∈ c} ,

(1.17) er0 = {y = (yk) ∈ w : Ery ∈ c0} ,

were introduced by Altay, Başar [8]

(1.18) X∞ = {y = (yr) ∈ w : C1y ∈ l∞} ,

was introduced by Ng and Lee [2]

(1.19) c̃ = {y = (yr) ∈ w : C1y ∈ c} ,

(1.20) c̃0 = {y = (yr) ∈ w : C1y ∈ c0} ,

were introduced by Şengönül and Başar [9]

(1.21) rt∞ =
{
y = (yk) ∈ w : Rty ∈ l∞

}
,
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was introduced by Altay and Başar [7].

(1.22) rtc =
{
y = (yk) ∈ w : Rty ∈ c

}
,

(1.23) rt0 =
{
y = (yk) ∈ w : Rty ∈ c0

}
,

was introduced by Altay and Başar [10].

(1.24) l∞

(
F̂
)
= {y = (yr) ∈ w : Fy ∈ l∞} ,

was introduced by Kara [4].

(1.25) c
(
F̂
)
= {y = (yr) ∈ w : Fy ∈ c} ,

(1.26) c0

(
F̂
)
= {y = (yr) ∈ w : Fy ∈ c} ,

were introduced by Başarır et all [11].

(1.27) c (∆) = {y = (yr) ∈ w : (yr − yr+1) ∈ c} ,

(1.28) c0 (∆) = {y = (yr) ∈ w : (yr − yr+1) ∈ c0} ,

was introduced by Kızmaz [5] where Er, C1, Rt, F denote Euler mean of order
r, arithmetic, Riesz means and Fibonacci matrix, respectively. Now, let us give
aforementioned matrix methods :

(1.29) ernk =





(
n
k

)
(1− r)

n−k
rk, 0 ≤ k ≤ n,

0, k > n,

(1.30) δnk =

{
(−1)

n−k
, n− 1 ≤ k ≤ n,

0, 0 ≤ k < n− 1 or k > n,

the matrix Rt = (rtnk) is specified by

(1.31) rtnk =

{ tk
Tn

, 0 ≤ k ≤ n,

0, k > n,

Ng and Lee specified the Cesaro sequence spaces Xp and X∞ of non-absolute
type by the set of the sequences whose C-transforms are in lp and l∞, respectively.

The matrix C = (cnk) is specified as follow:

(1.32) cnk =

{
1

n+1 , 0 ≤ k ≤ n,

0, k > n,
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Now, let us present the matrix method which will be used to specify the sequence
space which is subject of this work. It is entitled the generalized Fibonacci band
matrix F (r, s) specified by Candan at first [3]. It is formed by using Fibonacci
sequence and non-zero real numbers r and s.

(1.33) fnk (r, s) =





s fn+1

fn
, k = n− 1,

r fn
fn+1

, k = n,

0, in other cases.

It can be seen that, the matrix F (r, s) is degraded to the matrix F, for r = 1 and
s = −1. Therefore, the data acquired from the matrix F (r, s) is more general than

the data acquired from the F̂ matrix. The inverse F−1 (r, s) of the matrix F (r, s)
is calculated as

(1.34) f−1
nk (r, s) =

{
1
r

(
− s

r

)n−k f2
n+1

fk.fk+1
, 0 ≤ k ≤ n,

0, k > n.

The other significant principal paper are here: [3], [16], [6], [17], [18], [26], [19], [20],
[21], [22], [23], [24], [25], [31], [32], [34] .

This paper is organized as follow: In first chapter, it is familiarized generalized
Fibonacci difference space l (F (r, s) , p) and is given its some algebraic and topo-
logical features. In second chapter, its α−, β−, γ− duals and Schauder Basis are
determined. In third chapter, the qualifications of some other matrix transforma-
tions from the space l (F (r, s) , p) to the Euler, Riesz, difference, etc., sequence
spaces are acquired.

2. Some properties of the sequence space l (F (r, s) , p)

In this chapter, firstly, we familiarize the Fibonacci difference sequence spaces
l (F (r, s) , p) , lp (F (r, s)) as the set of all sequences whose F (r, s)-transforms are in
the spaces ℓ(p) and lp, respectively. Later, some algebraic and topological particular-
ity of aforenamed these new spaces will be proved and a Schauder basis constructed.
Let p = (pk) be any bounded sequence of positive real numbers. Then,

(2.1) l (F (r, s) , p) =

{
y = (yn) ∈ w :

∑

n

∣∣∣∣r
fn

fn+1
yn + s

fn+1

fn
yn−1

∣∣∣∣
pk

< ∞
}
,

where 0 < pk ≤ H < ∞. In the case, pk = p for all k ∈ N, the space l (F (r, s) , p)
is degraded to space lp (F (r, s)) , i.e., for (p ≥ 1)

(2.2) lp (F (r, s)) =

{
y = (yn) ∈ w :

∑

n

∣∣∣∣r
fn

fn+1
yn + s

fn+1

fn
yn−1

∣∣∣∣
p

< ∞
}
,



On Generalized Fibonacci Difference Space... 909

By means of the notation of (1.6), the spaces l (F (r, s) , p) and lp (F (r, s)) can be
redescribed as follows:

(2.3) l (F (r, s) , p) = (l (p))F (r,s) and lp (F (r, s)) = (lp)F (r,s) .

