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Abstract. In this paper, we establish sharp maximal function inequalities for the
Toeplitz-type operator associated with the singular integral operator with a variable
Calderén-Zygmund kernel. As an application, we obtain the boundedness of the oper-
ator on Lebesgue, Morrey and Triebel-Lizorkin spaces.
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1. Introduction and Preliminaries

As the development of singular integral operators(see [6, 21]), their commutators
have been well studied. In [3, 19, 20], the authors prove that the commutators gen-
erated by singular integral operators and BMO functions are bounded on LP(R")
for 1 < p < co. Chanillo (see [2]) proves a similar result when singular integral op-
erators are replaced by fractional integral operators. In [7, 16], the boundedness for
the commutators generated by singular integral operators and Lipschitz functions
on Triebel-Lizorkin and LP(R™)(1 < p < oo) spaces are obtained. In [1], Calderén
and Zygmund introduce some singular integral operators with a variable kernel and
discuss their boundedness. In [11, 12, 13, 22], the authors obtain the boundedness
for the commutators generated by singular integral operators with a variable kernel
and BM O functions. In [14], the authors prove the boundedness for the multilinear
oscillatory singular integral operators generated by operators and BM O functions.
In [8, 9], some Toeplitz-type operators associated with singular integral operators
and strongly singular integral operators are introduced, and the boundedness for the
operators generated by BM O and Lipschitz functions are obtained. In this paper,
we will study the Toeplitz-type operator generated by the singular integral operator
with a variable Calderén-Zygmund kernel and Lipschitz and BM O functions.

Received September 14, 2018; accepted November 05, 2018
2010 Mathematics Subject Classification. Primary 42B20; Secondary 42B25

399



400 Q. Zhao

First, let us introduce some notations. Throughout this paper, @ will denote a
cube of R™ with sides parallel to the axes. For any locally integrable function f,
the sharp maximal function of f is defined by

# = Su
MF(f)a) = sup |Q|/ FW) — faldy,

where, and in what follows, fo = |Q|™" [, f(2)dz. It is well-known that (see [6, 21])

# u ln — C .
M#(f)(x) ~ sup inf |Q|/Q|f(y) dy

Q>x c€C

We say that f belongs to BMO(R™) if M#(f) belongs to L>(R") and define
|| f|lBrro = ||M#(f)||L=- It has been known that (see [21])

I|f = forgllBro < CK||f||Baro-

Let
u )|d
M(f)(x SP|Q|/|f )|dy.

For > 0, let M, (f)(z) = M(|f|")*/" ().
ForO<n<nand1l<r < oo, set

1 1/r
My (f)(z) = sup (W/QU(Z/)V@) :

The A, weight is defined by (see [6])

Ap={weL}oc<R"> s (1 | wte ) (i / w<w>-1/<p-1>dx)p_l <oo},

1 <p< . and

Ay ={we L} (R"): M(w)(z)<Cw(x),a.e.}.

For f > 0andp > 1, let FpB’OO(R") be a homogeneous Triebel-Lizorkin space(see
[16]).

For 8 > 0, the Lipschitz space Lipg(R") is the space of functions f such that

[f(z) = f(y)|

ipg — —_— < 0.
||f||L1PB zsylelgn |$L'—y|'3 o0

TFY

Definition 1. Let ¢ be a positive, increasing function on R™ and there exists
a constant D > 0 such that

»(2t) < Do(t) for t > 0.
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Let f be a locally integrable function on R™. Set, for 1 < p < o0,

1 1/p
P = sup — Pd s
||f||L zER™, d>0 <(p(d) /Q(m,d) |f(y)| y)

where Q(z,d) = {y € R" : |x —y| < d}. The generalized Morrey space is defined by
LP?(R") = {f € Ljoe(R") : || fl|Lre < o0}

If o(d) = d°, § > 0, then LP?(R") = LP°(R"), which is the classical Morrey
spaces (see [17, 18]). If ¢(d) = 1, then LP?(R™) = LP(R™), which is the Lebesgue
spaces.

