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Abstract. The objective of the present paper is to study the n-Ricci solitons on Ken-
motsu manifold with generalized symmetric metric connection of type (o, 3). Ricci
and n-Ricci solitons with generalized symmetric metric connection of type («, 5) have
been discussed, satisfying the conditions R.S = 0, S.R = 0, W2.5 = 0 and 5.W> = 0..
Finally, we have constructed an example of Kenmotsu manifold with generalized sym-
metric metric connection of type (a, 8) admitting n-Ricci solitons.
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1. Introduction

A linear connection V is said to be generalized symmetric connection if its
torsion tensor T is of the form

(1.1) T(X,Y) = afu(Y)X —u(X)Y} + B{u(Y)pX —u(X)eY},

for any vector fields X,Y on a manifold, where o and 8 are smooth functions. ¢ is
a tensor of type (1,1) and u is a 1—form associated with a non-vanishing smooth
non-null unit vector field £. Moreover, the connection V is said to be a generalized
symmetric metric connection if there is a Riemannian metric g in M such that
Vg = 0, otherwise it is non-metric.

In the equation (1.1), if « =0 (8 = 0), then the generalized symmetric connec-
tion is called S— quarter-symmetric connection (a— semi-symmetric connection),
respectively. Moreover, if we choose (a,8) = (1,0) and («, 8) = (0,1), then the
generalized symmetric connection is reduced to a semi-symmetric connection and
quarter-symmetric connection, respectively. Therefore, a generalized symmetric
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connections can be viewed as a generalization of semi-symmetric connection and
quarter-symmetric connection. These two connections are important for both the
geometry study and applications to physics. In [12], H. A. Hayden introduced a
metric connection with non-zero torsion on a Riemannian manifold. The properties
of Riemannian manifolds with semi-symmetric (symmetric) and non-metric con-
nection have been studied by many authors (see [1], [9], [10] , [24], [26]). The idea
of quarter-symmetric linear connections in a differential manifold was introduced
by S.Golab [11]. In [23], Sharfuddin and Hussian defined a semi-symmetric metric
connection in an almost contact manifold, by setting

T(X,Y) =n(Y)X — n(X)Y.

In [13], [25] and [19] the authors studied the semi-symmetric metric connection and
semi-symmetric non-metric connection in a Kenmotsu manifold, respectively.

In the present paper, we have defined new connection for Kenmotsu manifold,
generalized symmetric metric connection. This connection is the generalized form
of semi-symmetric metric connection and quarter-symmetric metric connection.

On the other hand, a Ricci soliton is a natural generalization of an Einstein
metric. In 1982, R. S. Hamilton [14] said that the Ricci solitons moved under the
Ricci flow simply by diffeomorphisms of the initial metric, that is, they are sationary
points of the Ricci flow:

(1.2) 99

i —2Ric(g).

Definition 1.1. A Ricci soliton (g, V, A) on a Riemannian manifold is defined by
(1.3) Lyg+25+2\=0,

where S is the Ricci tensor, Ly is the Lie derivative along the vector field V' on
M and ) is a real scalar. Ricci soliton is said to be shrinking, steady or expanding
according as A < 0, A\ =0 and A > 0, respectively.

In 1925, H. Levy [16] in Theorem 4, proved that a second order parallel symmetric
non-singular tensor in real space forms is proportional to the metric tensor. Later,
R. Sharma [22] initiated the study of Ricci solitons in contact Riemannian geometry.
After that, Tripathi [28], Nagaraja et. al. [17] and others like C. S. Bagewadi et.
al. [4] extensively studied Ricci solitons in almost contact metric manifolds. In
2009, J. T. Cho and M. Kimura [6] introduced the notion of n-Ricci solitons and
gave a classification of real hypersurfaces in non-flat complex space forms admitting
n-Ricci solitons. 7- Ricci solitons in almost paracontact metric manifolds have been
studied by A. M. Blaga et. al. [2]. A. M. Blaga and various others authors have also
studied n-Ricci solitons in manifolds with different structures (see [3], [20]). It is
natural and interesting to study n-Ricci solitons in almost contact metric manifolds
with this new connection.

Therefore, motivated by the above studies, in this paper we will study the n-Ricci
solitons in a Kenmotsu manifold with respect to a generalized symmetric metric
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connection. We shall consider n-Ricci solitons in the almost contact geometry,
precisely, on an Kenmotsu manifold with generalized symmetric metric connection
which satisfies certain curvature properties: R.S = 0, S.R = 0, W5.5 = 0 and
SWy=0 respectively.

