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Abstract. In this article, we generalize and improve the results of Fadail et al.[Z. M.
Fadail and S. M. Abusalim, Int. Jour. of Math. Anal., Vol. 11, No. 8(2017), pp. 397-
405.] and Dubey et al.[AnilKumar Dubey and Urmila Mishra, Non. Func. Anal. Appl.,
Vol. 22, No. 2(2017), pp 275-286.] under the concept of a c-distance in cone metric
spaces. We prove the existence and uniqueness of the fixed point for T-contractive type
mapping under the concept of c-distance in cone metric spaces.
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1. Introduction

In 2007, Huang and Zhang[12] first introduced the concept of cone metric spaces
and they established and proved the existence of fixed point theorems which is an
extension of the Banach contraction mapping principle in to the cone metric spaces.
Recently, Cho et al.[3] introduced the concept of c-distance in a cone metric spaces
and proved some fixed point results in ordered cone metric spaces. Afterward,
many authors have generalized and studied fixed point theorems under c-distance
in cone metric spaces (see [1, 7, 8, 9, 10, 11, 14, 15, 16]). In 2009, Beiranvand et
al.[2] introduced new classes of contractive functions and established the Banach
principle. Since then, fixed point theorems for T-contraction mapping on cone
metric spaces have been appeared, see for instance [4, 5, 6] and [11].

The purpose of this paper is to extend and generalize some results on c-distance
in cone metric spaces. Throughout this paper, we do not impose the normality
condition for the cones, but the only assumption is that the cone P is solid, that is
intP # ¢. Also, in this paper we assume R as a set of real numbers and N as a set
of natural numbers.
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2. Preliminaries

Definition 2.1. ([12]) Let E be a real Banach space and 6 denote to the zero
element in E. A cone P is a subset of E such that:

(1) P is a non-empty, closed and P # {6};
(2) If a,b are non-negative real numbers and z,y € P then ax + by € P;

3) xre Pand -xr € P=x=0.

Given a cone P C FE, we define a partial ordering < with respect to P by x <X y
if and only if y — x € P. We write z < y to indicate that x < y but = # y, while
x < y will stand for y — z € intP, intP denotes the interior of P.

Definition 2.2. ([12]) A cone P is called normal if there is a number K > 0 such
that for all z,y € E,0 < x < y implies ||z|| < K]||y||. The least positive number
satisfying above is called the normal constant of P.

In the following we always suppose E is a Banach space, P is a cone in F with
intP # ¢ and < is partial ordering with respect to P.

Definition 2.3. ([12]) Let X be a non empty set and E be a real Banach space
equipped with the partial ordering < with respect to the cone P. Suppose that the
mapping d : X x X — E satisfies the following conditions:

(i) If 0 < d(z,y) for all x,y € X and d(x,y) = 0 if and only if z = y;
(i) d(z,y)
Y

=d(y,x) for all z,y € X;
(#3i) d(z,y) < d(z,z) +d(y,z) for all z,y,z € X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Example 2.1. Let E=R? and P = {(z,y) € E: 2,y > 0} C R*, X = R? and suppose
that d : X x X — FE is defined by d(z,y) = d((z1,22), (y1,y2)) = (|Jz1 — 1| + |22 —
y2|, amax{|z1 — y1|, |z2 — y2|}) where a > 0 is a constant. Then (X,d) is a cone metric
space. It is easy to see that d is a cone metric, and hence (X, d) becomes a cone metric
space over (E, P). Also, we have P is a solid and normal cone where the normal constant
K=1.

Definition 2.4. ([12]) Let (X, d) be a cone metric space, let {x,} be a sequence
in X and z € X:

(1) for all ¢ € E with 0 < ¢, if there exists a positive integer N such that
d(zp,x) < c for all n > N, then {z,} is said to be convergent and {z,}
converges to x.
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(2) for all ¢ € E with 0 < ¢, if there exists a positive integer N such that for all
n,m > N, d(zn, Tm) < ¢, then {x,} is called a Cauchy sequence in X.

(3) if every Cauchy sequence in X is convergent in X then (X,d) is called a
complete cone metric space.

The following Lemma is useful to prove our results.