As the Morrey space may be considered as an extension of the Lebesgue space,
it is natural and important to study the boundedness of the operator on the Morrey
spaces (see [4, 5, 10, 15]).

In this paper, we will study some singular integral operators as follows(see [1]).

Definition 2. Let K(z) = Q(z)/|z|™ : R"\ {0} — R. K is said to be a
Calderén-Zygmund kernel if
(a) e C=(R"\ {0});

(b) © is homogeneous of degree zero;
(¢) Js, Qz)z*do(z) = 0 for all multi-indices a € (N U {0})™ with |a| = N, where
Y ={z € R" : |z| =1} is the unit sphere of R"™.

Definition 3. Let K(z,y) = Q(z,y)/|y|” : R™ x (R"\{0}) = R. K is said to
be a variable Calderén-Zygmund kernel if
(d) K(z,-) is a Calderén-Zygmund kernel for a.e. x € R";

o —
(e) max|yj<2n aTyQ(:v,y)HLm(RnXE) =M < 0.

Moreover, let b be a locally integrable function on R™ and T be a singular integral
operator with a variable Calderén-Zygmund kernel as

T(f)(z) = - K(z,z —y)f(y)dy,

where K (z,z—y) = 22 —v) 4nd that Q(x,y)/|y|™ is a variable Calderén-Zygmund

|z—y[™

kernel. The Toeplitz-type operator associated with T is defined by

Ty = (TP MyIoT"? + TR, M TH),
k=1

where T%1 is the singular integral operator with a variable Calderén-Zygmund
kernel T or 41 (the identity operator), T%? and T** are linear operators, 7% = +1,
k=1,..,m, My(f) =bf and I, is the fractional integral operator(0 < a < n)(see
[2]).

Note that the commutator [b, T|(f) = bT(f) — T(bf) is a particular operator
of the Toeplitz-type operator T,. The Toeplitz-type operator T} are non-trivial
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generalizations of the commutator. It is well known that commutators are of great
interest in harmonic analysis and have been widely studied by many authors (see
[19, 20]). The main purpose of this paper is to prove sharp maximal inequalities for
the Toeplitz-type operator Tp. As the application, we obtain the LP-norm inequality,
Morrey and Triebel-Lizorkin spaces boundedness for the Toeplitz-type operator T5.

2. Theorems and Lemmas

We shall prove the following theorems.

Theorem 1. Let T be a singular integral operator as Definition 3, 0 < 8 < 1,
1 <s<ooandbe Lipg(R"). If Ti(g) =0 for any g € L*(R")(1 < u < 00), then
there exists a constant C' > 0 such that, for any f € C§°(R") and & € R,

m

M*(Ty(f))() < Cllbllzip, Y (Mp s(LT"2(f))(E) + Mpa,s(T(f))()).

k=1

Theorem 2. Let T be a singular integral operator as Definition 3, 0 < 8 < 1,
1 <s<ooandbe Lipg(R"). If Ti(g) =0 for any g € L*(R")(1 < u < 00), then
there exists a constant C' > 0 such that, for any f € C§°(R") and & € R™,

m

sup inf /Q (@) —eldr < Clbllui, S (MITH(1)(@)

7 CER™
Q3T k=

+ Moo (THY(f))(2))

Theorem 3. Let T be a singular integral operator as Definition 3, 1 < s < oo
and b€ BMO(R™). If T1(g) = 0 for any g € L*(R")(1 < u < 00), then there exists
a constant C' > 0 such that, for any f € C§°(R") and & € R",

M#(Ty(f))(#) < Cllbllsaro Y (Ms(LaT*?(F))(&) + Ma,s(T4(1))()).
k=1

Theorem 4. Let T be a singular integral operator as Definition 3,0 < 8 < 1,
l<p<n/(a+p),1/g=1/p— (a+ B)/n and b € Lipg(R"™). If T1(g) = 0 for any
g € L*(R™)(1 < u < 00) and T%2 and T** are bounded operators on LP(R") for
1<p<oo, k=1,...,m, then T, is bounded from LP(R") to LY(R").

