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Abstract. Real life applications arising in various fields of engineering and science
(e.g. electrical, civil, economics, dietary, etc.) can be modelled using a system of
linear equations. In such models, it may happen that the values of the parameters are
not known or they cannot be stated precisely and that only their estimation due to
experimental data or experts knowledge is available. In such a situation it is convenient
to represent such parameters by fuzzy numbers. In this paper we propose an efficient
optimization model for obtaining a weak fuzzy solution to fuzzy linear systems (FLS).
We solve some examples and we show that this method is always efficient.
Keywords. Experimental data; fuzzy numbers; fuzzy solution; fuzzy linear systems.

1. Introduction

Fuzzy numbers are one way to describe the vagueness and lack of precision of data.
The concept of fuzzy numbers and arithmetic operations with these numbers were
first introduced and investigated by Zadeh [4] and [13] Mizumoto and Tanaka [9]
and [10], Dubois and Prade [7] and Nahmias [11]. One of the major applications
using fuzzy number arithmetic is treating linear systems whose parameters all are
or partially represented by fuzzy numbers and called fuzzy linear systems (FLS).
Many authors have investigated the solution to fuzzy linear systems( [1], [2], [6] and
[8]) and all of them make use of the definition given in [8] for converting non-fuzzy
solutions to weak fuzzy solutions. In 1998, Friedman et al. [8] proposed a general
method for obtaining a solution of a n × n FLS, whose coefficient matrix is crisp
and the right-hand side column is an arbitrary fuzzy number vector. They used the
embedding method given in [5] and replaced the original n × n FLS by a 2n × 2n
crisp linear system (CLS). The new obtained system was solved and the solution
vector was called either a strong fuzzy solution or a weak fuzzy solution to the
original fuzzy system.
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Hitherto, many researchers have used Friedman et al.’s method. To solve 2n× 2n
CLS various methods have been employed along with and the mentioned definition
in [8]. All researches took it for granted that the weak fuzzy solution defined by
Friedman et al. is always a fuzzy number vector, i.e. all of the vector’s components
are fuzzy numbers.
Afterwards, T.Allahviranloo et al. [3] showed in an example that Friedman et al.’s
weak solution may not be a fuzzy vector.
In this paper, we proposed a new method which guarantees that a weak fuzzy
solution obtained by this method is always a fuzzy number vector.

2. Fuzzy Linear Systems

We represent an arbitrary fuzzy number as follows.

Definition 2.1. [3] The parametric form of an arbitrary fuzzy number ã is pre-
sented by an ordered pair of functions (a(r), a(r)), 0 ≤ r ≤ 1, which satisfy the
following requirements:

• a(r) is a bounded left-continuous non-decreasing function over [0, 1].

• a(r) is a bounded left-continuous non-increasing function over [0, 1].

• a(1) = a(1).

• a(r) ≤ a(r), 0 ≤ r ≤ 1.

Remark 2.1. If t ∈ (0, 1) be a fixed number and

a(r) =

{

α1 + β1r, 0 ≤ r ≤ t;

α′

1 + β′

1r, t ≤ r ≤ 1;
, a(r) =

{

α2 − β2r, 0 ≤ r ≤ t;

α′

2 − β′

2r, t ≤ r ≤ 1.

then based on Definition 2.1, ã = (a(r), a(r)) is a fuzzy number iff

α1 + β1t = α
′

1 + β
′

1t,

α2 − β2t = α
′

2 − β
′

2t,

α
′

1 + β
′

1 = α
′

2 − β
′

2,

α1 ≤ α2, α
′

1 ≤ α
′

2,

β1, β
′

1, β2, β
′

2 ≥ 0.(2.1)

Example 2.1. [3] According to Definition 2.1, the number ã = (a(r), a(r)) where

a(r) =

{

8r − 5, 0 ≤ r ≤ 1

2
;

4r − 3, 1

2
≤ r ≤ 1;

and

a(r) =

{

4− 4r, 0 ≤ r ≤
1

2
;

3− 2r, 1

2
≤ r ≤ 1;

is a fuzzy number which satisfies the conditions of the remark 2.1.
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Definition 2.2. [8] The following n× n linear system is called an FLS:

k11x1 + k12x2 + ...+ k1nxn = b̃1,

k21x1 + k22x2 + ...+ k2nxn = b̃2,

...

kn1x1 + kn2x2 + ...+ knnxn = b̃n,(2.2)

where the coefficients matrix A = (kij), 1 ≤ i, j ≤ n, is a crisp n × n matrix and

b̃i, 1 ≤ i ≤ n, are fuzzy numbers.

