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Abstract. Two different random environment INAR models of higher order, precisely
RrNGINARmax(p) and RrNGINAR1(p), are presented as a new approach to modeling
non-stationary nonnegative integer-valued autoregressive processes. The interpretation
of these models is given in order to better understand the circumstances of their ap-
plication to random environment counting processes. The estimation statistics, defined
using the Conditional Least Squares (CLS) method, is introduced and the properties
are tested on the replicated simulated data obtained by RrNGINAR models with dif-
ferent parameter values. The obtained CLS estimates are presented and discussed.
Keywords: Random environment; INAR(p); RrNGINAR; negative binomial thinning;
geometric marginals; conditional least squares.

1. Introduction

One of the latest and most significant approaches to the modeling of count processes
was designed by introducing integer-valued autoregressive (INAR) models almost
simultaneously by [7] and [2]. This breakthrough in the analysis of integer-valued
time series was a consequence of using a new thinning operator. Namely, the de-
terministic part of a process random variable was calculated using the realization
of a Bernoulli counting sequence limited by the process realization in the preceding
moment. This way of modeling was simply more natural and intuitively justified,
so it led to much better results in fitting the counting processes than other models
known at that time. This was followed by many modifications and generalizations.
Some authors considered the thinning operator ([3], [6], [17, 18] and [13]), while
others focused on marginal distributions ([8], [1], [4] and [5]). Also, as an alter-
native to the NGINAR(1) process from [13], a zero-inflated NGINAR(1) process
was considered, which is given in [14]. In order to obtain more suitable models for
processes of higher correlation between distant elements, INAR models of higher
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order were introduced. The most operative approach was developed in [16], where
Xn as a process value at time n was defined using p possible preceding random
values Xn−i, for i ∈ {1, 2, . . . , p}, each with a certain probability. This inspired the
construction of models presented in [10] and [9]. So, the evolution of INAR models
continued.

All the models listed above corresponded only to stationary counting processes.
In many applications, this was found as a frequent limitation. Recently, random
environment INAR models, whose marginal distribution depends on random circum-
stances, have been introduced (more details about these models are given below).
However, the conditional least squares (CLS) estimators of random environment
INAR models parameters have not been considered so far. Therefore, in this pa-
per, we obtain CLS estimators and test them on the simulated values from the
corresponding random INAR model.

Using as a starting point some ideas from [15], [11] defined the r-states random
environment integer-valued autoregressive process of order 1, denoted as (RrINAR(1)).
It is given by

Xn(Zn) =

Xn−1(Zn−1)∑

i=1

Ui + εn(Zn−1, Zn), n ∈ N,

where

Xn(Zn) =

r∑

z=1

Xn(z)I{Zn=z},

εn(Zn−1, Zn) =

r∑

z1=1

r∑

z2=1

εn(z1, z2)I{Zn−1=z1,Zn=z2},

{Ui}, i ∈ N, is a counting sequence of independent and identically distributed
(i.i.d.) random variables generating a thinning operator, {Zn}, n ∈ N0 is an r-
states random environment process defined as a Markov chain taking values in
Er= {1, 2, . . . , r}. Further, {εn(i, j)}, n ∈ N0, i, j ∈ Er, are sequences of i.i.d. ran-
dom variables, for which {Zn}, {εn(1, 1)}, {εn(1, 2)}, . . . , {εn(r, r)}, are mutually
independent, for all n ∈ N0, and Zm and εm(i, j) are independent of Xn(l), for
n < m and any i, j, l ∈ Er. In order to obtain more efficient INAR modeling, a new
random environment INAR(1) process with one-step-ahead determined marginal
distribution was introduced in [11]. As can be seen, this process is non-stationary,
which makes it more applicable in practice. Adapting the process to more dynamical
counting data, the authors specify geometric marginals and the negative binomial
thinning operator α∗, which was utilized for construction of the NGINAR(1) model
introduced in [13]. This resulted in the r-states random environment INAR(1)
process with determined (zn–guided) geometric marginal distribution based on the
negative binomial thinning operator (RrNGINAR(1)) given by

(1.1) Xn(zn) = α ∗Xn−1(zn−1) + εn(zn−1, zn), n ∈ N,
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where α ∈ (0, 1), the counting sequence {Ui}, i ∈ N, incorporated in α∗, makes a
sequence of i.i.d. random variables with the probability mass function (pmf) given
by

P (Ui = u) =
αu

(1 + α)u+1
, u ∈ N0,

and finally the process pmf is defined as

(1.2) P (Xn(zn) = x) =
µx
zn

(1 + µzn)
x+1

, x ∈ N0,

where µzn ∈ {µ1, µ2, . . . , µr} and r∈ N.