2. Preliminaries

A differentiable M manifold of dimension n = 2m+1 is called almost contact metric
manifold [5], if it admits a (1, 1) tensor field ¢, a contravaryant vector field &, a 1—
form 7 and Riemannian metric g which satisfies

(2.1) ¢ = 0,

(2.2) n¢X) = 0

(2.3) neE = 1,

(2.4) P*(X) = —-X+n(X),

(2.5) 9(dX,9Y) = g(X,Y)—n(X)nY),
(2.6) 9(X,¢) n(X),

for all vector fields X, Y on M. If we write g(X,¢Y) = ®(X,Y), then the tensor
field ¢ is a anti-symmetric (0, 2) tensor field [5]. If an almost contact metric manifold
satisfies

(2.7) (Vxo)Y = g(¢X,Y)§—n(Y)oX,
(2.8) Vx¢ = X —n(X),
then M is called a Kenmotsu manifold, where V is the Levi-Civita connection of g
[18].
In Kenmotsu manifolds the following relations hold [18]:

(2.9) (Vxn)Y = g(¢X,¢Y)
(210) g(R(X,Y)Z,§) = n(R(X,Y)Z)=g(X,Z)n(Y) —g(Y, Z)n(X),
(2.11) R(EX)Y = n(Y)X —g(X,Y)E,
(2.12) R(X,Y)E = nX)Y —n(Y)X,
(2.13) R(E X)§ = X —n(X),
(2.14) S(X.§) = —(n—1n(X),
(2.15) S(@X,0Y) = S(X.Y)+(n—1)n(X)nY)
for any vector fields X, Y and Z, where R and S are the the curvature and Ricci
the tensors of M, respectively.
A Kenmotsu manifold M is said to be generalized n Einstein if its Ricci tensor
S is of the form

(2.16) S(X,Y)=ag(X,Y) +n(X)n(Y) + cg(¢X,Y),

for any X,Y € T'(TM), where a, b and ¢ are scalar functions such that b # 0 and
c# 0. If c=0 then M is called n Einstein manifold.
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3. Generalized Symmetric Metric Connection in a Kenmotsu Manifold

Let V be a linear connection and V be a Levi-Civita connection of an almost contact
metric manifold M such that

(3.1) VxY =VxY + H(X,Y),

for any vector field X and Y. Where H is a tensor of type (1,2). For V to be a
generalized symmetric metric connection of V, we have

(3.2) H(X,Y) = %[T(X, V) 4+ T (X,Y) + T (Y, X)),

where T is the torsion tensor of V and
(3.3) g(T'(X,Y),2Z) = g(T(Z,X),Y).
From (1.1) and (3.3) we get
(34) T'(XY) = a{n(X)Y = g(X,Y)E} + B{-n(X)$Y — g(6X,Y)¢}.
Using (1.1), (3.2) and (3.4) we obtain
(35) H(X,Y) =a{n(Y)X — g(X,Y)} + B{—n(X)oY}.

Corollary 3.1. For a Kenmotsu manifold, generalized symmetric metric connec-
tion V is given by

(3.6) VxY =VxY 4+ afn(Y)X — g(X,Y)¢} — fn(X)eY.

If we choose (o, ) = (1,0) and (a, 8) = (0,1), generalized metric connection
is reduced to a semi-symmetric metric connection and quarter-symmetric metric
connection as follows:

(3.7) VxY =VxY +n(Y)X - g(X,Y)E,

(3.8) VxY =VxY —n(X)gY.
From (3.6) we have the following proposition

Proposition 3.1. Let M be a Kenmotsu manifold with generalized metric connec-
tion. We have the following relations:

(3.9) (Vxo)Y = (a+D{g(eX,Y)§—n(Y)pX},
(3.10) Vx¢ = (a+D{X —n(X)e},
(3.11) (Vxn)Y = (a+D{g(X,Y)—n(¥)n(X)},

for any XY, Z € T(TM).
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4. Curvature Tensor on Kenmotsu manifold with generalized
symmetric metric connection

Let M be an n— dimensional Eenmotsu manifold. The curvature tensor R of the
generalized metric connection V on M is defined by