Theorem 5. Let T be a singular integral operator as Definition 3,0 < 8 < 1,
L<p<nfla+p),1/g=1/p—(a+p)/n, 0 <D < 2" and b € Lipg(R"). If
Ti(g) = 0for any g € L“(R")(1 < u < c0) and T2 and T** are bounded operators
on LP?(R™) for 1 < p < o0, k = 1,...,m, then T}, is bounded from LP¥(R") to
LT%(R™).

Theorem 6. Let T be a singular integral operator as Definition 3, 0 < <
1,1 <p<n/a, 1/¢ = 1/p—a/n and b € Lipg(R™). If Ti(g) = 0 for any
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g € L*(R")(1 < u < oo0) and T%? and T"* are bounded operators on LP(R") for
1<p<oo, k=1,..,m, then T} is bounded from LP(R") to Ff’OO(R").

Theorem 7. Let T be a singular integral operator as Definition 3, 1 < p <
n/a, 1/¢=1/p —a/n and b € BMO(R"). If T1(g) = 0 for any g € L“(R™)(1 <
u < oo) and T%?2 and T** are bounded operators on LP(R") for 1 < p < oo,
k=1,...,m, then T} is bounded from L?(R"™) to LI(R™).

Theorem 8. Let T be a singular integral operator as Definition 3, 0 < D <
2" 1 <p<nja,1/¢g=1/p—a/n and b € BMO(R"). If Ti(g) = 0 for any
g € L*(R")(1 < u < o0) and T%2 and T** are bounded operators on LP#(R") for
l<p<oo, k=1,..,m, then T, is bounded from LP*?(R") to LY*(R").

To prove the theorems, we need the following lemmas.

Lemma 1.(see [1]) Let T be a singular integral operator as Definition 3. Then
T is bounded on LP(R™) for 1 < p < oo.

Lemma 2.(see [16]). For 0 < f <1 and 1 < p < oo, we have

%

1711

1 /
sup |f(y) — faoldy
Q3x |Q|1+6/n Q ¢ Lp

)

Lp

1
wmﬁ————/uwww@
Q3xz © |Q|1+B/n Q

where the sup is taken all cubes @) containing z € R".

Lemma 3.(see [6]). Let 0 < p < 0o and w € Uj<r<oody. Then, for any smooth
function f for which the left-hand side is finite,

M(f)@Pu(@)de < C | M#(f)(2) w(x)dz.
R" R?

Lemma 4.(see [2, 6]). Suppose that 0 < a <mn, 1 < s <p < n/aand 1/q=
1/p — a/n. Then
[Ha(Nlze < ClIflLe

and
[[Ma,s(f)llLs < CI|fl|Le-

Lemma 5. Let 1 < p < 00, 0 < D < 2™. Then, for any smooth function f for
which the left-hand side is finite,

M (F)]|oe < ClM#(f)|| oo

Proof. For any cube Q = Q(xo,d) in R™, we know M (xq) € Az for any cube
Q by [6]. Noticing that M(xg) <1 and M(xg)(z) < d"/(Jx — mo| — d)™ if z € Q°,
by Lemma 3, we have, for f € LP¥(R"),
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| eras= [ Mn@rair
< | MD@PMKQ)@)dz <C | MH(f)(@)"M(xo)@)de
£ () @pda by lQL
< (/M d +I;)/2k+1g\2kQM (f)( ) |2k+1Q|d>
< C| |M# LP . Z 2—kn 2k+1d
< ClM*()|2s.0 Y (27" D)*e(d)
k=0
< ClMAE)|E, 0 0(d),
thus 1p
< @ /M pd:z:) ( /M# pd:z:)
and

1M ()|l < ClIMF(f)]|Lre.
This finishes the proof.

