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STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES OF
FUNCTIONS AND SOME PROPERTIES IN 2-NORMED SPACES

Sevim Yegiil and Erding¢ Diindar

Abstract. In this study, we introduced the concepts of pointwise and uniform conver-
gence, statistical convergence and statistical Cauchy double sequences of functions in
2-normed space. Also, were studied some properties about these concepts and investi-
gated relationships between them for double sequences of functions in 2-normed spaces.
Keywords: Uniform convergence, Statistical Convergence, Double sequences of Func-
tions, Statistical Cauchy sequence, 2-normed Spaces.

1. Introduction and Background

Throughout the paper, N and R denote the set of all positive integers and the set of
all real numbers, respectively. The concept of convergence of a sequence of real num-
bers has been extended to statistical convergence independently by Fast [16] and
Schoenberg [35]. Gokhan et al. [21] introduced the concepts of pointwise statistical
convergence and statistical Cauchy sequence of real-valued functions. Balcerzak et
al. [5] studied statistical convergence and ideal convergence for sequence of func-
tions. Duman and Orhan [7] studied p-statistically convergent function sequences.
Gokhan et al. [22] introduced the notion of pointwise and uniform statistical conver-
gence of double sequences of real-valued functions. Diindar and Altay [8,9] studied
the concepts of pointwise and uniformly Z-convergence and Z*-convergence of dou-
ble sequences of functions and investigated some properties about them. Also, a lot
of development have been made about double sequences of functions (see [4,14,20]).

The concept of 2-normed spaces was initially introduced by Gahler [18,19] in
the 1960’s. Giirdal and Pehlivan [25] studied statistical convergence, statistical
Cauchy sequence and investigated some properties of statistical convergence in 2-
normed spaces. Sharma and Kumar [32] introduced statistical convergence, statis-
tical Cauchy sequence, statistical limit points and statistical cluster points in prob-
abilistic 2-normed space. Statistical convergence and statistical Cauchy sequence
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of functions in 2-normed space were studied by Yegiil and Diindar [37]. Sarabadan
and Talebi [31] presented various kinds of statistical convergence and Z-convergence
for sequences of functions with values in 2-normed spaces and also defined the no-
tion of Z-equistatistically convergence and study Z-equistatistically convergence of
sequences of functions. Futhermore, a lot of development have been made in this
area (see [1-3,6,15,23,24,26-29,33,34]).

2. Definitions and Notations

Now, we recall the concepts of double sequences, density, statistical convergence,
2-normed space and some fundamental definitions and notations (See [5,10-13,17,
19-21,23-25,30-32, 36]).

Let X be a real vector space of dimension d, where 2 < d < co. A 2-norm on X
is a function [|-,-]| : X x X — R which satisfies the following statements:

|z, y|| = 0 if and only if « and y are linearly dependent.

(i

(i) [z, yll = lly, |-

)
)

(i) [laz,yll = [oflz, yll, a € R.
)

(i) llz,y + 2l < [lo, yll + [l =]-

The pair (X, ||-,-||) is then called a 2-normed space. As an example of a 2-normed
space we may take X = R? being equipped with the 2-norm ||z, y|| := the area of
the parallelogram based on the vectors x and y which may be given explicitly by
the formula

|2, yl| = |z1y2 — 22y1]; == (v1,22), ¥y = (y1,92) € R%

In this study, we suppose X to be a 2-normed space having dimension d; where
2 <d< .

Let (X, ||.,.]|) be a finite dimensional 2-normed space and v = {uy,--- ,uq} be
a basis of X. We can define the norm ||.||cc on X by ||z]cc = max{||z,u : i =
1,....d}.

Associated to the derived norm |||, we can define the (closed) balls B, (z,¢)
centered at x having radius € by By (z,¢) = {y : ||z — y|]|loo < €}, where ||z — y|loo =
max{|lz —y,u;],7 =1, ...,d}.

Throughout the paper, we let X and Y be two 2-normed spaces, {fn}nen and
{gn}nen be two sequences of functions and f, g be two functions from X to Y.

The sequence of functions {fy}nen is said to be convergent to f if f,(z) —
f(@)(||-,-|ly) for each z € X. We write f, — f(||.,.|ly). This can be expressed by
the formula (Vy € Y)(Vz € X)(Ve > 0)(3no € N)(Vn > no)| fu(z) — f(2),y]] <e.
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If K C N, then K,, denotes the set {k € K : k < n} and |K,| denotes the
cardinality of K. The natural density of K is given by §(K) = nh_)rrgo LK, |, if it
exists.