(4.1) R(X,Y)Z =VxVyZ—-VyVxZ—-Vxy)Z,

Using the proposition 3.1, from (3.6) and (4.1) we have

(42)R(X,Y)Z = R(X,Y)Z4+{(—=a®—2a)g9(Y,Z) + (a® +a)n(Y)n(Z2)} X
+ {0 +2a)9(X, 2) + (—a® —an(X)n(2)}Y
+ {(@®+a)g(Y, Z)n(X) — g(X, Z)n(Y)]
+ (B+ap)g(X,0Z)n(Y) —g(Y,6Z)n(X)]}€
+ B+abInY)n(Z2)pX — (B + aB)n(X)n(Z)eY
where
(4.3) R(X,Y)Z =VxVyZ -VyVxZ -V xyZ,

is the curvature tensor with respect to the Levi-Civita connection V.
Using (2.10), (2.11), (2.12), (2.13) and (4.2) we give the following proposition:

Proposition 4.1. Let M be an n— dimensional Kenmotsu manifold with gen-
eralized symmetric metric connection of type (o, 8). Then we have the following
equations:

(44) R(X,Y)¢ = (a+ D){n(X)Y —n(Y)X + B[n(Y)pX —n(X)oY]}
(4.5) R X)Y = (a+ D{n(Y)X - g(X,Y)E+ Bn(Y)oX — g(X, oY)},
(4.6) R(§,Y)E = (a+ DY —n(Y)§ - BoY},

(4.7) N(R(X,Y)Z = (a+ 1){n(Y)g(X, Z) - n(X)g(Y, Z)

+BI(Y)g9(X, 9Z) —n(X)g(Y,¢Z)]}

for any XY, Z € T(TM).

We know that Ricci tensor is defined by

n

g(}/v Z) = ZQ(R(Sn Y)Za 61'),

=1
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where Y, Z € T(TM), {e1,ea,...,en} is viewed as orthonormal frame. We can
calculate the Ricci tensor with respect to generalized symmetric metric connection
as follows:

S(,2) = S(Y,2)+{(2-n)a + (3 - 2n)a}g(Y. Z) + (n - 2)(a® + a)n(Y)n(2)
(48)  —(B+aP)g(Y,02),

where S is Ricci tensor with respect to Levi-Civita connection.

Example 4.1. We consider a 3-dimensional manifold M = {(z,y,2) € R® : = # 0},
where (z,y, z) are the standard coordinates in R®. Let E1, Es, E3 be a linearly independent
global frame on M given by

0 0 0
(4.9) El—x&, Ez—xa—y, ng—:c%.

Let g be the Riemannian metric defined by
9(E1, E2) = g(E1, E3) = g(E2, Es) = 0,9(E1, Ev) = g(E2, E2) = g(Es, Es) = 1,

Let n be the 1-form defined by n(U) = g(U, Es3), for any U € TM. Let ¢ be the (1,1)
tensor field defined by ¢F1 = Fo,¢FE2 = —F1 and ¢FEs = 0. Then, using the linearity of
¢ and g we have n(E3) = 1, ¢*°U = —U +n(U)E5 and g(¢U, W) = g(U, W) — n(U)n(W)
for any U,W € TM. Thus for Es5 = &, (¢,£,m,g) an almost contact metric manifold is
defined.

Let V be the Levi-Civita connection with respect to the Riemannian metric g. Then
we have

(4.10) [E1, B2l =0,  [Ey, Es]=Ey,  [Ea Es] = E,
Using Koszul formula for the Riemannian metric g, we can easily calculate

VE1E1 = —F3, VElEz =0. VE1E3 = Fy,
(4.11) Ve, E1 =0, VEey,Es = —FEs, Ve, Es =0,
Ve, E1 =0, Ve E2 =0, Ve E3 =0.

From the above relations, it can be easily seen that

(Vx9)Y = g(¢X,Y)§ —n(Y)pX, VxE&E =X —n(X)E, for all E3 = . Thus the
manifold M is a Kenmotsu manifold with the structure (¢, &,n,g). for £ = Es. Therefore,
the manifold M under consideration is a Kenmotsu manifold of dimension three.