Define the sequence y = (yk) by the F (r, s)−transform of a sequence x = (xk),
i.e.,

for n = 0, y0 = rx0 and for n ≥ 1

(2.4) yn = (F (r, s)x)n = r
fn

fn+1
xn + s

fn+1

fn
xn−1,

for all k ∈ N. So, It can be acquired by a simplistic calculation that

(2.5) xn =
n∑

j=0

1

r

(
−s

r

)n−j f2
n+1

fj.fj+1
yj

Throughout the text, we assume that the sequences x = (xk) and y = (yk) are
attached to the connection (2.4)

The following inequality will be employed throughout the paper. Let p = (pk)
be a sequence of positive real numbers with 0 < pk ≤ supk pk = H, and let D =
max

{
1, 2H−1

}
. Then, for the factorable sequences (ck) and (dk) in the complex

plane, we have

(2.6) |ck + dk|pk ≤ D
(
|ck|

pk

+ |dk|pk

)

The other inequality is Minkowsky inequality, which will be employed in this paper.
Its expression is here:

(2.7)

(
∞∑

k=1

|ck + dk|p
)1/p

≤
(

∞∑

k=1

|ck|p
)1/p

+

(
∞∑

k=1

|dk|p
)1/p

Theorem 2.1. l (F (r, s) , p) is a linear, complete and paranormed space with the
h function specified as

(2.8) h (x) =

(
∑

n

∣∣∣∣r
fn

fn+1
xn + s

fn+1

fn
xn−1

∣∣∣∣
pn

) 1
M

,

where 0 < pn ≤ H < ∞, for all n ∈ N.

Proof. Let x, y ∈ l (F (r, s) , p) . Then

(2.9)
∑

n

∣∣∣∣r
fn

fn+1
xn + s

fn+1

fn
xn−1

∣∣∣∣
pn

< ∞,
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(2.10)
∑

n

∣∣∣∣r
fn

fn+1
yn + s

fn+1

fn
yn−1

∣∣∣∣
pn

< ∞.

For λ, µ ∈ C, there comes into being integers Mλ, and Nµ such that |λ| ≤ Mλ and
|µ| ≤ Nµ. Employing Inequality (2.1), we have

∑

n

∣∣∣∣λ
(
r

fn
fn+1

xn + s
fn+1

fn
xn−1

)
+ µ

(
r

fn
fn+1

yn + s
fn+1

fn
yn−1

)∣∣∣∣
pn

≤
∑

n

(
|λ|
∣∣∣∣r

fn
fn+1

xn + s
fn+1

fn
xn−1

∣∣∣∣
)pn

+
∑

n

(
|µ|
∣∣∣∣r

fn
fn+1

yn + s
fn+1

fn
yn−1

∣∣∣∣
)pn

≤ D.MH
λ

∑

n

(∣∣∣∣r
fn

fn+1
xn + s

fn+1

fn
xn−1

∣∣∣∣
)pn

+D.NH
µ

∑

n

(∣∣∣∣r
fn

fn+1
xn + s

fn+1

fn
xn−1

∣∣∣∣
)pn

< ∞.

So that λx + µy ∈ l (F (r, s) , p) . This substantiates that l (F (r, s) , p) is a linear
space.

Clearly, h (x) = h (−x), for all x ∈ l (F (r, s) , p). It is unconcealed that r fn
fn+1

xn+

s fn+1

fn
xn−1 = 0, for x = 0. Since pn

M ≤ 1, employing Minkowski Inequality, we have

h (x+ y) =

[
∑

n

∣∣∣∣r
fn

fn+1
(xn + yn) + s

fn+1

fn
(xn−1 + yn−1)

∣∣∣∣
pn

] 1
M

=



∑

n

(∣∣∣∣
(
r

fn
fn+1

xn + s
fn+1

fn
xn−1

)
+

(
r

fn
fn+1

yn + s
fn+1

fn
yn−1

)∣∣∣∣

pn
M

)M



1
M

≤


∑

n

(∣∣∣∣r
fn

fn+1
xn + s

fn+1

fn
xn−1

∣∣∣∣

pn
M

+

∣∣∣∣r
fn

fn+1
yn + s

fn+1

fn
yn−1

∣∣∣∣

pn
M

)M



1
M

≤
(
∑

n

∣∣∣∣r
fn

fn+1
xn + s

fn+1

fn
xn−1

∣∣∣∣
pn

) 1
M

+

(
∑

n

∣∣∣∣r
fn

fn+1
yn + s

fn+1

fn
yn−1

∣∣∣∣
pn

) 1
M

= h (x) + h (y) .
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Also, since the inequality |α|pn ≤ max
{
1, |α|M

}
is ensured for α ∈ R, we get

h (αx) =

[
∑

n

∣∣∣∣r
fn

fn+1
(αxn) + s

fn+1

fn
(αxn−1)

∣∣∣∣
pn

] 1
M

,

=

(
∑

n

|α|pk .

∣∣∣∣r
fn

fn+1
xn + s

fn+1

fn
xn−1

∣∣∣∣
pn

) 1
M

,

≤ max {1, |α|} .h (x) .

Let (αn) be a sequence of scalars with αn → α, as n → ∞ and
{
x(n)

}∞
n=0

be a

sequence of components x(n) ∈ l (F (r, s) , p) with h
(
x(n) − x

)
→ 0, as n → ∞.

Then, we follow up that

(2.11) 0 ≤ h
(
αnx

(n) − αx
)
= h

(
αnx

(n) − αx(n) + αx(n) − αx
)

= h
(
(αn − α) x(n) + α

(
x(n) − x

))
,

≤ h
(
(αn − α) x(n)

)
+ h

(
α
(
x(n) − x

))
,

= |αn − α| .h
(
x(n)

)
+max {1, |α|} .h

(
x(n) − x

)
.