1.1. Interpretation of the random environment INAR processes of

higher order

Continuing the efforts towards the optimal fitting of the counting processes, models
of higher order were introduced in [12]. Two approaches were used, which we discuss
in what follows.

Definition 1. Let zn be the realization of a random environment process {Zn} at

the moment n > 0. We say that {Xn(zn)}n∈N0 is an INAR process with r-states

random environment guided geometric marginals based on the negative binomial

thinning operator of maximal order p (RrNGINARmax(p)), p ∈ N, if the random

variable Xn(zn) is defined as

(1.3) Xn(zn) =





α ∗Xn−1(zn−1) + εn(zn−1, zn), w.p. φ
(pn)
1 ,

α ∗Xn−2(zn−2) + εn(zn−2, zn), w.p. φ
(pn)
2 ,

...
...

α ∗Xn−pn
(zn−pn

) + εn(zn−pn
, zn), w.p. φ

(pn)
pn ,

for n > 1, where

pn =

{
p, p∗n ≥ p,

p∗n, p∗n < p,

p∗n = max {i ∈ {1, 2, . . . , n} : zn−1 = zn−2 = · · · = zn−i} and the following condi-

tions are satisfied:

1. φ
(pn)
i > 0, i ∈ {1, 2, . . . , pn},

∑pn

i=1 φ
(pn)
i = 1,

2. α ∈ (0, 1) and the counting sequence {Ui}i∈N of the negative binomial thinning

operator α∗ has pmf P (Ui = u) = αu

(1+α)u+1 , u ∈ {0, 1, 2, . . .},

3. P (Xn(zn) = x) =
µx
zn

(1+µzn )x+1 , x ∈ {0, 1, 2, . . .}, where µzn ∈ {µ1, µ2, . . . , µr},

µi > 0, i ∈ {1, 2, . . . , r} and r ∈ N is the number of states of the random environ-

ment process {Zn},

4. for fixed i, j ∈ Er = {1, 2, .., r}, {εn(i, j)}n∈N is a sequence of i.i.d. random

variables,
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5. {Zn}, {εn(1, 1)}, {εn(1, 2)}, . . . , {εn(r, r)} are mutually independent sequences

of random variables,

6. Xn(l) is independent of Zm and εm(i, j), for 0 ≤ n < m and any i, j, l ∈ Er.

Definition 2. Let zn be the realization of a random environment process {Zn} at

the moment n > 0. We say that {Xn(zn)}n∈N0 is an INAR process with r-states

random environment guided geometric marginals based on the negative binomial

thinning operator of order p (RrNGINAR1(p)) if the random variable Xn(zn) is

defined as

Xn(zn) =





α ∗Xn−1(zn−1) + εn(zn−1, zn), w.p. φ
(pn)
1 ,

α ∗Xn−2(zn−2) + εn(zn−2, zn), w.p. φ
(pn)
2 ,

...
...

α ∗Xn−pn
(zn−pn

) + εn(zn−pn
, zn), w.p. φ

(pn)
pn ,

for n > 1, where

pn =

{
p, p∗n ≥ p,

1, p∗n < p,

p∗n = max {i ∈ {1, 2, . . . , n} : zn−1 = zn−2 = · · · = zn−i} and conditions 1 − 6 from

Definition 1 are satisfied.