Lemma 2.1. (/13])

(1) If E be a real Banach space with a cone P and a = Aa where a € P and
0< A<, thena=20.

(2) If c € intP, 0 = a, and a, — 0, then there exists a positive integer N such
that a, < ¢ for alln > N.

Next, we give the notion of ¢-distance on a cone metric space (X, d) of Cho et
al. in [3].

Definition 2.5. ([3]) Let (X, d) be a cone metric space. A functionq: X xX — E
is called a c-distance on X if the following conditions hold:

(1) 0 2 q(x,y) for all 7,y € X;

(q2) q(z,2) = q(x,y) + q(y, z) for all z,y,z € X;

(q3) foreachz € X andn > 1if ¢(x,y,) =< u for some u = u, € P, then q(z,y) < u
whenever {y,} is a sequence in X converging to a point y € X;

(ga) for all ¢ € E with 6 < ¢, there exists e € E with § < e such that ¢(z,z) < e
and ¢(z,y) < e imply d(z,y) < c.

Example 2.2. ([3]) Let E =Rand P = {z € E: z > 0}, X = [0,00) and define a
mapping d: X x X — E is defined by d(z,y) = |z — y|, for all ,y € X. Then (X,d) is a
cone metric space. Define a mapping ¢ : X x X — E by ¢q(x,y) =y for all ,y € X. Then
q is a c-distance on X.

The following Lemma is very important to prove our results.

Lemma 2.2. ([3]) Let (X,d) be a cone metric space and q is a c-distance on X.
Let {x,} and {yn} be sequences in X and z,y,z € X. Suppose that {u,} is a
sequence in P converging to 6. Then the following hold:

(1) If ¢(xn,y) 2ty and q(xy, 2) < uy, then y = z.

(2) If q(xn,Yn) = un and q(xy, z) = uy, then {yn,} converges to z.

(8) If q(xn, Tm) = up for m > n, then {x,} is a Cauchy sequence in X.
(

(4) If q(y, xn) = Uy, then {x,} is a Cauchy sequence in X.
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Remark 2.1. ([3])

(1) q(z,y) = q(y,x) does not necessarily for all z,y € X.
(2) g(x,y) = 0 is not necessarily equivalent to z =y for all z,y € X.

Next definition taken from [2]:

Definition 2.6. Let (X, d) be a cone metric space, P a solid cone and T : X — X.
Then

(a) T is said to be continuous if lim,,_, o &, = «* implies that lim, .o Tx, = Tz*,
for all {z,} in X;

(b) T is said to be sequentially convergent if we have, for every sequence {z,}, if
{Tx,} is convergent, then {z,} is also convergent;

(c) T is said to be subsequentially convergent if we have, for every sequence {z,, }
that {Tx,} is convergent, implies {z,} has a convergent subsequence.
Now, we give our main results in this paper.

3. Main Results

Theorem 3.1. Let (X,d) be a complete cone metric space, P a solid cone and q
be a c-distance on X. Let T : X — X be an one to one, continuous function and
subsequentially convergent and f : X — X be a mapping. In addition, suppose that
there exists mapping k,l : X — [0,1) such that the following conditions hold:

(a) k(fz) < k(x),l(fz) <l(x), for all z € X;
(b) (k+20)(xz) <1 for all z € X;
(¢) ¢(Tfz,Tfy) = k(z)q(Tx, Ty) + U(z)|g(T f2, Ty) + o(T fy, Tx)]

for all x,y € X. Then the map [ has a unique fixed point x* € X and for any
x € X, iterative sequence {fx,} converges to the fized point. If u = fu, then
q(Tu, Tu) = 0.

Proof. Choose g € X. Set 21 = fwg, 22 = fr1 = f2w0,...0n11 = fan, = f"lag.
Then we have

q(Txp, Txpi1)

q(fon—la fon)

=< k(@p-1)q(Txn-1,Txn) + Uxn-1)[g(T frp_1,Txy)
+q(T fan, Ton—1))

= k(fen—2)q(Tap-1,Tan) +(fra—2)q(Ten, Tzn)
+q¢(Tzpi1, Txn—1)]

< k(xpn—2)q(Txn-1,Txy) + Uxpn-2)[g(Txp—1,Tx,)

'HJ(TiCm T:En-i-l)]u
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continuing in this manner, we can get
Q(Txp, Trny1) = k(wo)q(Tzn—1,Try) + U(20)g(TT0-1,T0)
+Z(I0)q(T$na T$n+1)

and hence

k(wo) + l(z0)

q(Txn, Trpyr) = T —1(z0) q(Txp—1,Txy,)
= hq(Txp-1,Txy)
< h2q(Txp_o,Trn 1)
=< h"q(Tzo,Tx1),

where h = %}Ll(m“) < 1. Note that,
— 10)

(3.1) qTfrp_1,Tfxy) =qTxn, Trni1) = hq(Trp_1,Txy).