If we combine the facts αn − α → 0, as n → ∞ and h
(
x(n) − x

)
→ 0,as n →

∞ with (2.11) we acquire that h
(
αnx

(n) − αx
)
→ 0, as n → ∞. That is, scalar

multiplication is continuous. This shows that h is a paranorm on l (F (r, s) , p) .
Moreover, if we assume h (x) = 0, then we get

(2.12)

∣∣∣∣r
fn

fn+1
xn + s

fn+1

fn
xn−1

∣∣∣∣ = 0,

for each n ∈ N, we acquire that x = θ = (0, 0, 0, ...). It demonstrates that h is
total paranorm. Now, we indicate that l (F (r, s) , p) is complete. Let

(
x(n)

)
be

any Cauchy sequence in l (F (r, s) , p) , where x(n) =
{
x
(n)
1 , x

(n)
2 , x

(n)
3 , ...

}
. Then,

for a given ε > 0, there comes into being a positive integer n0 (ε) such that

[h (xn − xm)]
M

< εM for all n,m > n0 (ε) . Since for each immutable k ∈ N

|(F (r, s)xn)k − (F (r, s)xm)k|
pk ≤

∑

k

|(F (r, s)xn)k − (F (r, s)xm)k|
pk ,

=
∑

k

∣∣∣∣
(
r

fk
fk+1

x
(n)
k + s

fk+1

fk
x
(n)
k−1

)
−
(
r

fk
fk+1

x
(m)
k + s

fk+1

fk
x
(m)
k−1

)∣∣∣∣
pk

,

=
∑

k

∣∣∣∣
(
r

fk
fk+1

(
x
(n)
k − x

(m)
k

)
+ s

fk+1

fk

(
x
(n)
k−1 − x

(m)
k−1

))∣∣∣∣
pk

,

= [h (xn − xm)]
M

< εM .
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For every n,m > n0 (ε) ,
{(

F (r, s)x0
)
k
,
(
F (r, s)x1

)
k
,
(
F (r, s)x2

)
k
, ...
}
is a Cauchy

sequence of real numbers for every immutable k ∈ N. Since R is complete, it is con-
vergent,therefore we say

(F (r, s)xn)k → (F (r, s) x)k

as n → ∞. Employing these infinitely many limits (F (r, s)x)0 , (F (r, s)x)1 , (F (r, s)x)2 , ...
we specify the sequence {(F (r, s)x)0 , (F (r, s)x)1 , (F (r, s)x)2 , ...} . For each k ∈ N
and n > n0 (ε)

[h (xn − x)]
M

=
∑

k

∣∣∣∣r
fk

fk+1

(
x
(n)
k − xk

)
+ s

fk+1

fk

(
x
(n)
k−1 − xk−1

)∣∣∣∣
pk

,

=
∑

k

∣∣∣∣
(
r

fk
fk+1

x
(n)
k + s

fk+1

fk
x
(n)
k−1

)
−
(
r

fk
fk+1

xk + s
fk+1

fk
xk−1

)∣∣∣∣
pk

,

=
∑

k

|(F (r, s)xn)k − (F (r, s)x)k|
pk < εM .

This shows that (xn − x) ∈ l (F (r, s) , p) . Since l (F (r, s) , p) is a linear space, we
conclude that x ∈ l (F (r, s) , p) . It follows that xn → x, as n → ∞, in l (F (r, s) , p),
it means that l (F (r, s) , p) is complete. Now, someone can readily check that the
absolute feature does not verify on the space l (F (r, s) , p) , that is

(2.13)

h (x) =

(
∑

k

∣∣∣∣r
fk

fk+1
xk + s

fk+1

fk
xk−1

∣∣∣∣
pk

) 1
M

6=
(
∑

k

∣∣∣∣r
fk

fk+1
|xk|+ s

fk+1

fk
|xk−1|

∣∣∣∣
pk

) 1
M

= h (|x|) ,

where |x| = (|xk|) . This says that l (F (r, s) , p) is the sequence space of non-absolute
type.

Theorem 2.2. Convergence in l (F (r, s) , p) is strictly stronger than coordinate-
wise convergence, but the contrary isn’t actual, ordinarily.

Proof. First, we indicate that h (xn − x) → 0, as n → ∞ purportes x
(n)
k → xk, as

n → ∞, for all k ∈ N. If we fix k, then we have

0 ≤
∣∣∣∣
(
r

fk
fk+1

x
(n)
k + s

fk+1

fk
x
(n)
k−1

)
−
(
r

fk
fk+1

xk + s
fk+1

fk
xk−1

)∣∣∣∣
pk

,

≤
∑

k

∣∣∣∣
(
r

fk
fk+1

x
(n)
k + s

fk+1

fk
x
(n)
k−1

)
−
(
r

fk
fk+1

xk + s
fk+1

fk
xk−1

)∣∣∣∣
pk

,

=
∑

k

∣∣∣∣r
fk

fk+1

(
x
(n)
k − xk

)
+ s

fk+1

fk

(
x
(n)
k−1 − xk−1

)∣∣∣∣
pk

,

= [h (xn − x)]
M

.
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Hence, we have for k = 0,

(2.14) lim
n→∞

∣∣∣∣
(
r
f0
f1

x
(n)
0 + s

f1
f0

x
(n)
−1

)
−
(
r
f0
f1

x0 + s
f1
f0

x−1

)∣∣∣∣ = 0,

that is,
∣∣∣r f0

f1

[
x
(n)
0 − x0

]∣∣∣ → 0, as n → ∞ and f0
f1

= 1 and r f0
f1

= r 6= 0, then
∣∣∣x(n)

0 − x0

∣∣∣ → 0 as n → ∞. Likewise, for each k ∈ N, we have
∣∣∣x(n)

k − xk

∣∣∣ → 0,

as n → ∞. Now, we demonstrate that the contrary isn’t actual, ordinarily. We

theorize x
(n)
k → xk, as n → ∞. Then, there comes into being an N ∈ N, such that∣∣∣x(n)

k − xk

∣∣∣ < 1, for each immutable k and for all n ≥ N. Therefore, we see that,

(2.15)