5. Ricci and 7-Ricci solitons on (M, ¢,¢,1,4,)

Let (M, ¢,&,1,9,) be an almost contact metric manifold. Consider the equation

(5.1) Leg+2S+20+2un®@n =0,
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where L¢ is the Lie derivative operator along the vector field &, S is the Ricci
curvature tensor field with respect to the generalized symmetric metric connection of
the metric g, and A and p are real constants. Writing L¢ in terms of the generalized
symmetric metric connection V, we obtain:

(5.2) 25(X,Y)=—g(Vx&Y)—g(X,Vy€) —2X0g9(X,Y) — 2un(X)n(Y),

for any X,Y € x(M).

The data (g, &, A, 1) which satisfy the equation (4.9) is said to be an n-Ricci soliton
on M [10]. In particular, if 4 = 0 then (g,&, A) is called Ricci soliton [6] and it is
called shrinking, steady or expanding, according as A is negative, zero or positive
respectively [6].

Here is an example of n-Ricci soliton on Kenmotsu manifold with generalized
symmetric metric connection.

Example 5.1. Let M(¢,&,m,g) be the Kenmotsu manifold considered in example 4.3 .

Let V be a generalized symmetric metric connection, we obtain: Using the above
relations, we can calculate the non-vanishing components of the curvature tensor
as follows:

R(E\, E2)Ey = Es, R(Ey,E2)Ey = —FE1, R(E1, E3)E, = Ej3
(6.3)  R(E:1,E3)E3 = —E1, R(E, E3)Ey = E3, R(Eq, E3)E3 = —FE»

From the equations (5.3) we can easily calculate the non-vanishing components of
the Ricci tensor as follows:

(5.4) S(E1,Ey) = =2, S(Es, E3) = =2, S(E5,E3) = -2

Now, we can make similar calculations for generalized metric connection. Using
(3.6) in the above equations, we get

Ve B =—(1+a)Es, Vi, By =0. Ve B3 =(1+a)E,
(5.5) Ve, E1 =0, Vg,Ey=—(1+a)E;, Vg,E3=ak,,
Ve, B = —BE,, Vi, By = BEy, Ve, E3 =0.

From (5.5), we can calculate the non-vanishing components of curvature tensor with
respect to generalized metric connection as follows:

R(Ey,E2)Ey = (14 a)’E,, R(Ey, E2)Ey = —(1+ a)?Ex,
R(El, Eg)El = (1 + Oé)Eg R(El, Eg)Eg = (1 + Oé)(ﬂEQ - El);
(56) R(EQ, Eg)EQ = (1 + Oé)Eg, R(EQ, Eg)Eg = —(1 + O[)(—ﬂEl + EQ)

R(E3, Eo)E1 = —(1 + a)BEs, R(E3,E1)Ey = (1 + a)BE3, .
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From (5.6), the non-vanishing components of the Ricci tensor are as follows:

S(E1,E1)=-(1+a)2+a), S(E2E)=—(140a)2+a),

From (5.2) and (5.5) we get
(5.8)2(1 + a)[g(ei, ei) — n(ei)n(es)] + 25 (ei, ei) + 2Xg(es, €:) + 2un(ei)n(ei) = 0

for all i € {1,2,3}, and we have A = (1 + a)? (i.e. A > 0) and p = 1 — a2, the
data (g,&, A\, p) is an n-Ricci soliton on (M, ¢,&,1n,g). If a = —1 which is steady
and if « # —1 which is expanding.

6. Parallel symmetric second order tensors and 7n-Ricci solitons in

Kenmotsu manifolds

An important geometrical object in studying Ricci solitons is well known to
be a symmetric (0, 2)-tensor field which is parallel with respect to the generalized
symmetric metric connection.

Now, let fix h a symmetric tensor field of (0,2)-type which we suppose to be
parallel with respect to generalized symmetric metric connectionV that is Vi = 0.
By applying Ricci identity [7]

(6.1) VAX,Y;Z,W) - V*h(X,Y; Z,W) =0,
we obtain the relation

(6.2) h(R(X,Y)Z,W) + h(Z, R(X,Y)W) = 0.

Replacing Z = W = £ in (6.2) and by using (4.4) and by the symmetry of h it

follows h(R(X,Y),€) =0 for any X,Y € x(M) and
(6.3) (@ + Dn(X)h(Y, ) — (o + 1)n(Y)A(X,§)
(6.4) +(a+ Dn(X)h(EY) = (e + Dn(Y)A(E, X)

(6.5)+8n(Y)h(¢X, &) — Bn(X)h(dY, &) + Bn(Y)h(E, ¢X) — Bn(X)h(E, ¢Y) = 0
Putting X = ¢ in (6.3) and by the virtue of (2.4), we obtain

(6.6) 2(a+ 1)[(Y,€) = n(Y)h(E,§)] = 28h(6Y,€) = 0.
(6.7) 2(a+ DAY, ) = g(Y, (&, )] - 28(¢Y,€) = 0.