Let m > n > 1. Then it follows that

qTxy, Trm) = q(T2n, Tong1) + @(TTng1, TTn2)
Freeennn, +q(Txm—1,Txm)
< (W + A" A YT, Tay)
= q(Tzo,Tz1) = 60 as n— oo.

1—-h

Thus, Lemma 2.2(3) shows that {Tz,} is a Cauchy sequence in X. Since
X is complete, there exists v € X such that Tz, — v as n — oo. Since T
is subsequentially convergent, {z,,} has a convergent subsequence. So, there are
xz* € X and {z,,} such that x,, — =* as i — co. Since T is continuous, we obtain
lim Tx,, — Tx*. The uniqueness of the limit implies that T2* = v. Then by (g3),
we have

n

Now by using (3.1), we have
qTzn, Tfz*) = q(Tfen1,Tfz")
= hq(Txp—1,Tx")
knfl
=

hl — kq(Txo, Txq)
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n

(3.3) =174

(TLL'Q, TLL'l)

By Lemma 2.2(1), (3.2) and (3.3), we have Tz* = T fz*. Since T is one to one,
then x* = fa*. Thus, z* is fixed point of f. Suppose that u = fu, then we have

(T fu,T fu)

kE(uw)g(Tu, Tu) + 1(uw)[g(T fu, Tu) + q(T fu, Tu))
= k(u)q(Tu,Tu) + l(u)[q(Tu, Tu) + ¢(Tu, Tu)]

= (k+20)(z0)q(Tu, Tu).

q(Tu, Tu)

IA

Since (k+21)(zo) < 1, Lemma 2.1(1) shows that ¢(T'u, T'u) = 6. Finally, suppose
there is another fixed point y* of f, then we have

q(Tz*,Ty*) = qTfa",Tfy")
= k(z")q(Tz", Ty") + U(a")[g(T fz", Ty") + ¢(T fy*, Tx")]
= k(@")g(Tz",Ty") +1(2")[g(Tz", Ty") + q(Ty", Tz")]
(k+20)(z®)q(Tz*, Ty").

Since (k+20)(z*) < 1, Lemma 2.1(1) shows that ¢(Tz*, Ty*) = 6. Also we have
q(Tz*,Tx*) = 0. Thus Lemma 2.2(1), Ta™ = Ty*. Since T is one to one, then
x* = fx*. Therefore, the fixed point is unique [

Corollary 3.1. Let (X,d) be a complete cone metric space, P a solid cone and
q be a c-distance on X. Let T : X — X be one to one, continuous function and
subsequentially convergent and f : X — X be a mapping. In addition, suppose that
there exists mapping k,l : X — [0,1) such that the following conditions hold:

(a) k(fz) < k(x),l(fz) <l(x), for all z € X;
(b) (k+2)(xz) <1 for allz € X;
(¢) ¢(T fx,Tfy) = k(z)q(T, Ty) + U(x)[g(T fz, Tx) + ¢(T fy, Ty)]

for all x,y € X. Then the map f has a unique fixed point x* € X and for any
x € X, iterative sequence {fx,} converges to the fized point. If u = fu, then
q(Tu, Tu) = 0.