Definition 2.3. [8] A fuzzy number vector (x1, x2, . . . , xn)
T is given by xi =

(xi(r), xi(r)), 1 ≤ i ≤ n, 0 ≤ r ≤ 1, is called a solution of the FLS (2.2) if

n
∑

j=1

kijxj =

n
∑

j=1

kijxj = bi,

n
∑

j=1

kijxj =

n
∑

j=1

kijxj = bi,(2.3)

according to the proposed model by Friedman et al. we convert the n×n FLS (2.2)
to the following 2n× 2n CLS:

TX = B,(2.4)

where

X =
(

x1, . . . , xn,−x1, . . . ,−xn

)t
, B =

(

b1, . . . , bn,−b1, . . . ,−bn
)t
,

and Tij determined as follows:

kij ≥ 0 ⇒ Tij = kij , Ti+n,j+n = kij ,

kij < 0 ⇒ Ti,j+n = −kij , Ti+n,j = −kij ,

and any Tij which is not determined by the above equations is zero. Having calcu-
lated X which solves Eq.(2.4) and on the assumption T is nonsingular, Friedman et
al. defined the ”fuzzy solution” to the original system given by Eqs. (2.2) as below.

Definition 2.4. [8] Let the unique solution to CLS (2.4) be denoted by:

X = {(xi(r),−xi(r)) , 1 ≤ i ≤ n} ,

then the fuzzy number vector W = {(wi(r), wi(r)), 1 ≤ i ≤ n} defined by

wi(r) = min {xi(r), xi(r), xi(1), xi(1)} ,

wi(r) = max {xi(r), xi(r), xi(1), xi(1)} ,

is called the fuzzy solution of (2.4).
If (xi(r), xi(r)), 1 ≤ i ≤ n, 0 ≤ r ≤ 1, are all fuzzy numbers then wi(r) =
xi(r), wi(r) = xi(r), 1 ≤ i ≤ n, and W is called a strong fuzzy solution. Otherwise,
W is called a weak fuzzy solution.
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It should be noted that replacing xi and xi by wi and wi does not give the exact
equality in (2.3) that is, a weak solution is not a solution to (2.2). Therefore, a
weak solution does not satisfy the original problem (2.2). Based on Definition 2.4,
Friedman et al. claimed that their weak solution always produces a fuzzy number
vector.
T.Allahviranloo et al. in [3] gave an example that this claim is not always true.

Example 2.2. [3] consider the following FLS:






x1 + x2 = b̃1,

x1 + 2x2 = b̃2,

where
b̃1 = (b1(r), b1(r)), b̃2 = (b2(r), b2(r)),

and

b1(r) =







8r − 14, 0 ≤ r ≤ 1

2
,

2r − 11, 1

2
≤ r ≤ 1,

, b1(r) =







−1− 13r, 0 ≤ r ≤ 1

2
,

−6− 3r, 1

2
≤ r ≤ 1,

b2(r) =







12r − 24, 0 ≤ r ≤
1

2
,

6r − 21, 1

2
≤ r ≤ 1,

, b2(r) =







−2− 18r, 0 ≤ r ≤
1

2
,

−7− 8r, 1

2
≤ r ≤ 1.

The authors in [3] solved this system and obtained the following solution:

x1(r) =







4r − 4, 0 ≤ r ≤ 1

2
,

−2r − 1, 1

2
≤ r ≤ 1,

, x1(r) =







−8r, 0 ≤ r ≤ 1

2
,

2r − 5, 1

2
≤ r ≤ 1,

and x2(r) = 4r − 10, x2(r) = −1− 5r.