Suppose (a+ 1) # 0, 8 =0 it results

(6.8) h(Y;€) = n(Y)h(§,€) = 0,
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for any Y € x(M), equivalent to

(6.9) h(Y,€) — g(Y,§h(&, ) =0,

for any Y € x(M). Differentiating the equation (6.9) covariantly with respect to
the vector field X € x (M), we obtain

(6.10) h(VxY,€) +h(Y, Vx€) = h(& )g(VxY,€) + g(Y, VxE)].
Using (4.4) in (6.10), we obtain

(6.11) h(X,Y) = h(€.&)g(X.Y),

for any X,Y € x(M). The above equation gives the conclusion:

Theorem 6.1. Let (M, $,£,n,9,) be a Kenmotsu manifold with generalized sym-
metric metric connection also with non-vanishing &-sectional curvature and endowed
with a tensor field of type (0,2) which is symmetric and ¢-skew-symmetric. If h is
parallel with respect to V, then it is a constant multiple of the metric tensor g.

On a Kenmotsu manifold with generalized symmetric metric connection using
equation (3.10) and L¢g = 2(9 —n ® 1), the equation (5.2) becomes:

(6.12) SX,)Y)=-A+a+1)g(X,Y)+ (a+1—p)n(X)nY).
In particular, X = &, we obtain
(6.13) S(X,8) = ~(A+ pwn(X).

In this case, the Ricci operator @ defined by ¢g(QX,Y) = S(X,Y) has the
expression

(6.14) QX =—-A+a+ D)X + (a+1—p)n(X)nX)E

Remark that on a Kenmostu manifold with generalized symmetric metric con-
nection, the existence of an 7-Ricci soliton implies that the characteristic vector
field £ is an eigenvector of Ricci operator corresponding to the eigenvalue — (A + p).

Now we shall apply the previous results on 7-Ricci solitons.

Theorem 6.2. Let (M,$,£,1,9) be a Kenmotsu manifold with generalized sym-
metric metric connection. Assume that the symmetric (0,2)-tensor filed h = Leg +
25+ 2un®mn is parallel with respect to the generalized symmetric metric connection
associated to g. Then (g9,&, —1h(&,€), ) yields an n-Ricci soliton.

Proof. Now, we can calculate

(6.15) h(€,€) = Leg(€,€) +25(6.€) + 2um(E)n(€) = —2),

so A = —2h(£,€). From (6.11) we conclude that h(X,Y) = —2Ag(X,Y), for any
X,Y € x(M). Therefore Leg+2S+2un®@n=—2Ag. O
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For p = 0 follows Leg + 25 — S(€,£)g = 0 and this gives

Corollary 6.1. On a Kenmotsu manifold (M, ¢,&,n, g) with generalized symmet-
ric metric connection with property that the symmetric (0,2)-tensor field h = Leg+
2S is parallel with respect to generalized symmetric metric connection associated to
g, the relation (5.1), for u =0, defines a Ricci soliton.

Conversely, we shall study the consequences of the existence of n-Ricci solitons on
a Kenmotsu manifold with generalized symmetric metric connection. From (6.12),
we give the conclusion:

Theorem 6.3. If equation (4.9) defines an n-Ricci soliton on a Kenmotsu man-
ifold (M, ¢,&,m,g) with generalized symmetric metric connection, then (M,g) is
quasi-Einstein.

Recall that the manifold is called quasi-Einstein [8] if the Ricci curvature tensor
field S is a linear combination (with real scalars A and p respectively, with p # 0)
of g and the tensor product of a non-zero 1-from 7 satisfying n = g(X, &), for £ a
unit vector field and respectively, Einstein [8] if S is collinear with g.

Theorem 6.4. If (¢,&,7n,9) is a Kenmotsu structure with generalized symmetric
metric connection on M and (4.9) defines an n-Ricci soliton on M, then

1L Qop=90Q
2. @Q and S are parallel along &.

Proof. The first statement follows from a direct computation and for the second
one, note that

(6.16) (VeQ)X = VeQX — Q(VeX)
and
(6.17) (@55)()(, Y)= f(S(X, Y)) - S(?gX, Y) — S(X, 655/).