Theorem 3.2. Let (X,d) be a complete cone metric space, P a solid cone and q
be a c-distance on X. Let T : X — X be an one to one, continuous function and
subsequentially convergent and f : X — X be a mapping. In addition suppose that
there exists mapping k,l,r: X — [0,1) such that the following conditions hold:

(a) k(fz) < k(z),l(fz) <l(x),r(fz) <r(z) for al z € X;
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(b) (k+20+2r)(z) <1 fordlz e X;
(¢) a(Tfx,Tfy) = k(x)a(Tz, Ty) + Ux)g(Tfy, Tx) + q(T fz, Ty)]
+r(@)g(Tfx, Tx) + q(T fy, Ty)]

for all x,y € X. Then the map [ has a unique fixed point x* € X and for any
x € X, iterative sequence {fx,} converges to the fized point. If u = fu, then
q(Tu, Tu) = 6.

Proof. Choose zg € X. Set z1 = fxg,z2 = fr1 = f220,...0n11 = f2n = [T 2g.
Then we have

q(T‘I’n«a T$n+1)

QT frn-1,Tfr,)

k(zn—1)q(Txn—1,Tzn) + Uzn—1)[¢(T frn, TTn-1)
+q(Tfxn_1,Txn)] + r(@n—1)[q(T frp—1,Txn_1)

+q(T fon, Tzn)]

k(frn—2)q(Txn—1,Tzn) + U frn—2)[g(TTns1, TTn—1)
+q(Txp, Txy)] + r(fen—2)[g(T2n, Txn-1) + ¢(TTpt1, Txy)]
k(@n—-2)q(Tp—1,T2y) + l(xn—2)[q(Txpn—-1,Txy)

+q(Txn, Trpi1)] + r(@n—2)[q(Trn-1,Try) + ¢(Trp, TTni1)],

PN

IA

continuing in this manner, we can get

q(Trn, Trny) = (k(xo) +(wo) +7(x0))q(Txn—1,Txyn) + (I(z0)
+T($O))Q(T$n7 TIHJrl)

and hence
k(o) + 1(xo) + (o)

1 —1U(zo) — r(z0)
hq(Txp—1,Txy)
th(T-rnf% Tznfl)
h"q(Txzo, Tx1),

Q(Txnv TZEn+1)

PN

Q(Txnfla T-In)

IA A

where h = W < 1. Note that,
o (o

(3.4) qTfrp—1,Tfxy) =qTxn, Trni1) = hq(Trp_1,Txy).

Let m > n > 1. Then it follows that

qTxn, Txy) = qTzn,Tepe1) + (T, Tenio) oo + q(Txm—1, Txy)
< (A" +h"T L+ R Y (T, Tay)
=< q(Txo,Tx1) >0 as n— oco.

1—-h
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Thus, Lemma 2.2(3) shows that {Tz,} is a Cauchy sequence in X. Since X
is complete, there exists v € X such that Tz,, — v as n — oo. Since T is subse-
quentially convergent, {x,} has a convergent subsequence. So there are z* € X
and {x,,} such that z,, — z* as i — oo. Since T is continuous, we obtain
limTz,, = Tx*. The uniqueness of the limit implies that Txz* = v. Then by
(g3), we have

n

(35) T 70y < (T 7).
Now by using (3.4), we have
q(Tzn, Tfz") = q(Tfrp-1,Tfz")
= hq(Tfon-,Ta”)
n—1
= hl — kq(Txo,Txl)
(3.6) =1 hq(Txo,Txl).

By Lemma 2.2(1), (3.5) and (3.6), we have Tz* = T fz*. Since T is one to one,

then x* = fx*. Thus, z* is a fixed point of f. Suppose that u = fu, then we have
q(Tu,Tu) = q(Tfu,T fu)
=< Ek(w)qg(Tu, Tu) + (w)[g(T fu, Tu) + ¢(T fu, Tu)]

+r(wa(T fu, Tu) + q(T fu, Tu)]
kE(w)q(Tu, Tu) + l(u)[g(Tu, Tu) + ¢(Tu, Tu))
r(u)la(Tu, Tu) + q(Tu, Tw)]
=< (k421 +2r)(z0)q(Tu, Tu).