Since the distribution parameter values of the processes may vary over time, it
could happen that each of the equations (1.3) and (2), at a certain moment, contains
differently distributed Xn random variables, which would make the models pretty
complicated to work with. In order to avoid this, each of these models is defined
with the ability of changing the number of possibilities (possible expressions) on
the right side of the equation. So, the process introduced by Definition 1 has a
fully variable order, possibly taking all the values from 1 to p. When the process
random state changes, then the order of the process becomes equal to 1 and then
starts rising successively, until it reaches p (when the process takes shape of the
model of fixed order), or the state changes again. However, for the process given by
Definition 2, the order takes one of two possible values. Namely, every time the state
changes, the order becomes equal to 1 and it remains the same until there is a series
of enough (p) previous process elements corresponding to the same state, when the
order becomes equal to p. By virtue of these qualities, these processes are the most
suitable for counting, for example, some elements of the observed unstable system or
some random events recorded in a variable environment. In each case, certain area
conditions or random circumstances may affect the dynamics of the interactions
in the observed populations, which further affects the values of counts. So, the
finite number of possible combinations of circumstances in which the population is
observed is represented by the finite number (r) of random states and is modeled
by the Markov process {Zn}. Its realization {zn} directly determines the value
of the selected marginal distribution. Hence, while being in the same state zn,
the process behaves as a stationary one with the marginal parameter value µzn .
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Nevertheless, its non-stationarity comes from changing its mean parameter value
µzn , which is directly guided by {zn}. So, the counting process is basically piece-
by-piece stationary, where each piece is as long as the random process {Zn} remains
in the same state, i.e. the population circumstances do not change.

2. Conditional least squares estimators

Let {Xn(zn)} be the RrNGINARmax(p) or RrNGINAR1(p) time series model.
In order to apply Theorem 2 from [12] we have to suppose conditions from that
theorem. Let µ1 > 0, µ2 > 0, . . . , µr > 0 and let us suppose that 0 ≤ α ≤

min
{

µl

1+µk
, k, l ∈ Er

}
, zn = j and zn−1 = i, for i, j ∈ Er. Now, recalling the men-

tioned theorem, the conditional expectation of the random variable Xn for given
Xn−1, Xn−2, ..., Xn−pn

is

E(Xn|Hn−1) = µj − αµi + α

pn∑

l=1

φ
(pn)
l Xn−l,

whereHn−1 represents σ-algebra generated byXn−1, Xn−2, .... Now, if we define

new parameters as θ
(zn)
l = αφ

(pn)
l , for l ∈ {1, 2, ..., pn}, then α =

∑pn

l=1 θ
(pn)
l and

consequently

E(Xn|Hn−1) = µj − αµi + θ
(pn)
1 Xn−1 + θ

(pn)
2 Xn−2 + ...+ θ(pn)

pn
Xn−pn

= µj −

pn∑

l=1

θ
(pn)
l µi + θ

(pn)
1 Xn−1 + θ

(pn)
2 Xn−2 + ...+ θ(pn)

pn
Xn−pn

.

Let k ∈ Er, pn = p and Jk = {n ∈ N|Xn, Xn−1, ..., Xn−pk
∈ U (k)}, where U (k)

represents the process subsample which consists of all the elements corresponding
to the same state k. In conducting the conditional least squares (CLS) estimation,
the aim is to minimize the following sum of squares
(2.1)

Q
(k)
N (a) =

∑

n∈Jk

(
Xn − µj −

p∑

l=1

θ
(p)
l µi − θ

(p)
1 Xn−1 − θ

(p)
2 Xn−2 − ...− θ(p)p Xn−p

)2

,

with respect to the vector a = (θ
(p)
1 , θ

(p)
2 , ..., θ

(p)
p , µk)

′. This is achieved by solving
the system ∂QN

∂θ
(p)
1

= 0, ∂QN

∂θ
(p)
2

= 0, ..., ∂QN

∂θ
(p)
p

= 0, ∂QN

∂µk
= 0. Since the summation in the

previous expression is over the set Jk, it holds that Xn, Xn−1, ..., Xn−p ∈ U (k) and
zn = zn−1 = ... = zn−p = k. So, considering the process on the subsample U (k), we
deal with the CGINAR(p) model introduced in [10]. Therefore, the corresponding
results and equations obtained for the CGINAR(p) model can be used here. Thus,
we have

(2.2) µk,p =
1

1−
∑p

i=1 θ
(k)
i,p

(
X

(0)
−

p∑

i=1

θ
(k)
i,p X

(i)

)
,
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where

X
(i)

=
1

|Jk|

∑

n∈Jk

Xn−j, j ∈ {0, 1, ..., p}.

Replacing (2.2) in (2.1) the system becomes

(2.3)

p∑

j=1

θ
(p)
j γ̂∗(|l − j|) = γ̂∗(l), l = 1, 2, ..., p,

where

γ̂∗(|l − j|) =
1

|Jk|

∑

n∈Jk

Xn−lXn−j −X
(l)
X

(j)
.