Replacing @ and S from (6.14) and (6.13) we get the conclusion. [

A particular case arises when the manifold is ¢-Ricci symmetric, which means that
¢? o VQ = 0, as stated in the next theorem.

Theorem 6.5. Let (M,$,£,1n,9) be a Kenmotsu manifold with generalized sym-
metric metric connection. If M is ¢-Ricci symmetric and (4.9) defines an n-Ricci
soliton on M, then p =1 and (M, g) is Finstein manifold [8].

Proof. Replacing @ from (6.14) in (6.16) and applying ¢? we obtain
(6.18) (@ +1 = pn(YV)[X —n(X)¢] =0,

for any X,Y € x(M). Follows p=a+1land S=—-(A+a+1)g. O
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Remark 6.1. In particular, the existence of an n-Ricci soliton on a Kenmotsu manifold
with generalized symmetric metric connection which is Ricci symmetric (ie. VS = 0)
implies that M is Finstein manifold. The class of Ricci symmetric manifold represents
an extension of class of Einstein manifold to which the locally symmetric manifold also
belong (i.e. satis fying VR = 0). The condition V.S = 0 implies R.S = 0 and the manifolds
satisfying this condition are called Ricci semi-symmetric [7].

In what follows we shall consider n-Ricci solitons requiring for the curvature to
satisfy R(&,X).S =0, S.R(&,X) =0, Wo(£,X).S =0 and S. W5 (&, X) = 0 respec-
tively, where the Wa-curvature tensor field is the curvature tensor introduced by G.
P. Pokhariyal and R. S. Mishra in [21]:

1

1 XYV =R(X,)Y)Z + ————

l9(X, 2)QY —g(Y, 2)QX].
7. n-Ricci solitions on a Kenmotsu manifold with generalized

symmetric metric connection satisfying R(¢, X).S =0

Now we consider a Kenmotsu manifold with with a generalized symmetric metric
connection V satisfying the condition

(7.1) S(R(&X)Y,Z)+ S(Y,R(¢,X)Z) =0,

for any X,Y € x(M). B B
Replacing the expression of S from (6.12) and from the symmetries of R we get

(7.2) (a+)(a+1—=p)n(Y)9(X,Z) +n(2)g9(X,Y) = 2n(X)n(Y)n(Z)] =0,

for any X,Y € x(M).
For Z = ¢ we have

(7.3) (@ +1)(a+1—p)g(¢X,¢Y) =0,

for any X,Y € x(M).

Hence we can state the following theorem:

Theorem 7.1. If a Kenmotsu manifold with a generalized symmetric metric con-
nection V, (g,&, A\, ) is an n-Ricci soliton on M and it satisfies R(§,X).S = 0,
then the manifold is an n-FEinstein manifold.

For = 0, we deduce:

Corollary 7.1. On a Kenmotsu manifold with a generalized symmetric metric
connection satisfying R(£,X).S = 0, there is no n-Ricci soliton with the potential
vector field &.
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8. 7n-Ricci solitons on Kenmotsu manifold with generalized symmetric
metric connection satisfying S.R(¢,X) =0

In this section, we have considered Kenmotsu manifold with a generalized symmetric
metric connection S satisfying the condition

(1) S(XR(Y, Z)W)E - 5(€ RY, Z)W)X + S(X,Y)R(E, Z)W—
(8.2) —SEY)R(X, 2)W + S(X, Z)R(Y, &)W — S(&, Z)R(Y, X)W+
(8.3) +S(X,W)R(Y,Z)¢ — S(6, W)R(Y, Z)X =0
for any X,Y,Z, W € x(M).

Taking the inner product with £, the equation (8.1) becomes
(84)  SX,R(Y,Z)W)—S(&R(Y,Z)W)n(X) + S(X,Y)n(R(E Z)W)~

(8.5) =S(&Y)n(R(X, Z)W) + S(X, Z)n(R(Y,§)W) — S(&, Z)n(R(Y, X)W )+
(3.6) LS Wn(R(Y, 2)€) — (6 W)n(R(Y, Z)X) = 0
for any XY, Z, W € x(M).

For W = &, using the equation (4.4), (4.5), (4.7) and (6.12) in (8.4), we get

(a+1)2A+p+a+1)[g(X, Y)n(Z2)—g(X, Z)n(Y)+Bg(¢ X, Y )n(Z) — g(¢X, Z)n(Y)]
(8.7)

for any XY, Z, W € x(M).