Obviously, x2 is a fuzzy number and x1 is not a fuzzy number(see figure 3.1). By
use of Definition 2.4, the vector W = (w̃1, w̃2) must be a fuzzy number, but we have

w1(r) =































4r − 4, 0 ≤ r ≤ 1

4
,

−3, 1

4
≤ r ≤ 3

8
,

−8r, 3

8
≤ r ≤ 1

2
,

2r − 5, 1

2
≤ r ≤ 1,

, w1(r) =



















−8r, 0 ≤ r ≤ 1

3
,

4r − 4, 1

3
≤ r ≤ 1

2
,

−2r − 1, 1

2
≤ r ≤ 1,

and w2(r) = 4r − 10, w2(r) = −1− 5r.
It is clear that w̃2 = (w2, w2) is a fuzzy number, whereas w̃1 = (w1, w1) is not a
fuzzy number. In fact w1(r) and w1(r) are not non-decreasing and non-increasing
functions over [ 3

8
, 1

2
] and [ 1

3
, 1

2
], respectively. In the next section we propose an

optimization model that can be applied for approximation solution to FLS (2.2)
which is always a fuzzy number vector. Typically, we solve the example 2.2 and
show that the solution which is obtained by this method is a fuzzy number vector.
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3. Proposed Model

In this section, we show that the approximation solution of FLS (2.2) with this
method becomes a quadratic programming(QP) problem.
A general form of QP problem is as follows:

min q(x) =
1

2
xTGx+ xT c

s.t.

Ax ≤ b,(3.1)

where G is a symmetric n × n matrix and A is the m × n matrix, jacobian of
constraints, and b is a vector in Rem. We solve the problem (3.1) by use of the
active set method [12].

Definition 3.1. Let v = (v(r), v(r)) where

v(r) =

{

a1 + b1r, 0 ≤ r ≤ t,

a′1 + b′1r, t ≤ r ≤ 1,
, v(r) =

{

a2 − b2r, 0 ≤ r ≤ t,

a′2 − b′2r, t ≤ r ≤ 1,

which is not satisfied with the definition 2.1, i.e. v is not a fuzzy number and we
want to approximate it with a fuzzy number u = (u(r), u(r)), where

u(r) =

{

α1 + β1r, 0 ≤ r ≤ t,

α′

1 + β′

1r, t ≤ r ≤ 1,
, u(r) =

{

α2 − β2r, 0 ≤ r ≤ t,

α′

2 − β′

2r, t ≤ r ≤ 1.

We say that u is an approximation for v iff it is a solution of the following opti-
mization problem:

min ‖p− q‖2

s.t.

α1 + β1t = α′

1 + β′

1t,

α2 − β2t = α′

2 − β′

2t,

α′

1 + β′

1 = α′

2 − β′

2,

β1, β
′

1, β2, β
′

2 ≥ 0,

α1 ≤ α2,

α1 ≤ α2,(3.2)

where p = (α1, β1, α
′

1, β
′

1, α2, β2, α
′

2, β
′

2), q = (a1, b1, a
′

1, b
′

1, a2, b2, a
′

2, b
′

2) are corre-
sponding vectors with v and u respectively.

Remark 3.1. If we rewrite the problem (3.2) into a matrix form then we have:

min f(x) =
1

2
x
T
Gx+ x

T
c

s.t.

Ax ≤ b,(3.3)
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where G = 2I8×8 (I is identity matrix), c = −2 [a1, b1, a
′

1, b
′

1, a2, b2, a
′

2, b
′

2]
t
and

A =

































0 0 1 1 0 0 −1 1
0 0 −1 −1 0 0 1 −1
1 t −1 −t 0 0 0 0
−1 −t 1 t 0 0 0 0
0 0 0 0 −1 t 1 −t

0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0
1 0 0 0 −1 0 0 0
0 0 1 0 0 0 −1 0

































.

Now, using the model (3.3) for the x2 in the example 2.2 and solving it with the
active-set method, the weak fuzzy solution z = (z1, z2) is obtained as follows:

z1(r) =

{

−4.8 + 3.6r, 0 ≤ r ≤ 1

2
,

−3, 1

2
≤ r ≤ 1,

, z1(r) =

{

0.8− 7.6r, 0 ≤ r ≤ 1

2
,

−3, 1

2
≤ r ≤ 1,

and
z2 = (4r − 10,−1− 5r).