Solving it gives us θ̂
(p)
j =

D∗

j

D∗
, j = 1, 2, ..., p, where D∗

j and D∗ are the appropriate
determinants from Kramer’s method. Substituting the last equations in (2.2) we
get

µ̂CLS
k =

1

1−
∑p

i=1
D∗

i

D∗


 1

|Jk|

∑

n∈Jk

Xn −

p∑

j=1

D∗
i

D∗
·

1

|Jk|

∑

n∈Jk

Xn−j


 .

Therefore,

α̂(k),CLS =

∑p
j=1 D

∗
j

D∗
,(2.4)

φ̂
(k),CLS
i,p =

D∗
i∑p

j=1 Dj

, i ∈ {1, 2, ..., p}.

Finally, using the preceding results for each k ∈ {1, 2, . . . , r}, it is only left to calcu-
late the weighted thinning parameter and the weighted probabilities, respectively,
as

α̂CLS =

∑r
k=1 |Jk|α̂

(k),CLS

∑r
k=1 |Jk|

,(2.5)

φ̂CLS
i,p =

∑r
k=1 |Jk|φ̂

(k),CLS
i,p∑r

k=1 |Jk|
,(2.6)

which represent the required estimators.

Based on Lemma 6, from [10], the estimators α̂CLS , µ̂CLS
k and φ̂CLS

i,p are asymp-
totically almost surely equivalent to the corresponding Yule-Walker estimators. So,
the strong consistence of the Yule-Walker estimators, proved in [12], implies the
strong consistence of the here observed CLS estimators.
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3. Simulation results

In this section we try to confirm the correctness of the introduced CLS estimators.
With that in mind, we have simulated 100 replicates of realizations of the processes
RrNGINARmax(p) and RrNGINAR1(p), each of size 10000. Parameter values for
α, p, r,µ,pmat and φ are chosen and then the corresponding models are simulated.
The transition probability matrix of the random environment process is denoted by
pmat, and µ is a vector of means. In the case of RrNGINARmax(p) model, the pnth

row, pn ∈ {2, . . . , p}, of the matrix φ contains probabilities φ
(pn)
i , i ∈ {1, 2, . . . , pn}

and in the case of RrNGINAR1(p) model, the last row represents probabilities

φ
(p)
i , i ∈ {1, 2, . . . , p}. The simulated realization of random environment process,

{zn}, is obtained using pmat and then the sequence {pn} is specified based on the
corresponding definition. We have considered six different cases of chosen parameter
values and presented all the results in the appropriate tables. Also, we have decided
for the same parameter values as in the case of Yule-Walker parameter estimation
discussed in [12]. There are three tables. In the first one we have p = 2, r = 2,
in the second p = 3, r = 2 and in the last p = 3, r = 3. In the first table, for
r = p = 2 we considered different choices of other parameters. The larger α gives

better estimates for probabilities φ
(pn)
i . The higher diagonal values of pmat ensures

longer subsamples and, consequently, better results. Also, the higher values of p
and r implies more subsamples and, therefore, a larger number of them and smaller
sizes, which gives us worse results for the same samples size. Finally, for the small
sample sizes it is possible to have very small subsamples and to get bad results.

Table 3.1: r = 2, p = 2

True values µ = (1, 2), α = 0.3, φ =

[
1 0
0.6 0.4

]
, pmat =

[
0.8 0.2
0.2 0.8

]

n µ̂CLS
1 µ̂CLS

2 α̂CLS φ̂CLS
2,1 φ̂CLS

2,2 α̂CLS φ̂CLS
2,1 φ̂CLS

2,2

500 1.0100 1.9964 0.3359 0.6900 0.3100 0.2963 0.6207 0.3793

SE 0.1195 0.2214 0.1751 0.2451 0.2451 0.1557 0.3836 0.3836

1000 1.0119 1.9976 0.3307 0.6248 0.3752 0.2896 0.6127 0.3873

SE 0.0797 0.1373 0.1176 0.1364 0.1364 0.1187 0.1229 0.1229

5000 1.0024 2.0047 0.3026 0.6048 0.3952 0.2978 0.5984 0.4016

SE 0.0354 0.0600 0.0478 0.0595 0.0595 0.0565 0.0579 0.0579

10000 1.0016 2.0072 0.3020 0.5990 0.4010 0.2956 0.6029 0.3971

SE 0.0249 0.0429 0.036 0.0386 0.0386 0.0406 0.0393 0.0393
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Table 3.2: r = 2, p = 2