Lemma 6. Let 0 < a<n,0< D <2", 1 <s<p<n/aand 1/¢=1/p—a/n.
Then

o (H)llae < ClIf]|Lre

and
[[Ma,s(F)llLre < C||f]|Lre-

The proof of the Lemma is similar to that of Lemma 5 by Lemma 4, we omit
the details.

3. Proofs of Theorems

Proof of Theorem 1. It suffices to prove for f € C§°(R™) and some constant
Cy, the following inequality holds:

G L D00) = Colde < Ol 3 Mo (LT (1)@ M T )0,

k=1
Without loss of generality, we may assume Tk are T(k = 1,..,m). Fix a cube
Q = Q(z0,d) and & € Q. We write, by Ti(g) =0,

m

ST TEIM L TR (f) () + i TH3 I M T (f) ()
k=1 k=1

= Ab(x) + Bb(.%') = Ab—bQ (:v) + Bb—bQ (ac),

To(f)(x)
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where
Appy(x) = ZTk’lM(b—bQ)XQQIaTk’2(f)(l‘)+ZTk’lM(b—bQ)mQ)cIaTk’Q(f)(l‘)
k=1 k=1
= Ai(z) + As(z)
and
By_pg(r) = ZTk’gfaM(b—bQ)szTkA(f)(ﬂC)+ZTk’gfaM(b—bQ)mQ)cTk’4(f)(33)
k=1 k=1
= Bi(z) + Ba(x).
Then
1
Abb AQCCQ dr < —/Alzvdx—i— /A2 — Ay (zo)|dx
= L+
Bb b BQ .IO d.I § /|B1 |d$—|— /|B2 B2 I0)|d$
IQI/ [Bo-sa ) @l @
= I3+ 1.

For I, by Holder’s inequality and Lemma 1, we obtain

1
& /Q ITE My e T T 2(F) (1))

1 . 1/s
<@ [ M LT 1) o) dx)

1/s
ol ( /R |M<b_bQ>X2QIaT“(f)(x)de)

N

N

N

1/s
clQ s ( / RUCE bQ||IaT’f’2<f><w>|>de)

N

— S n S— n 1 S 1/5
C1QI %] bl] any 1201721+ (7 /2(02 LT (F)(@)] dw)

|2Q|1—56/n
ClIbllLips Mp,s (LT (f))(E),

IN

thus

m

1
L < Z@ - |Tk)lM(b7bQ)X2QIaTk72(f)(x)|d:E
k=1

Cl[bl|zips Y Mp,s(LT™?(f))(&).

k=1

IN
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For I, by [1][14], we know that

7)) = 3 ale) [ 2D
u=1v=1

where g, < Cu2, [law[p~ < Cu™", [V (x — y)] < Cu/>~ and

Youo(x — Yoo (o —
T R (e

for |z — y| > 2|zo — x| > 0, we get, for z € Q,
|Tk’1M(b7bQ)X(2Q)C LTR2(f)(z) — Tk’lM(bbe)X(QQ)c 1, T*2(f)(o)

< /( o b(y) — bag||K (z, 2 — y) — K (20, m0 — y) |1 I.T*(f) (y)|dy
2 c
- >/ () - bagl R TR2(f) () ldy
j=1 27d<|y—xo|<2it1d
< O Wleam QP [ TR () Hady
j=1 27d<|y—xo|<2itld
< Cl[bl|Li w2 |2j+1Q|ﬁ/n/ Hsdy
= . 1
< Cl|bl|ps 27 ——————— IatTk’2 d
= [16l] Pa; <|2J+1Q|1ﬁ/n /2j+1Q| (NI y>
< CllbllLipy Mp (T T™2(£))(2) Y 27
j=1
< Cl|b||Lip3MB,s(IaTkJ(f))("%)a
where
Qz,z —y) Q(mo,xo—y)} |z — 0] 5.2
H1:’ — yHy = ——— = [I,T2(f)(y)],
o= fwo—ol" o~y e W
o0 Gu
Yuw (33 - y) Yoo (‘TO - y)
Hy = |Gy ()] - )
2 2 e @I~ T
thus

1 m
_[2 < —/ |H4|d£[]
@ o

< Clbllzips Y Mps (LT (f))(#).
k=1
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where
Hy =T My_p0)x 00re e T () (@) = T Miy_b ) a0ye LT (f) (o).