By substituting z in the example 2.2 we have:

{

z1 + z2 = ỹ1,

z1 + 2z2 = ỹ2,

where
ỹ1 = (y1(r), y1(r)), ỹ2 = (y2(r), y2(r))

and

y1(r) =

{

−12.6r− 0.2, 0 ≤ r ≤ 1

2
,

−5r − 4, 1

2
≤ r ≤ 1,

y1(r) =

{

7.6r − 14.8, 0 ≤ r ≤ 1

2
,

4r − 13, 1

2
≤ r ≤ 1.

(3.4)

y2(r) =

{

−17.6r− 1.2, 0 ≤ r ≤ 1

2
,

−10r− 5, 1

2
≤ r ≤ 1,

y2(r) =

{

11.6r− 24.8, 0 ≤ r ≤ 1

2
,

8r − 23, 1

2
≤ r ≤ 1.

(3.5)

We can see x1 and its fuzzy approximation, z1, in Figure 3.2

Also, Figure 3.3 and Figure 3.4 show an error in the system.
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Fig. 3.1: nonfuzzy number x1
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Fig. 3.2: The fuzzy number z1 and nonfuzzy number x1
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Fig. 3.3: comparing ỹ1 and b̃1
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Fig. 3.4: comparing ỹ2 and b̃2
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4. Conclusion

In this paper, a new method was presented for obtaining the weak fuzzy solution
to fuzzy linear systems. This method can be generalized for any number that is
not fuzzy and we can approximate it with the fuzzy number by solving a quadratic
programming problem.

REFERENCES

1. S. Abbasbandy and M. Alavi: A method for solving fuzzy linear systems. Iranian J.
of Fuzzy Sys. 2 (2005), 37–43.

2. T. Allahviranloo: Numerical methods for fuzzy system of linear equations. Applied
Math. and Computation. 155 (2004), 493–502.

3. T. Allahviranloo and M. Ghanbari and A. A. Hosseinzadeh and E. Haghi and
R. Nurae: A note on ” Fuzzy linear systems. Fuzzy Sets and Sys. 177 (2011), 87–92.

4. S. S. L. Chang and L. A. Zadeh: On fuzzy mapping and control. IEEE Trqns.
Systems Man Cybernet. 2 (1972), 30–34.

5. W. Cong-Xin and M. Ming: Embedding problem of fuzzy number space: Part I. Fuzzy
Sets and Sys. 44 (1991), 33–38.

6. M. Dehghan and B. Hashemi: Iterative solution of fuzzy linear systems. Applied
Math. and Computation. 175 (2006), 645–674.

7. D. Dubios and H. Prade: Operations on fuzzy numbers. J.Systems Sci. 9 (1978),
13-26.

8. M. Friedman and M. Ming and A. Kandel: Fuzzy linear systems, Fuzzy Sets and
Sys. 96 (1998), 201–209.

9. M. Mizumoto and K. Tanaka: The four operations of arithmetic on fuzzy numbers.
Systems Comput. Controls. 7 (1976), 73–81.

10. M. Mizumoto and K. Tanaka: Some properties of fuzzy numbers. Asvances in fuzzy
set theory and Applications. (1979), 156–164.

11. S. Nahmias: Fuzzy variables. Fuzzy Set and Sys. 2 (1978), 97–111.

12. J. Nocedal and S. J. Wright: Numerical Optimization (2nd ed.). Berlin, New York:
Springer-Verlag, 2006.

13. L. A. Zadeh: The concept of a linguistic variable and its application to approximate
reasoning. Inform. Sci. 8 (1975), 199–249.

Abbas Akrami(Corresponding Author)

Faculty of Science

Department of Science,School of Mathematical science

University of Zabol, Zabol, Iran

akrami.ab@uoz.ac.ir



390 A. Akrami and M. Erfanian

Majid Erfanian

Faculty of Science

Department of Science,School of Mathematical science

University of Zabol, Zabol, Iran

erfaniayn@uoz.ac.ir