0 ≤ h (xn − x) =

(
∑

k

∣∣∣∣r
fk

fk+1

(
x
(n)
k − xk

)
+ s

fk+1

fk

(
x
(n)
k−1 − xk−1

)∣∣∣∣
pk

) 1
M

,

=




∑

k

[∣∣∣∣r
fk

fk+1

(
x
(n)
k − xk

)
+ s

fk+1

fk

(
x
(n)
k−1 − xk−1

)∣∣∣∣

pk
M

]M


1
M

,

≤




∑

k

[∣∣∣∣r
fk

fk+1

(
x
(n)
k − xk

)∣∣∣∣

pk
M

+

∣∣∣∣s
fk+1

fk

(
x
(n)
k−1 − xk−1

)∣∣∣∣

pk
M

]M


1
M

,

≤
[
∑

k

∣∣∣∣r
fk

fk+1

(
x
(n)
k − xk

)∣∣∣∣
pk

] 1
M

+

[
∑

k

∣∣∣∣s
fk+1

fk

(
x
(n)
k−1 − xk−1

)∣∣∣∣
pk

] 1
M

,

≤
(
∑

k

∣∣∣∣r
fk

fk+1

∣∣∣∣
pk

.
∣∣∣x(n)

k − xk

∣∣∣
pk

) 1
M

+

(
∑

k

∣∣∣∣s
fk+1

fk

∣∣∣∣
pk

.
∣∣∣x(n)

k−1 − xk−1

∣∣∣
pk

) 1
M

,

≤
(
∑

k

∣∣∣∣r
fk

fk+1

∣∣∣∣
pk

) 1
M

+

(
∑

k

∣∣∣∣s
fk+1

fk

∣∣∣∣
pk

) 1
M

for all k and N . Since
∣∣∣fk+1

fk

∣∣∣ → 1, 6 ⇒
∣∣∣s fk+1

fk

∣∣∣ → |s| .1, 6 and
∣∣∣ fk
fk+1

∣∣∣ → 0, 6 ⇒
∣∣∣r fk

fk+1

∣∣∣ → |r| .0, 6 as k → ∞. In (2.15), h (xn − x) doesn’t convergence for each

immutable k ∈ N and for all n ≥ N. This purports that the contrary isn’t actual.
Let us consider the elements of the sequence xn be equal, then we follow up that
h (xn − x) = 0, that is to say that coordinatewise convergence requires convergence.
Hence, we can say that the contrary is not actual, ordinarily.

Theorem 2.3. l (F (r, s) , p) is a K-space.

Proof. Firstly, we show that qi (x) = xi is linear for all i ∈ N. Let x = (xi) , y =
(yi) ∈ l (F (r, s) , p) and α ∈ C. Then, we get

(2.16) qi (x+ y) = (x+ y)i = xi + yi = qi (x) + qi (y)
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and

(2.17) qi (αx) = (αx)i = αxi = αqi (x)

for all i ∈ N. Hence qi is linear. Now, we substantiate that qi is continuous. For
this, it is sufficient to show that qi is bounded. Let x = (xi) ∈ l (F (r, s) , p) be any
vector. Then, since |qi (x)| = |xi| for all i ∈ N, one can see that

‖qi‖ = sup
x 6=0

|qi (x)|
‖x‖l(F (r,s),p)

= sup
x 6=0

|xi|
‖x‖l(F (r,s),p)

,

≤ sup
x 6=0

‖x‖l(F (r,s),p)

‖x‖l(F (r,s),p)

= 1 < ∞,

i.e., qi is bounded. Hence, qi is a linear and continuous operator. That is to say
that l (F (r, s) , p) is a K−space.

Theorem 2.4. l (F (r, s) , p) is an FK-space.

Proof. It is easy to see by Theorem (2.1) and Theorem (2.2) that l (F (r, s) , p)
is complete sequence space and convergence requires coordinatewise convergence.
Hence, l (F (r, s) , p) is an FK−space.

Theorem 2.5. lp (F (r, s)) is linear space and a BK-space with the following norm

(2.18) ‖x‖ =

(
∑

n

∣∣∣∣r
fn

fn+1
xn + s

fn+1

fn
xn−1

∣∣∣∣
p
)1/p

,

where x = (xn) ∈ lp (F (r, s)) and 1 ≤ p < ∞.

Proof. it will not be done because the proof of linearity of the space is routine
operations. Because lp is a BK−space with known norm and F (r, s) is a triangle
matrix, according to Theorem 4.3.2 of Wilansky [28], we acquire that lp (F (r, s)) is
a BK−space.

Theorem 2.6. When p fulfilled the condition 1 ≤ p < ∞. The newly specified
sequence space C is a BK−space with the norm ‖x‖lp(F (r,s)) = ‖f (r, s)x‖p , in
other words,

(2.19) ‖x‖lp(F (r,s)) =

(
∑

n

|Fn (r, s)x|p
) 1

p

, 1 ≤ p < ∞.

Theorem 2.7. lp (F (r, s)) is a Frechet space.
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Proof. To avoid the repetition of the similar expressions, we demonstrate that the
algebraic operations are continuous in the space lp (F (r, s)) . Let (xn) and (yn) be
two sequences in lp (F (r, s)) and (αn) be a sequence of scalars such that d (xn, x) →
0, d (yn, y) → 0 and αn → α, as n → ∞. Then, we get that

(2.20) 0 ≤ lim
n→∞

d (xn + yn, x+ y) ,

= lim
n→∞

(‖(xn + yn)− (x+ y)‖)
≤ lim

n→∞
(‖xn − x‖ + ‖yn − y‖)

= lim
n→∞

d (xn, x) + lim
n→∞

d (yn, y)

= 0

(2.21) 0 ≤ lim
n→∞

d (αnxn, αx)

= lim
n→∞

‖αnxn − αx‖
= lim

n→∞
‖(αn − α)xn + α (xn − x)‖

≤ lim
n→∞

(|αn − α| ‖xn‖+ |α| ‖xn − x‖)
= lim

n→∞
|αn − α| ‖xn‖+ |α| lim

n→∞
d (xn, x)

= 0

It is ready to see from (2.20) and (2.21) that the algebraic operations are continuous
on the linear metric space lp (F (r, s)) . Hence lp (F (r, s)) is a Frechet space.