Similarly, by Lemma 4, for 1/r =1/s — a/n,

m

1 k.4 r Hr
E N (FY ISR UKD

- 1/s
< o) lert (/ () = bl (o)) )
k=1
< Cﬂthﬁ}:Mm‘”wmm@%pgpw—w+wh4%
k=1
< Clbllzins D Mpsas(THH(£))(E),
k=1
where ,
= 1 k,4 s ®
Hs = (W /ZQ TH4(f)(@)] dw) .
o= / / - 754 (f)(y)|dyda
o |@| 2a)* r—ylne oo -y
: d
< C bl |Lips |21 Q B/n/ — TR (y)|dy
kz::laz:;” o | 20 d<|y—wo|<2+1d |5100—y|"_0”r1| (Nl
< Ol Y. Y () d(2id)- et (2 gy -1/ (i gyn/s=i e
k=1 j=1
1 k,4 /s
: (I2j+1Qlls<ﬁ+a>/n /ZH1Q|T (N dy)
<

CllblLips Y Mpyas(TH(f)) (@)D 277
j=1

k=1
< CllbllLipy Y Mpsas(TH(f))(#).
k=1

These complete the proof of Theorem 1.

Proof of Theorem 2. It suffices to prove for f € C§°(R"™) and some constant
Cy, the following inequality holds:

|Q|1+5/n/lTb —Co|dz < C||bl|Lip, Z (Lo T 2(f))(2)+Ma,s(T*(f))(2))-

k=1
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Without loss of generality, we may assume T%! are T'(k = 1,...,m). Fix a cube
Q = Q(zg,d) and Z € Q. Similar to the proof of Theorem 1, we have

1
[O[FAm /Q Ty (f)(x) — Aa(20) — Ba(wo)| dz
< W/QMMI)MQ:—I—W/QMQ(Q:)—AQ(IO)MQZ

1 1

= Iy+ I+ Ir + Is.

_|_

By using the same argument as in the proof of Theorem 1, we get, for 1/r =
1/s —a/n,

IN

o m 1 . 1/s
L o< @ Z(@ [ M LT (1)) d:c)
k=1 R

m 1/s
< QY QI ( | v - bQ||faT’“2<f><x>|>de>
k=1 2Q
—-B/n - —1/s B/n 1/s 1 k,2 s e
< CIQIE S QI bl i, 12Q1/ Q1Y = / L T2 (f)()| e
2 Q] oo
< C||b||Lip5 ZMS(IaTkJ(f))("%)a
k=1
m 1 o0
o<y [ b(y) — b
6 | | ; |Q| Q]; QJdS\y—mO|<21'+1d| ( ) 2Q|
<K (2,2 — y) — K (20,70 — )| TaT*(£) ()| dyda
m O [e'e) ] o0 Gu
< Qs & / bl i |22 QPP / o ()
kz::l Q) Q; o 2jdg|y—z0|<2j+1d;;
Yuv T — Yuvx -
o [Yuule =) _ V(2o ny)‘IIaT’“’z(f)(y)ldydw
w—g" w0l
<