True values µ = (1, 2), α = 0.15, φ =

[
1 0
0.5 0.5

]
, pmat =

[
0.8 0.2
0.2 0.8

]

n µ̂CLS
1 µ̂CLS

2 α̂CLS φ̂CLS
2,1 φ̂CLS

2,2 α̂CLS φ̂CLS
2,1 φ̂CLS

2,2

500 0.99609 2.0089 0.1735 -0.3945 1.3945 0.1679 0.2434 0.7566

SE 0.1014 0.1588 0.1451 15.064 15.064 0.1389 2.2148 2.2148

1000 0.9977 2.0143 0.1475 0.5418 0.4582 0.1547 0.3885 0.6115

SE 0.0666 0.1259 0.0966 0.4849 0.4849 0.0878 0.9751 0.9751

5000 1.0045 1.9993 0.1505 0.4970 0.5030 0.1508 0.4893 0.5107

SE 0.0360 0.0618 0.037 0.1008 0.1008 0.0384 0.1113 0.1113

10000 1.0024 1.9981 0.1494 0.5039 0.4961 0.1514 0.4964 0.5036

SE 0.0252 0.0425 0.027 0.0702 0.0702 0.0297 0.0682 0.0682

Table 3.3: r = 2, p = 2

True values µ = (1, 2), α = 0.3, φ =

[
1 0
0.6 0.4

]
, pmat =

[
0.5 0.5
0.5 0.5

]

n µ̂CLS
1 µ̂CLS

2 α̂CLS φ̂CLS
2,1 φ̂CLS

2,2 α̂CLS φ̂CLS
2,1 φ̂CLS

2,2

500 0.9957 2.0003 0.3322 0.7480 0.252 0.3075 0.6919 0.3081

SE 0.0996 0.1919 0.1192 2.8876 2.8876 0.0988 0.5416 0.5416

1000 0.9928 2.0004 0.3108 0.6208 0.3792 0.3036 0.6556 0.3444

SE 0.0732 0.1345 0.0892 0.5292 0.5292 0.0837 0.3017 0.3017

5000 1.0019 2.0008 0.3037 0.5973 0.4027 0.2976 0.5931 0.4069

SE 0.0414 0.06231 0.0380 0.0894 0.0894 0.0387 0.0818 0.0818

10000 0.9993 2.0030 0.3020 0.5904 0.4096 0.2985 0.5929 0.4071

SE 0.0245 0.0418 0.0264 0.0702 0.0702 0.0284 0.0633 0.0633

Table 3.4: r = 2, p = 2

True values µ = (4, 5), α = 0.5, φ =

[
1 0
0.6 0.4

]
, pmat =

[
0.7 0.3
0.3 0.7

]

n µ̂CLS
1 µ̂CLS

2 α̂CLS φ̂CLS
2,1 φ̂CLS

2,2 α̂CLS φ̂CLS
2,1 φ̂CLS

2,2

500 3.9973 5.0266 0.5277 0.6094 0.3906 0.5151 0.6108 0.3892

SE 0.4207 0.5014 0.1589 0.1595 0.1595 0.1364 0.1420 0.1420

1000 3.9776 5.0367 0.5166 0.5973 0.4027 0.5109 0.5927 0.4073

SE ] 0.3344 0.3312 0.1009 0.0975 0.0975 0.1100 0.0935 0.0935

5000 3.9923 5.0179 0.4960 0.5944 0.4056 0.5031 0.5867 0.4133

SE 0.1340 0.1635 0.0559 0.0417 0.0417 0.0638 0.0513 0.0513

10000 3.9947 5.0157 0.4997 0.5931 0.4069 0.5050 0.5935 0.4065

SE 0.0985 0.1157 0.0398 0.0285 0.0285 0.0428 0.0391 0.0391
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Table 3.5: r = 2, p = 3

True values µ = (1, 2), α = 0.3, φ =




1 0 0
0.6 0.4 0
0.5 0.3 0.2


, pmat =

[
0.8 0.2
0.2 0.8

]

n µ̂CLS
1 µ̂CLS

2 α̂CLS φ̂CLS
2,1 φ̂CLS

2,2 φ̂CLS
3,1 φ̂CLS

3,2 φ̂CLS
3,3 α̂CLS φ̂CLS

3,1 φ̂CLS
3,2 φ̂CLS

3,3

500 1.0025 1.9650 0.3139 0.5793 0.4207 0.6083 0.2945 0.0972 0.3022 0.0761 0.3122 0.6118