Since (k + 21 + 2r)(zo) < 1, Lemma 2.1(1) shows that ¢(Tu,Tu) = 6. Finally,
suppose there is another fixed point y* of f, then we have

q(Tz",Ty*) = q(Tfz",Tfy")
k(z*)q(Ta™, Ta”) + 1(z*)[q(Tfy", Ta") + q(T f2*, Ty")]
+r(@*)lg(Tfz", Tx") + (T fy*, Ty")]
k(z®)q(Tz™, Ty") + 1(z")|g(Ty", Ta") + q(Tz", Ty")]
+r(a")[q(Tz", Ta") + q(Ty", Ty"))]

= (k+20)(a")q(Tx", Ty")

< (k4204 2r)(x")q(Tx™, Ty").
Since (k + 20 4 2r)(z*) < 1, Lemma 2.1(1) shows that ¢(Tz*,Ty*) = 0. Also we

have, ¢(Tz*,Tz*) = 6. Thus, by Lemma 2.2(1), Tz* = Ty*. Since T is one to one,
then x* = fx*. Therefore, the fixed point is unique. O

PN
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Theorem 3.3. Let (X,d) be a complete cone metric space, P a solid cone and q
be a c-distance on X. Let T : X — X be an one to one, continuous function and
subsequentially convergent and f : X — X be a mapping. In addition suppose that
there exists mapping k,r,1,t : X — [0,1) such that the following conditions hold:

(a) K(fx) < K@), r(f2) < r(@),1(f2) < 1(@),1(f2) < t(z) for all € X;
(b) (k+r+1+2t)(z) <1 for all x € X;

(c) ¢(Tfz,Tfy) 2 k(x)q(Tx,Ty) + r(x)q(T fz,Tz) + l(x)q(T fy, Ty)
+t(z)[q(Tfz, Ty) + q(T fy, Tx)]

for all x,y € X. Then map f has a unique fized point z* € X and for any r € X,
iterative sequence { fx,,} converges to the fized point. If u = fu, then q(Tu, Tu) = 6.

Proof. The proof of this theorem is same as Theorem 3.1. O
Now we give an example which illustrates our Theorems 3.1.

Example 3.1. Let E=Rand P={z € E,z > 0}, let X = [0, 1] and define a mapping
d: X x X = E by d(z,y) = |z — y|le* where ¢’ € E. Then (X, d) is complete cone metric
space. Define a mapping ¢ : X x X — E by q(z,y) = ye' for all z,y € X. Then q is
a c-distance on X. Define the mapping T, f : X — X by fz = % and T(x) = z* for
all z € X. Take mapping k,l : X — [0,1) by k(z) = £ and I(z) = £, for all z € X.
Observe that

(i) k(fz) :k(%) = (%“) = §<§+1> < (Y)(@+1)=k(z) for all x € X.

oc|)z=.‘“m

(i5) I(fz) = 1(%) = ( = g(;) < L(z) = (x), for all z € X.

(iii) (k+2)(z) =22 +2 =22z +1) <1, for all v € X.

Now, we have

q(T fz,T fy) T fye'
yS t

256

y+1\ 44
()
= k(z)q(Tz,Ty)
= k(z)q(Tz,Ty) + Uz)[g(T fz, Ty) + (T fy,Tz)].

IA

Therefore, all conditions of Theorem 3.1 are satisfied. Hence f has a unique fixed point
x = 0 with ¢(0,0) = 6.

Competing Interests
The authors declare that they have no competing interests.



376

A. K. Dubey, U. Mishra, N. K. Singh, M. D. Pandey

Authors’ contribution
All authors contributed equally and significantly in writing this article. All authors
read and approved final manuscript.

Acknowledgments
The authors are thankful to the learned referee for his/her deep observations and
their suggestions, which greatly helped us to improve the paper significantly.

10.

11.

12.

REFERENCES

Sahar Mohamed Ali Abou Bakr, Common Fized Point of Generalized Cyclic Banach
Algebra Contractions and Banach Algebra Kannan Types of Mappings on Cone Quasi
Metric Spaces, Jour. Non. Sci. Appl., 12(10) (2019), 644-655.

A. Beiranvand, S. Moradi, M. Omid and H. Pazandeh, Two Fized Point Theorem for
Special Mapping, arXiv:0903.1504v1[mathFA].

Y. J., Cho, R. Saadati and S. Wang, Common Fized point Theorems on Generalized
Distance in Ordered Cone Metric Spaces, Computer and Mathematics with Applica-
tions, 61(4) (2011), 1254-1260, http://doi.org/10.1016/j.camwa.2011.01.004.