With the notation of (2.4), the transformation T specified from l (F (r, s) , p) to l (p)
by x → y = Tx is linear bijection, so we have the following:

Corollary 2.1. The sequence space l (F (r, s) , p) of the non-absolute type is lin-
early paranorm isomorphic to the space l (p) , where 0 < pk ≤ H < ∞, for all
k ∈ N.

Due to the well known fact that the matrix domain νA of the normed sequence
space denoted by ν, has got a base iff ν has got a base, whenever a matrix A is a
triangle [31](remark 2.4). Accordingly, we can give the following result:

Corollary 2.2. Let 0 < pk ≤ H < ∞ and λk = (Fx)k , for all k ∈ N. Specify the

sequence b(k) =
{
b
(k)
n

}
n∈N

of the elements of the spaces l (F (r, s) , p) by

(2.22) b(k)n =

{
1
r

(
− s

r

)k−n f2
k+1

fn.fn+1
, 0 ≤ n ≤ k

0, n > k

for every immutable k ∈ N. Then, the sequence
{
b(k)
}
k∈N

is a basis for the space

l (F (r, s) , p) and any x ∈ l (F (r, s) , p) has a sole representation of the shape

(2.23) x =
∑

k

λkb
(k)
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3. The α−, β−, γ− Duals of the space l (F (r, s) , p)

The α−, β−and γ duals of the sequence space X are specified as follows:

If x and y are sequences and X and Y are subsets of w, then, we write x.y =
(xkyk)

∞
k=0 , and

(3.1) x−1 ∗ Y = {a ∈ w : ax ∈ Y }

(3.2) M (X,Y ) =
⋂

x∈X

x−1 ∗ Y = {a ∈ w : ax ∈ Y, for allx ∈ X},

for the multiplier space ofX and Y . One can readily follow up for a sequence space Z
with Y ⊂ Z andM (X,Y ) ⊂ M (X,Z) that the containmentsM (X,Y ) ⊂ M (Z, Y )
hold. The α−, β−, and γ− duals of a sequence space X , which are, respectively,
denoted by

(3.3) Xα = M (X, l1) , X
β = M (X, cs) and Xγ = M (X, bs)

It is obvious thatXα ⊂Xβ ⊂ Xγ . Also, it can be readily seen that the containments
Xα ⊂ Y α, Xβ ⊂ Y β and Xγ ⊂ Y γ hold, whenever Y ⊂ X.

Lemma 3.1. [30] Let A = (ank) be an infinite matrix over the complex field. The
following expressions are ensured:

i) Let 0 < pk ≤ 1 for all k ∈ N. Then, an infinite matrix A transforms all
sequences belong to l (p) into l1 iff

(3.4) sup
N∈F

sup
k∈N

∣∣∣∣∣
∑

n∈N

ank

∣∣∣∣∣

pk

< ∞.

ii) Let 1 < pk ≤ H < ∞, for all k ∈ N. Then, an infinite matrix A transforms
all sequences belong to l (p) into l1 iff there comes into being an integer B > 1 such
that

(3.5) sup
N∈F

∑

k

∣∣∣∣∣
∑

n∈N

ankB
−1

∣∣∣∣∣

qk

< ∞.

Lemma 3.2. [29] Let A = (ank) be an infinite matrix over the complex field. The
following expressions ensure:

i) Let 0 < pk ≤ 1 for all k ∈ N. Then, an infinite matrix A transforms all
sequences belong to l (p) into l∞ iff

(3.6) sup
n,k∈N

|ank|pk < ∞

ii) Let 1 < pk ≤ H < ∞, for all k ∈ N. Then, an infinite matrix A transforms
all sequences belong to l (p) into l∞ iff there comes into being an integer B > 1 such
that

(3.7) sup
n∈N

∑

k

∣∣ankB−1
∣∣qk < ∞
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Lemma 3.3. [29] Let A = (ank) be an infinite matrix over the complex field and
0 < pk ≤ H < ∞ for all k ∈ N. Then, an infinite matrix A transforms all sequences
belong to l (p) into c iff (3.6), (3.7) and for all k ∈ N

(3.8) lim
n→∞

ank = βk

ensures.

Let us specify the following sets:

(3.9) E1 =

{
a = (ak) ∈ w : sup

N∈F

sup
k∈N

∣∣∣∣∣
∑

n∈N

1

r

(
−s

r

)n−k f2
n+1

fk.fk+1
an

∣∣∣∣∣

pk

< ∞
}
,

(3.10)

E2 = ∪B>1

{
a = (ak) ∈ w : sup

n∈F

∑

k

∣∣∣∣∣
∑

n∈N

1

r

(
−s

r

)n−k f2
n+1

fk.fk+1
an.B

−1

∣∣∣∣∣

qk

< ∞
}

(3.11) E3 =



a = (ak) ∈ w : sup

k,n∈N

∣∣∣∣∣∣

n∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
aj

∣∣∣∣∣∣

pk

< ∞





(3.12) E4 =



a = (ak) ∈ w :

∞∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
aj < ∞





(3.13)

E5 = ∪B>1



a = (ak) ∈ w : sup

n∈N

∑

k

∣∣∣∣∣∣

n∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
aj .B

−1

∣∣∣∣∣∣

qk

< ∞





Since proof of the first chapter of the following theorems can be made similar to
the proof of the second chapter, we will only give proof of the second part.