SE 0.1186 0.1981 0.171 1.5608 1.5608 0.7284 0.2673 0.7066 0.1032 3.5502 1.1115 3.6095

1000 1.0023 2.0057 0.3094 0.6659 0.3341 0.5140 0.3125 0.1735 0.2958 0.5485 0.2607 0.1908

SE 0.0808 0.1338 0.0988 0.5715 0.5715 0.1731 0.1701 0.1455 0.0735 0.2608 0.2818 0.1948

5000 0.9951 2.0011 0.3058 0.6155 0.3845 0.4902 0.3026 0.2072 0.2985 0.4941 0.3095 0.1964

SE 0.0335 0.0652 0.0477 0.1239 0.1239 0.0669 0.0610 0.0677 0.0347 0.0729 0.0751 0.0591

100000.9995 2.0019 0.3009 0.5924 0.4076 0.4970 0.2972 0.2058 0.2983 0.4943 0.3113 0.1944
SE 0.0257 0.0461 0.0329 0.0787 0.0787 0.0506 0.0460 0.0514 0.0248 0.0500 0.0503 0.0434

Table 3.6: r = 3, p = 3

True values µ = (1, 1.5, 2), α = 0.3, φ =




1 0 0
0.6 0.4 0
0.5 0.3 0.2


, pmat =



0.7 0.2 0.1
0.1 0.7 0.2
0.1 0.2 0.7




n µ̂CLS
1 µ̂CLS

2 µ̂CLS
3 α̂CLS φ̂CLS

2,1 φ̂CLS
2,2 φ̂CLS

3,1 φ̂CLS
3,2 φ̂CLS

3,3 α̂CLS φ̂CLS
3,1 φ̂CLS

3,2 φ̂CLS
3,3

500 0.9749 1.5187 2.0151 0.3331 0.9811 0.0189 0.9537 0.3139 -0.2675 0.3027 0.5286 0.2473 0.2241

SE 0.1527 0.1659 0.2519 0.1341 2.1042 2.1042 2.8729 1.6246 4.3460 0.0990 0.5116 0.8627 0.7784

1000 0.9886 1.5182 1.9855 0.3143 0.7626 0.2374 0.4260 0.6499 -0.0759 0.3010 0.5560 0.2774 0.1666

SE 0.1051 0.1161 0.1819 0.1000 0.8830 0.8830 0.7415 2.3627 1.9789 0.0638 0.5080 0.4014 0.5072

5000 1.0025 1.5043 1.9918 0.3047 0.6003 0.3997 0.5133 0.2923 0.1944 0.3018 0.5003 0.3050 0.1947

SE 0.0516 0.0572 0.0785 0.0458 0.1328 0.1328 0.1031 0.0999 0.0982 0.0271 0.0970 0.1020 0.1070

10000 1.0038 1.4999 1.9961 0.2988 0.5984 0.4016 0.4998 0.2970 0.2032 0.3032 0.4955 0.3087 0.1958

SE 0.0335 0.0390 0.0562 0.0290 0.0874 0.0874 0.0572 0.0635 0.0561 0.0191 0.0714 0.0678 0.0629
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4. Conclusion

Varying the sizes of the simulated samples, we have noticed quite a similar behavior
of the here obtained estimates compared to those obtained by the Yule-Walker
statistics, thus confirming the asymptotical equivalence mentioned at the end of
Section 2. Also, the convergence of the obtained estimations to the real parameter
values, which is easy to observe in all the following tables, confirms the strong
consistency of the conditional least squares estimators.

Some negative values for φ̂CLS
3,3 are obtained when the sample size is small, which

is induced by the model properties. Namely, φ3,3 represents the probability that
Xn(zn) will depend on Xn−3(zn−3). In this case φ3,3 = 0.2, so the portion of

the data from which we can obtain φ̂CLS
3,3 is approximately 0.2. However, another

”reduction” of the data occurs since all estimators are defined on the subsamples
with the same state. So, in this case, the subsample is too small to get a good
result. By enlarging the data size, φ̂CLS

3,3 converge to the true value. This effect of
the small subsample also results in the large values of standard deviations for the
small sample size.
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