The sequence {f,}nen is said to be (pointwise) statistical convergent to f, if
for every e > 0, lim 1[{n € N : [|fu(z) — f(z),z| > €} = 0, for each x € X
and each nonzeron;éo Y. It means that for each x € X and each nonzero z € Y,
I fr(z) = f(z), z]| <e, a.a. (almost all) n. In this case, we write

st = T ([ ful@), 2l = 172l or fu = F(l Iy

The sequence of functions {f,} is said to be statistically Cauchy sequence, if for
every € > 0 and each nonzero z € Y, there exists a number k = k(e, z) such that
5({n € N : [|fu(2) — fulw),2l| > £}) = 0, for each o € X, Le., |[fu(z) — fule), 2| <
€, a.a. I.

Let X be a 2-normed space. A double sequence (z,,,) in X is said to be
convergent to L € X, if for every z € X, lm ||mn — L, z|| = 0. In this case, we

m,n— o0
write lim @, = L and call L the limit of (2,y,).
n,m—0o0

Let K € N x N. Let K,,, be the number of (j, k) € K such that j <m, k <n.

That is, K = [{(J, k) : § < m, k < n}|, where |A| denotes the number of elements

in A. If the double sequence {£=21 has a limit then we say that K has double

Kmn
mn °

natural density and is denoted by dz(K) = lim

m,n— 00
A double sequence x = () of real numbers is said to be statistically conver-
gent to L € R, if for any € > 0 we have d2(A(g)) = 0, where A(e) = {(m,n) €
N X N: |y, — L] > €}.
Let {xmn} be a double sequence in 2-normed space (X,|.,.||). The double
sequence () is said to be statistically convergent to L, if for every ¢ > 0, the set
{(m,n) € Nx N: ||&pmn — L, z|| > £} has natural density zero for each nonzero z in

X, in other words (x,,,) statistically converges to L in 2-normed space (X, ||.,.||)
if lim -L|{(m,n) : [|#mn — L, 2| > €}| = 0, for each nonzero z in X. It
m,n—o0
means that for each z € X, ||@mn — L, 2| < €, a.a. (m,n). In this case, we write
st— lim [z 2l = 1L,z
m,n—o0
A double sequence (z,,,) in 2-normed space (X, ||.,.||) is said to be statistically

Cauchy sequence in X if for every € > 0 and every nonzero z € X there exist two
number M = M(e,z) and N = N(e, z) such that da({(m,n) € NX N : [|[2pn, —
zyn, 2| = €}) =0, ie., for each nonzero z € X, ||y — 2mn, 2| <&, a.a. (m,n).

A double sequence of functions {f,.,} is said to be pointwise convergent to f
on a set S C R, if for each point x € S and for each € > 0, there exists a positive
integer N = N(x,¢) such that |fmn(z) — f(z)] <e, for all m,n > N. In this case

we write  lim  fon(2) = f(2) or fimn — f,on S.
m,n— oo

A double sequence of functions { fi,,} is said to be uniformly convergent to f
on a set S C R, if for each € > 0, there exists a positive integer N = N (¢) such that



708 S. Yegiil and E. Diindar

for all m,n > N implies |fimn(z) — f(2)] < e, for all € S. In this case we write
fmn = f7 on S.

A double sequence of functions {f,,} is said to be pointwise statistically con-
vergent to f on a set S C R, if for every € > 0,

1
i L |{(m,n),m <7 and 1< | fun(@) — @) 2 2} =0,
1,j—00 1]
for each (fixed) z € S, i.e., for each (fixed) z € S, |fmn(x) — f(2)| <&, a.a. (m,n).
In this case, we write st — liILl fmn(x) = f(x) or fimn —st f,on S.

A double sequence of functions {f,,,} is said to be uniformly statistically con-
vergent to f on a set S C R, if for every € > 0,

1
Jim L |{(m,n),m <7 and 1< | fan(@) — @) 2 2} =0,
2,]—00 1]
forall z € S, ie., for all x € S, |fin(z) — f(2)] < &, a.a. (m,n). In this case we
write frn, = f, on S.

Let {fmn} be a double sequence of functions defined on a set S. A double
sequence {fmn} is said to be statistically Cauchy if for every e > 0, there exist
N(= N(e)) and M (= M (e)) such that |fmn(z) — fun(x)| < € a.a. (m,n) and for
each (fixed) z € S, i.e.,

1
lim —[{(m,n),m <i and n <j:|fmn(z) = fun(@)] =} =0

1,]—00 1)
for each (fixed)x € S

Lemma 2.1. [9] Let f and fpn, m,n = 1,2, ..., be continuous functions on D =
[a,b] C R. Then fmn = f on D if and only if lUm ¢, = 0, where cppn =
m,n—oo

max | fon (@) = 2.