Theorem 3.1. The following expressions are ensured:

i)Let 0 < pk ≤ 1 for all k ∈ N. Then,

(3.14) {l (F (r, s) , p)}α = E1

ii) Let 1 < pk ≤ H < ∞, for all k ∈ N. Then,

(3.15) {l (F (r, s) , p)}α = E2
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Proof. Let us take any a = (an) ∈ w. By employing (2.5) we acquire that, for all
n ∈ N

(3.16) anxn =

n∑

k=0

(
1

r

)(
−s

r

)n−k f2
n+1

fk.fk+1
an.yk = (Ey)n ,

where E = (enk) is specified by

(3.17) enk =

{ (
1
r

) (
− s

r

)n−k f2
n+1

fk.fk+1
an, 0 ≤ k ≤ n,

0, k > n,

for all k, n ∈ N. Thus, we follow up by unification (3.16) with the proviso (3.5). of
part (ii) of Lemma 3.1 that ax = (anxn) ∈ l1 whenever x = (xk) ∈ l (F (r, s) , p) iff
Ey ∈ l1, whenever y = (yk) ∈ l (F (r, s) , p) . This leads to fact that {l (F (r, s) , p)}α =

E2, as claimed.

Theorem 3.2. The following expressions are ensured:

i) Let 0 < pk ≤ 1 for all k ∈ N. Then,

(3.18) {l (F (r, s) , p)}β = E3 ∩ E4.

ii) Let 1 < pk ≤ H < ∞, for all k ∈ N. Then,

(3.19) {l (F (r, s) , p)}β = E4 ∩ E5.

Proof. Take any a = (aj) ∈ w, then, one can acquire by (2.5) that

n∑

j=0

ajxj =

n∑

j=0

(
j∑

k=0

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
yk

)
aj

=

n∑

k=0




n∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
aj


 yk

(3.20) = (Dy)n ,

for all n ∈ N, where D = (dnk) is specified by

(3.21) dnk =

{ ∑n
j=k

(
1
r

) (
− s

r

)j−k f2
j+1

fk.fk+1
aj , 0 ≤ k ≤ n,

0, k > n,

for all n, k ∈ N. Thus, we make inferences from Lemma (3.3) with (3.20) that
ax = (ajxj) ∈ cs whenever x = (xj) ∈ l (F (r, s) , p) iff Dy ∈ c , whenever y =
(yk) ∈ l (p) . Therefore, we derive from (3.7) and (3.8) that

(3.22) sup
n∈N

∑

k

∣∣∣∣∣∣

n∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
aj .B

−1

∣∣∣∣∣∣

qk

< ∞,
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(3.23)

∞∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
aj < ∞.

This shows that {l (F (r, s) , p)}β = E4 ∩ E5

Theorem 3.3. The following expressions are ensured:

i) Let 0 < pk ≤ 1 for all k ∈ N. Then,

(3.24) {l (F (r, s) , p)}γ = E3.

ii) Let 1 ≤ pk ≤ H < ∞, for all k ∈ N. Then,

(3.25) {l (F (r, s) , p)}γ = E5.

Proof. From Lemma (3.2) and (3.20), we acquire that ax = (ajxj) ∈ bs whenever
x = (xj) ∈ l (F (r, s) , p) iff Dy ∈ l∞, whenever y = (yk) ∈ l (p) , where D=(dnk) is
acquired by (3.21). Therefore, we acquire (3.6) and (3.7) that

(3.26) {l (F (r, s) , p)}γ =

{
E3, pk ≤ 1,
E5, pk > 1

,

as desired.

4. Some Matrix Transformations on the space l (F (r, s) , p)

In this section, we characterize somematrix transformations on the space l (F (r, s) , p) ,
since the cases 0 < pk ≤ 1 and 1 < pk ≤ H < ∞ are integrated. The following
theorem gives the exact provisos of the general case 0 < pk ≤ H < ∞. We consider
only the case 1 < pk ≤ H < ∞ and omit the proof of the case 0 < pk ≤ 1, since it
can be ensured in an alike way.

Theorem 4.1. The following expressions are ensured:

i) Let 0 < pk ≤ 1 for all k ∈ N. Then, an infinite matrix A transforms all
sequences belong to l (F (r, s) , p) into l∞ iff

(4.1) sup
k,n∈N

∣∣∣∣∣∣

∞∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
anj

∣∣∣∣∣∣

pk

< ∞,

(4.2)

∞∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
anj < ∞.

ii) Let 1 < pk ≤ H < ∞, for all k ∈ N. Then, an infinite matrix A transforms
all sequences belong to l (F (r, s) , p) into l∞ iff (4.1) ensures and there comes into
being an integer B > 1 such that

(4.3) sup
n∈N

∑

k

∣∣∣∣∣∣

∞∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
anjB

−1

∣∣∣∣∣∣

qk

< ∞.
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Proof. Let A ∈ (l (F (r, s) , p) : l∞) and 1 < pk ≤ H < ∞, for all k ∈ N. Then, Ax

comes into being for every x ∈ l (F (r, s) , p) and this implies thatAn ∈ {l (F (r, s) , p)}β
for each immutable n ∈ N. Therefore, the necessities of (4.2) and (4.3) are immedi-
ate.