Hence we can state the following theorem:

Theorem 8.1. If (M,¢,&,n,9) is a Kenmotsu manifold with a generalized sym-
metric metric connection, (g,&, A\, 1) is an n-Ricci soliton on M and it satisfies
S.R(£,X)=0. Then

(8.8) (a+1)@A\+p+a+1)=0.

For p = 0 follows A\ = —O‘T“,(a # —1), therefore, we have the following corollary:
Corollary 8.1. On a Kenmotsu manifold with a generalized symmetric metric

connection, satisfying S.R(¢,X) = 0, the Ricci soliton defined by (5.1), i = 0 is
either shrinking or erpanding.

9. n-Ricci soliton on (¢)-Kenmotsu manifold with a semi-symmetric

metric connection satisfying W5(¢, X).5 =0
The condition that must be satisfied by S is

(9.1) SWa (6, X)Y, Z) + S(Y,Ws(&,X)Z) =0,
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for any X,Y,Z € x(M).
For X = ¢, using (4.4), (4.5), (4.7), (6.12) and (6.19) in (9.1), we get

(a+1—p)(—2u—22+ (4a +4)n)

(9.2) n(Y)n(2)

for any X,Y,Z € x(M). Hence, we can state the following:

Theorem 9.1. If (M,¢,£,n,9) is an (2n + 1)-dimensional Kenmotsu manifold
with a generalized symmetric metric connection, (9,&, A\, 1) is an m-Ricci soliton on
M and W3(&,X).S =0, then

(9.3) (a+1—p)(=2u—22+ (da+4)n) =0.

For p = 0 follows that A = W,(a # —1), therefore, we have the following
corollary:

Corollary 9.1. On a Kenmotsu manifold with a generalized symmetric metric
connection, satisfying Wa (€, X).S = 0, the Ricci soliton defined by (5.1), p =0 is
either shrinking or erpanding.

10. n-Ricci soliton on Kenmotsu manifold with a generalized

symmetric metric connection satisfying S.W5(¢, X) =0

In this section, we have considered an (g)-Kenmotsu manifold with a semi-symmetric
metric connection V satisfying the condition

(10.1)  S(X,Wa(Y, Z2)V)¢ — S(&,Wa(Y, Z)V)X + S(X, Y)Wy (¢, Z)V —
(10.2) =S Y)Wa(X,Z2)V + S(X, Z)Wa(Y,E)V — S(&, 2)Wa (Y, X)V+
(10.3) +S(X, V)Wo(Y, Z)E — S(&,V)Wa(Y, Z)X =0,
for any X,Y, Z,V € x(M).

Taking the inner product with &, the equation (10.1) becomes
(10.4) S(X, Wa(Y, 2)V) — 5(&, Wa(Y, Z)V)n(X) + S(X, Y )n(Wa(&, Z)V)—
(10.6) +S(X, V)n(Wa(Y, 2)§) = S, V)n(Wa(Y, 2)X) = 0,

for any XY, Z,V € x(M).
For X = V = ¢, using (4.4), (4.5), (4.7), (6.12) and (6.19) in (10.4), we get

(/\+a+1)22n+ A () -a(X. 1))

(10.8) +Ba+1)2A+a+ 14+ p)g(oX,Y) =0,
for any X,Y, Z € x(M). Hence, we can state:

(10.7){—(a+1)2A+a+1+4pu) +
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Theorem 10.1. If (M,¢$,£,n,9) is a (2n + 1)-dimensional Kenmotsu manifold
with generalized symmetric metric connection, (9,&, A\, 1) is an n-Ricci soliton on
M and S W5(¢,X) =0, then

Ata+1)?+A+p)?

(10.9) —(a+1)R2A+a+14+p) + o 0,
and
(10.10) Bla+1)2A+a+1+pu)=0.

For ;1 = 0 we get the following corollary:

Corollary 10.1. On a Kenmotsu manifold with a generalized symmetric metric
connection satisfying S.Wo (&, X) = 0, the Ricci soliton defined by (5.1), for u =0,
we have the following expressions:

(i) —(a+ 1)@\ + o+ 1) + QEt DO 6 4n4 (o + 1) (20 +a + 1) = 0.

(ii) If a = —1 or a = —2X\ — 1 which is steady.
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