3. Main Results

In this paper, we study concepts of convergence, statistical convergence and statis-
tical Cauchy sequence of double sequences of functions and investigate some prop-
erties and relationships between them in 2-normed spaces.

Throughout the paper, we let X and Y be two 2-normed spaces, { frn } (m,n)enxn
and {gmn } (m,n)enxn be two double sequences of functions, f and g be two functions
from X to Y.

Definition 3.1. A double sequence { f,.,} is said to be pointwise convergent to
f if, for each point z € X and for each € > 0, there exists a positive integer
ko = ko(z,€) such that for all m,n > ko implies || fmn(z) — f(2), 2| < &, for every
z € Y. In this case, we write frn — f(||.,.|ly)-
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Definition 3.2. A double sequence {f,,,} is said to be uniformly convergent to
f, if for each e > 0, there exists a positive integer kg = ko(¢) such that for all
m,n > ko implies || fmn(x) — f(2),2]| < &, for all z € X and for every z € Y. In
this case, we write frn = f(||.,-|lv)-

Theorem 3.1. Let D be a compact subset of X and f and fun, (m,n=1,2,...),
be continuous functions on D. Then,

S = F(I]5 ly)

on D if and only if

lim ¢y =0,
m,n—00

where Cpn = max [ frn (@) = f(2), 2]

Proof. Suppose that f.. = f(||.,.]ly) on D. Since f and f,,, are continuous
functions on D, so (fmn(z) — f(z)) is continuous on D, for each (m,n) € N x N,
Since frmn = f(||.,.]ly) on D then, for each € > 0, there is a positive integer
ko = ko(e) € N such that m,n > kg implies

| (&) = £(@),2ll < 2

for all x € D and every z € Y. Thus, when m,n > kg we have
€
Cmn = gleag||fmn($) = fl@), 2] < 3 <E.

This implies
lim ¢, =0.
m,n— 00

Now, suppose that

lim ¢y = 0.
m,n—00

Then, for each € > 0, there is a positive integer ko = ko(¢) € N such that

< = —
0 < cmm gleagnfmn(x) f(fE),Z” <g,

for m,n > ko and every z € Y. This implies that || fn(z) — f(2), 2] < ¢, for all
x € D, every z € Y and m,n > ko. Hence, we have

fmn = f(”v '||Y)7

forallz € D and every z €Y. O

Definition 3.3. A double sequence {f,,,} is said to be (pointwise) statistical
convergent to f, if for every € > 0,

lim i|{(m,n),m <i,n<j:|fmn(x) = fl2), 2] > 5}| =0,

4,J—00 1]
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for each (fixed) € X and each nonzero z € Y. It means that for each (fixed) z € X
and each nonzero z € Y,

[ fmn(x) — f(2),2|| <&, a.a. (m,n).

In this case, we write

st — lim ||fmn($)_z|| = ||f(:E),Z|| or  fmn —st f(Hv”Y)

m,n— 00

Remark 3.1. {fmn} is any double sequence of functions and f is any function from X
to Y, then set

{(m,n) E NXN: | fmn(z) — f(z),2]|| > €, for each x € X and each z €Y} =0,

since if z = 0 (0 vektor), || fmn(x) — f(x),z]| =0 2 € so the above set is empty.
Theorem 3.2. If for each x € X and each nonzero z €Y,
st— M |[fmn(2), 2l = 1 f(2), 2l and st — lim || fmn(@), 2] = llg(x), 2]
then, for each x € X and each nonzero z € Y

[ fmn (), 2] = llgmn (), 2|
(i.e., f=g).

_>
Proof. Assume f # g. Then, f — g # 0, so there exists a z € Y such that f, g and
z are linearly independent (such a z exists since d > 2). Therefore, for each z € X
and each nonzero z € Y,

I f(x) — g(x), || =2, with > 0.
Now, for each z € X and each nonzero z € Y, we get

2 = | f(x) —g(x), 2] = [(f(2) = frnn(@)) + (fmn(z) = 9(2)), 2|
< fmn () = g(2), 2[4 [ frn (2) = f(2), 2]

and so
{(m,n) € NxN: || frun () —g(2), 2| < e} € {(m,n) € NXN: || frun ()= f (2), 2|| = €}
But, for each z € X and each nonzero z € Y,
dy ({(m,n) € NXN: || frun(2) — g(2), 2[| < }) =0,
then contradicting the fact that frn — st g(||.,-ly). O