Conversely, suppose that the provisos (4.2) and (4.3) ensure, and take any x ∈
l (F (r, s) , p) . Since, An ∈ {l (F (r, s) , p)}β , for each n ∈ N, Ax comes into being.
By employing (2.5), we acquire that
(4.4)
m∑

j=0

anjxj =

m∑

j=0

j∑

k=0

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
ykanj =

m∑

k=0

m∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
anjyk,

for all m,n ∈ N. Taking into account the hypothesis, we reproduce from (4.4), as
m → ∞ that for all n ∈ N,

(4.5)
∑

j

anjxj =
∑

k

∞∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
anjyk,

By integrating (4.5) and the inequality which ensures for any complex numbers a, b
and any B > 0,

(4.6) |ab| ≤ B
(∣∣aB−1

∣∣q + |b|p
)
,

where p > 1 and p−1 + q−1 = 1, we acquire that,

sup
n∈N

∣∣∣∣∣∣

∑

j

anjxj

∣∣∣∣∣∣
= sup

n∈N

∣∣∣∣∣∣

∑

k

∞∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
anjyk

∣∣∣∣∣∣

≤ sup
n∈N

∑

k

∣∣∣∣∣∣

∞∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
anjyk

∣∣∣∣∣∣
,

≤ sup
n∈N

∑

k

B



∣∣∣∣∣∣

∞∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
anjB

−1

∣∣∣∣∣∣

qk

+ |yk|pk


 ,

= B


sup

n∈N

∑

k

∣∣∣∣∣∣

∞∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
anjB

−1

∣∣∣∣∣∣

qk

+ sup
n∈N

∑

k

|yk|pk




< ∞.

This shows that Ax ∈ l∞.

Theorem 4.2. The following expressions are ensured:
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i) Let 0 < pk ≤ 1 for all k ∈ N. Then, an infinite matrix A transforms all
sequences belong to l (F (r, s) , p) into c iff (4.1) and (4.2) ensure and there is a
sequence α = (αk) of scalars such that

(4.7) lim
n→∞

∞∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
anj = αk,

for all k ∈ N.

ii) Let 1 < pk ≤ H < ∞, for all k ∈ N. Then, an infinite matrix A transforms
all sequences belong to l (F (r, s) , p) into c iff (4.2), (4.3) and (4.7), ensure.

Proof. Let A ∈ (l (F (r, s) , p) : c) and 1 < pk ≤ H < ∞ for all k ∈ N. Then, since
the containment c ⊂ l∞ ensures, the neccesities of (4.2) and (4.3) are immediately
acquired from Theorem (4.). To ensure the the neccesities of (4.7), consider the
sequence b(k) defined by (2.22) which belongs to the space l (F (r, s) , p) for every
immutable k ∈ N. Since, the A− transform of every x ∈ l (F (r, s) , p) comes into
being and is in c by the hypothesis, we have

(4.8) Ab(k) =




∞∑

j=0

aijb
(k)
j




∞

i=0

=




∞∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
aij




∞

i=0

∈ c,

for every fixed k ∈ N, which shows the neccesity (4.7).

Conversely, suppose that the provisos (4.2), (4.3) and (4.7) ensure and take
x = (xk)in the space l (F (r, s) , p) . Then, Ax exists. We follow up for all m,n ∈ N
that

m∑

k=0

∣∣∣∣∣∣

n∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
anjB

−1

∣∣∣∣∣∣

qk

≤ sup
n∈N

∑

k

∣∣∣∣∣∣

∞∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
anjB

−1

∣∣∣∣∣∣

qk

< ∞

which gives the fact that by letting m,n → ∞ with (4.3) and (4.7)

lim
m,n→∞

m∑

k=0

∣∣∣∣∣∣

n∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
anjB

−1

∣∣∣∣∣∣

qk

≤ sup
n∈N

∑

k

∣∣∣∣∣∣

∞∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
anjB

−1

∣∣∣∣∣∣

qk

< ∞.

This shows that
∑

k

∣∣αkB
−1
∣∣qk < ∞ and (αk) ∈ {l (F (r, s) , p)}β which implies that

the series
∑

k αkxk converges for all x ∈ {l (F (r, s) , p)} .
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Now, let us consider the equality acquired from 4.5with (anj − αj) instead of
anj

(4.9)
∑

j

(anj − αj)xj =
∑

k

∞∑

j=k

1

r

(
−s

r

)j−k f2
j+1

fk.fk+1
(anj − αj) yk =

∑

k

cnkyk,

where c = (cnk) described by cnk =
∑∞

j=k
1
r

(
− s

r

)j−k f2
j+1

fk.fk+1
(anj − αj) for all k, n ∈

N. From Lemma 3.3, cnk → 0, as n → ∞. This means that Ax ∈ c, whenever
x ∈ l (F (r, s) , p) and this step completes the proof.

Corollary 4.1. The following expressions are ensured:

i) Let 0 < pk ≤ 1 for all k ∈ N. Then, an infinite matrix A transforms all
sequences belong to l (F (r, s) , p) into c0 iff (4.1), and (4.2) ensure and (4.7) ensures
with αk = 0, for all k ∈ N.

ii) Let 1 < pk ≤ H < ∞, for all k ∈ N. Then, an infinite matrix A transforms
all sequences belong to l (F (r, s) , p) into c0 iff (4.1), and (4.2) ensure and (4.7)
also ensures with αk = 0, for all k ∈ N.

Lemma 4.1. [1] Let λ, µ be any two sequence spaces, A be an infinite matrix and
B be a triangle matrix. Then, A ∈ (λ : µB) iff BA ∈ (λ : µ).