A. K. Dubey, Reena Shukla and R. P. Dubey, Common Fized point Theorems for
T-Reich contraction Mapping in Cone metric spaces, Adv. Fixed Point Theory, 3(2)
(2013), 315-326.

A. K. Dubey, Rita Shukla and R. P. Dubey, Common Fized Point Theorems for Gen-
eralized T-Hardy-Rogers Contraction Mapping in Cone Metric Space, Adv. Ine. Appl.,
2014(18) (2014), 1-16.

A. K. Dubey, Rita Shukla and Ravi Prakash Dubey, Cone Metric Spaces and Fixed
Point Theorems of Generalized T-Zamfirescu Mappings, Int. Jour. Appl. Math. Re-
search, 2(1) (2013), 151-156.

A. K. Dubey, Rohit Verma and Ravi Prakash Dubey, Cone Metric Spaces and Fized
Point Theorems of Contractive Mapping for c-Distance, Int. Jour. Math. and its Appl.,
3(1) (2015), 83-88.

Anil Kumar Dubey and Urmila Mishra Some Fized Point Results for c-Distance in
Cone Metric Spaces, Non. Func. Anal. Appl., 22(2) (2017), 275-286.

Anil Kumar Dubey and Urmila Mishra Some Fized Point Results of Single Valued
Mapping for c-Distance in TVS Cone Metric Spaces, Filomat, 30(11) (2016), 2925—
2934, DOI 10.2298 /F11.1611925D.

Z. M. Fadail, A. G. B. Ahmad and L. Paunovic, New Fized Point Results of Single
Valued Mapping for c-Distance in Cone Metric Spaces. Abst. Appl. Anal., 2012, Article
ID 639713, 1-12, http://doi.org/10.1155/2012/639713.

7. M. Fadail and S. M. Abusalim, T'-Reich Contraction and Fized Point Rresults in
Cone Metric Spaces With c-Distance, Int. Jour. of Math. Anal., 11(8) (2017), 397405,
http://doi.org/10.12988 /ijma.2017, 7338.

L. G. Huang and X. Zhang, Cone metric Spaces and Fized Point Theorems
of Contractive Mappings, Jour. Math. Anal. Appl., 332(2),(2007), 1468-1476,
http://doi.org/10.1016/j.jmaa.2005.03.087.



13.

14.

15.

16.

New Fixed Point Results for T-contractive Mapping 377

G. Jungck, S. Radenovié, S. Radojevié¢ and V. Rakoéevié, Common Fized Point The-
orems for Weakly Compatible Pairs on Cone Metric Spaces, Fixed Point Theory and
Applications, 2009 (2009), Article ID 643840, http://doi.org/10.1155/2009/643840.

Zoran D. Mitrovic, Hassen Aydi, Mohd Salmi Md Noorani, Haitham Qawaqneh, The
Weight Inequalities on Reich Type Theorem in bb-metric Spaces, Jour. Math. Comp.
Sci., 19(1) (2019), 51-57.

W. Sintunavarat, Y. J. Cho and P. Kumam, Common Fized Theorems for c-Distance
in Ordered Cone Metric Spaces, Computer and Mathematics with Applications, 62(4)
2011, 1969-1978, http://doi.org/10.1016/j.camwa.2011.06.040.

S. Wang and B. Guo, Distance in Cone Metric Spaces and Common
Fized Point Theorems, Appl. Math. Letter, 24(10) (2011), 1735-1739,
http://doi.org/10.1016/j.am1.2011.04.031.

Anil Kumar Dubey
Department of Mathematics, Bhilai Institute of Technology,
Bhilai House, Durg (Chhattisgarh), India

anilkumardby@rediffmail.com

Urmila Mishra

Department of Mathematics,
Vishwavidyalaya Engineering College,
S.G.G. University Sarguja,
Ambikapur-497116 (Chhattisgarh), India

mishra.urmila@gmail.com

Nirmal Kumar Singh

Department of Mathematics, Bhilai Institute of Technology,
Bhilai House, Durg (Chhattisgarh), India
nirmall971singh@gmail.com

Mithilesh Deo Pandey
Department of Mathematics, Bhilai Institute of Technology,
Bhilai House, Durg (Chhattisgarh), India

mithileshpandey1978@gmail.com