a1
Cllbll Lips Q1 Z@
k=1

> ; n r—X
></ > 127711 / el 2|+1 1o T2 (£)(y)ldyda:
Qi 2 yl

Jd<|y—mo|<2i+1d |20 —
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1 1/s
< C|b||Lip,d="? (27d)? idyn (7 I T*2(f)(y de)
|16l ips I;gzl o) n+1( ) 210 2MQI (W)l
< OIIbIILwﬁZM ITR2(f))(&) ) 29~
k=1 j=1
< Clbllzip, Y ML ()(@), L
I7 = k:r@l B/"Z |Q| |IO¢M(bbQ)X2QTk)4(f)(x)|Td:E>
m 1/s
< clar S ([ e - ol (@)
k=1 \/2Q
< ClfbllLips Y 1QITP/m=Hr2Q)P Q) e me/m
k=1
1 1/s
X | —— TFA(f)(x de)
(g [ )
< ClIbllLip, ZMas (TH4(£)) (%),
Is < QI Bin= 12//2@ y) — bag]
Tk dydx
|x_y|n = |$O_y|,, = T%%(f)(v)|dy
< C|Q|_B/nZZHbHLiPﬁ'ZjJ’_lQ'ﬂ/n
k=1 j=1
<[ g )ldy
29 d<|y—wo|<2i+1d |To — Y[ mH!
< CHbHLZ_pBZZd*ﬁ(2jd)ﬁd(2jd)fn+a71(de)n(lfl/s)(de)n/s—a
k=1 j=1
o [
|20H1Q[1=se/n Joii1 y)Iray
<

k=1

Cllbllnips 3 Mas(TH4(F))(F) Y 270D
j=1

< COb]|Lipg Z Ma,s(TkA(f))(ff)-

k=1

These complete the proof of Theorem 2.
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Proof of Theorem 3. It suffices to prove for f € C§°(R"™) and some constant
Cy, the following inequality holds:

@1, 6 — Colds < Clllsno ST (1)) + a4

Without loss of generality, we may assume T%! are T'(k = 1,....,m). Fix a cube
Q = Q(zg,d) and Z € Q. Similar to the proof of Theorem 1, we have

|Q|/ |Tb A2($0) BQ($Q)|d$< |Q|/ |A1 |d$

|A2 AQ I0)|d$ + — / |B1 |dI + — / |B2 BQ($0)|dI
1al / Q| Q|
= Iy + Lo + I11 + I12.

By using the same argument as in the proof of Theorem 1, we get, for 1 < r; <s,
1 <p < min(s,n/a) with 1/ro =1/p—a/n,

- 1 k,1 k,2 Y
Iy < Z <@/n T M(b_bQ)XQQIO‘T ’ (f)(x)|”d:z:>
_m 1/r1
< oY jQryn ( /2Q<|b<w>—bQ||IaT’“2<f><x>|>“dx)
k=1
m Lo 1/s 1 p ) (s—r1)/sr1
< C 1,177 Sd — b — bp |/ 8T g,
< ,§<IQI/ L) (g ., oo =l v)
< C||b||BMoZMS(IQT’“Q(f))(a?),
k=1
m 1 o0
R[S [ b) = bl e — )~ Kaa = )| T () o) dyds
k=1"""0 I=1l9ia<|y—wo|<2i+1d
m C o0 o0 Gu
< _ b —b UV
3Ly Ly o)~ 0l 2l

Yuo(® —y)  Yuu(wo —y)

|z —y|" lzo — y|™

1 TH2(f)(y)|dydz




IN

IN

IN

IN

IN

N

N

IN

IN

IN

IN

N

Boundedness for TTO Associated with SIO with Variable C-Z Kernel 411

NE

O / '] / | x0| .
1Ql bly) — g e T dydx
Q) Q; 27 d<|y— I0‘<2]+1d| (v) 2Q|| y|n+l| (f)(y)|dy

el
Il

1

i i ﬁ (/ZJ'HQ |b(y) - bQ|Sldy) h

k=1 j=1

" (/QHIQ'IQT*2< )l dy)l/sdx

1/s
Cllllinio Y52 (pﬁ4Q|2H%;Lﬂwﬂuxmme

kl]l

Q

Cllbllsaro ZM LT"2(f))(&) erj

k=1

CllbllBao ZM LTH2())(#),

k=1

3 ! k.4 . 1/rs

; (@ /Rn o Mb—bo)xao T (f) ()] 2d$>

QQrUm§5</ W%>—blﬁﬂﬂﬂ<nwd>”p
k=1 \/2Q @

- s-p)/pp 4 1s
_ ps/(s—p) - k,4 s
C3 (g1 [, e~ vap ) (g [ )