By considering Theorem , Theorem and Lemma together, it can be acquired fol-
lowing outcome:

Corollary 4.2. Let A = (ank) be an infinite matrix of complex constituent. Then,
the following expressions are ensured:

i) E = (enk) ∈ (l (F (r, s) , p) : bv∞) iff (4.1), (4.3) ensure with dnk instead of
ank; where dnk = enk − en−1,k for all k, n ∈ N.

ii) E = (enk) ∈ (l (F (r, s) , p) : er∞) iff (4.1), (4.3) ensure with dnk instead of

ank; where dnk =
∑n

j=0

(
n
j

)
(1− r)

n−j
rjejk for all k, n ∈ N.

iii) E = (enk) ∈ (l (F (r, s) , p) : X∞) iff (4.1), (4.3) ensure with dnk instead of
ank; where dnk =

∑n
j=0

ejk
(n+1) for all k, n ∈ N.

iv) E = (enk) ∈ (l (F (r, s) , p) : rt∞) iff (4.1), (4.3) ensure with dnk instead of
ank; where dnk =

∑n
j=0 tjejk/Tn for all k, n ∈ N.

v) E = (enk) ∈ (l (F (r, s) , p) : bs) iff (4.1), (4.3) ensure with dnk instead of
ank; where dnk =

∑n
j=0 ejk for all k, n ∈ N.

vi) E = (enk) ∈
(
l (F (r, s) , p) : l∞

(
F̂
))

iff (4.1), (4.3) ensure with dnk instead

of ank; where dnk = s fn+1

fn
en−1,k + r fn

fn+1
enk for all k, n ∈ N.

Corollary 4.3. Let A = (ank) be an infinite matrix of complex constituent. Then,
the following expressions are ensured:
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i) E = (enk) ∈ (l (F (r, s) , p) : c (∆)) iff (4.1), (4.3) and (4.5) with dnk instead
of ank; where dnk = enk − en+1,k for all k, n ∈ N.

ii) E = (enk) ∈ (l (F (r, s) , p) : erc) iff (4.1), (4.3) and (4.5) also ensures with dnk
instead of ank;

where dnk =
∑n

j=0

(
n
j

)
(1− r)

n−j
rjejk for all k, n ∈ N.

iii) E = (enk) ∈ (l (F (r, s) , p) : c̃) iff (4.1), (4.3) and (4.5) also ensures with
dnk instead of ank; where dnk =

∑n
j=0

ejk
(n+1) for all k, n ∈ N.

iv) E = (enk) ∈ (l (F (r, s) , p) : rtc) iff (4.1), (4.3) and (4.5) also ensures with
dnk instead of ank; where dnk =

∑n
j=0 tjejk/Tn for all k, n ∈ N.

v) E = (enk) ∈
(
l (F (r, s) , p) : c

(
F̂
))

iff (4.1), (4.3) and (4.5) also ensures

with dnk instead of ank; where dnk = s fn+1

fn
en−1,k + r fn

fn+1
enk for all k, n ∈ N.

vi) E = (enk) ∈ (l (F (r, s) , p) : cs) iff (4.1), (4.3) and (4.5) also ensures with
dnk instead of ank; where dnk =

∑n
j=0 ejk for all k, n ∈ N.

Corollary 4.4. Let A = (ank) be an infinite matrix of complex constituent. Then,
the following expressions are ensured:

i) E = (enk) ∈ (l (F (r, s) , p) : c0 (∆)) iff (4.1), (4.3) and (4.5) also ensures
with αk = 0, for all k ∈ N and dnk instead of ank; where dnk = enk − en+1,k for all
k, n ∈ N.

ii) E = (enk) ∈ (l (F (r, s) , p) : er0) iff (4.1), (4.3) and (4.7) also ensures with

αk = 0 for all k ∈ N and dnk instead of ank; where dnk =
∑n

j=0

(
n
j

)
(1− r)

n−j
rjejk

for all k, n ∈ N.

iii) E = (enk) ∈ (l (F (r, s) , p) : c̃0) iff (4.1), (4.3) and (4.7) also ensures with
αk = 0 for all k ∈ N and dnk instead of ank; where dnk =

∑n
j=0

ejk
(n+1) for all

k, n ∈ N.

iv) E = (enk) ∈ (l (F (r, s) , p) : rt0) iff (4.1), (4.3) and (4.7) also ensures with
αk = 0 for all k ∈ N and dnk instead of ank; where dnk =

∑n
j=0 tjejk/Tn for all

k, n ∈ N.

v) E = (enk) ∈
(
l (F (r, s) , p) : c0

(
F̂
))

iff (4.1), (4.3) and (4.7) also ensures

with αk = 0 for all k ∈ N and dnk instead of ank; where dnk = s fn+1

fn
en−1,k +

r fn
fn+1

enk for all k, n ∈ N.

vi) E = (enk) ∈ (l (F (r, s) , p) : c0s) iff (4.1), (4.3) and (4.7) also ensures with
αk = 0 for all k ∈ N and dnk instead of ank; where dnk =

∑n
j=0 ejk for all k, n ∈ N.
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11. M. Başarır, F. Başar and E. E. Kara: On the spaces of Fibonacci Difference null

and convergent sequences. arXiv:1309.0150v1 [math. FA], 2013.

12. B. Choudhary and S. Nanda: Functional Analysis with Applications. JohnWiley ,
Sons, NewDelhi, India, 1989.

13. I. J. Maddox: Spaces of strongly summable sequences.Quart. J. Math. Oxford. 18:2
(1967), 345–355.

14. S. Simons: The sequence spaces ℓ(pv) and m(pv). Proc. London Math. Soc. 15:3
(1965), 422–436.

15. H. Nakano: Modulared sequence spaces. Proc. Japan Acad. 27:2 (1951), 508–512.

16. M. Mursaleen: On some geometric properties of a sequence space related to lp. Bull.
Aust. Math. Soc. 67 (2003), 343–347.
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27. E. Malkowsky and V. Rakočević: An Introduction into the theory of sequence

spaces and measures of noncompactness. Zbornik Radova, Matematički Institut
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