Cl[bllBrmo Z Mo, o(TH*())(),

1 1

1 - T dydz

or Z//2 z gy Jzg — gl T52(f)(y)ldy
d
¢ / b(y) = baol ——— agr 1T () () Idy
;J 1 21d<|y*xo\<21+1d| W 2Q||950—y|"_°“"1| ()
. . . 1 , 1/s’
C d(27 )~ nra=1(9i qyn(1=1/s) (9] gyn/s— ( _ by) — bol* dy)

Z;Z;< ) (2/d) (2d) BTG Jyyr., M) ~ba
" ("*“‘}“‘———L/n |T**%fd<yMde>l/S

|2J+1Q|1—sa/n 241

o0

C||b||BMOZMas (THA())(E) D 277 < C||b||BMOZMas (TH4()(&).

k=1 J=1 k=1
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This completes the proof of Theorem 3.

Proof of Theorem 4. Choose 1 < s < pin Theorem 1 and set 1/r = 1/p—a/n.
We have, by Lemmas 3 and 4,

ITo(H)le < IM(To(f))llze < CIM*(To(f))ll2a

m

< Olbllzips Y (1Mps (LT () 2o + [ Mpra,s(TH () 24)
k=1

< Olbllzips Y HaT*2(H)ller + 1T (f)]|2e)
k=1

< ClbllLips D UT*2(H)lle + 1flle) < ClIbl|Lips 1 £] 2o
k=1

This completes the proof of Theorem 4.

Proof of Theorem 5. Choose 1 < s < p in Theorem 1 and set 1/r = 1/p—a/n.
We have, by Lemmas 5 and 6,

1T (H)llLoe < UM (To(f))l|zae < CIMHF(To(f))]Las

< Olbllzips D (1Mo s (LT (f) | pae + [Mpras(T5(F))l| o)

k=1

< Olbllips Y MaTH2(F)llnre + 1T () Lre)
k=1

< Olbllips Y UTH*(Dlprs + [ lzre) < ClblLips 1 f | 2o
k=1

This completes the proof of Theorem 5.

Proof of Theorem 6. Choose 1 < s < p in Theorem 2. We have, by Lemmas
2, 3 and 4,

T () e < C

1
w0 g [ W)~ Coldy

La
< Clbllzips D (IM(IaT*(F)| o + | Mo, s (T5* ()] £0)
k=1
< Clbllzis Y (HaT**(F)llza + 1T ()l r)
k=1

< Olbllzips D UTH*(H)llze + [1flze) < ClIbl|zips £ 2o
k=1

This completes the proof of the theorem.
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Proof of Theorem 7. Choose 1 < s < p in Theorem 3, we have, by Lemmas
3 and 4,

1T (f)llLe < IM(To(f))llze < CIMHF(To(H))] s

Clbllsrro Y (IMs(LaTH*(F)llze + [ Ma,s (T () 24)

<
k=1

< Olbllsmo Y (T (e + I T ()| o)
k=1

< OlPllsmo YT (e + 1 fllze) < Cllbllsacol fllze-
k=1

This completes the proof of Theorem 7.

Proof of Theorem 8. Choose 1 < s < p in Theorem 3, we have, by Lemmas
5 and 6,

1T ()llLoe < UM(To(f))llzae < CIMP(To(f))]ar

Clbllsao Y (IMo(LaTH* ()l + [ Mas (T (f)) ]| Loe)

<
k=1

< Clbllzmo Y (HaTH*(H)llzae + (1T () Lre)
k=1

< Clbllzmo Y (ITH*(H)llpre + [ fllzre) < Cllbllzaro | fll oo
k=1

This completes the proof of Theorem 8.
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