Theorem 3.3. If {gmn} is a convergent sequence of double sequences of functions
such that fimn = gmn, 6.6. (m,n) then, {fmn} is statistically convergent.
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Proof. Suppose that for each z € X and each nonzero z € Y,
da({(m, 1) € NX N fun(2) # gunn(2)}) =0 and  lim_lgmn(2), 2] = | £(2), =]

then for every € > 0,
{(m,n) e NXN: |[fmn(z) — f(2), 2] Z €}

C {(m,n) € NxN: [gmn(2) - f(z), 2] = €}

U{(m,n) € N X N: finn(2) # gmn(z)}-

Therefore,
(3.1) da({(m,n) € NN |[frun(2) — f(2), 2] = €})
< d2({(m,n) € NXN: |lgmn(z) — f(2), 2] = €)
+d2({(m,n) € NXN: frn(2) # gmn}).
Since lig [lgmn(x), z|| = || f(x), z||, for each € X and each nonzero z € Y, the

set {(m,n) € NXN : ||gmn(z) — f(z),2]| > €} contains finite number of integers
and so

dz2({(m,n) € N X N: ||gmn(z) — f(2),2]| > €}) = 0.
Using inequality (3.1) we get for every € > 0

dy({(m,n) € NXN: |[fun(2) = f(2), 2] = €}) = 0,

for each x € X and each nonzero z € Y and so consequently

st— 1| frun(2). 2l = [1£(2). 2]

O

Theorem 3.4. If st — lim || frn(x), 2| = || f(x), 2| for each x € X and each
nonzero z € Y, then { fmn} has a subsequence of function { fm,n, } such that

i (|, (@), 2] = £ (), 2]
for each x € X and each nonzero z € Y.
Proof. Proof of this Theorem is as an immediate consequence of Theorem 3.3. O

Theorem 3.5. Let a € R. If for each x € X and each nonzero z € Y,

st— tim | fun(@). 2] = [f@). 2]l and st— lim_[gmn(a). 2] = llg(@). 2]
then
(i) st~ | fun(2) + gonn(2). 2] = | /(z) + g(2). 2]| and

(ii) st— lim_ [l fun(@), 2] = af(z).2].
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Proof. (i) Suppose that
st= dim | fmale), 2] = [5(0) 2l and st lim_[gnao).2] = o).

for each z € X and each nonzero z € Y. Then, §(K;) =0 and 6(K3) = 0 where

2)
K1 = Ki(e,2) : {(mn) € Nx N | frun(a) = f(2),2]] > %}
and
Kzsz(s,z):{(m,n)eNxN:Hgmn(a@)— ), z|| > }
for every € > 0, each x € X and each nonzero z € Y. Let
K =K(e,2) ={(m,n) € NxN: [[(fmn(2) + gmn(x)) — (f(z) + 9(2)), 2| = €}.

To prove that §(K) = 0, it suffices to show that K C K7 U Ks. Let (mg,no) € K
then, for each z € X and each nonzero z € Y,

(3.2) [(fimono (%) + Gmono (%)) = (f(2) + g(2)), 2| = &.

Suppose to the contrary, that (mg,n¢) ¢ K3 U Ko. Then, (mo,no) ¢ K; and
(mo,no) g Ko, If (mo,no) g K; and (mo,no) g K5 then, for each x € X and each
nonzero z € Y,

I frsono (@) = F@), 20l < 5 and llgmgno (@) = g(a), 21| < 5.

Then, we get

[(fimono (%) + Gmono (%)) = (f(2) + g(2)), 2|
< N fmono (2) = (@), 2] + |gmono (€) = g(2), 2|

for each z € X and each nonzero z € Y, which contradicts (3.2). Hence, (mg,no) €
KiUKs and so K C K1 UKs.

(ii) Let @ € R (a # 0) and for each z € X and each nonzero z € Y,
st— tim | fun@). 2] = [£@). 2.

Then, we get

€
da ({om ) € NN ) = 10,21 2 £ 1) =0,
Therefore, for each x € X and each nonzero z € Y, we have

{(m,n) e NxN: [[afmn(z) — af (), 2] = €}
= {(m,n) e NxN: |al| fmn(x) — f(2), 2[| > €}

- {<m,n> ENX N | frnle) — fla).2] > m}
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Hence, density of the right hand side of above equality equals 0. Therefore, for each
x € X and each nonzero z € Y, we have

st— 1im_[afma(@), 2] = laf (@), 2],

O

Theorem 3.6. A double sequence of functions { fn} is pointwise statistically con-

vergent to a function f if and only if there exists a subset K, = {(m,n)} CNx N,

m,n = 1,2,... for each (fixzed) x € X da(K;) = 1 and lim || fon(2), 2] =
m,n—00

[ f(x), z|| for each (fized) x € X and each nonzero z € Y.

Proof. Let sto — lim || fn(2), 2| = ||f(2), 2||. For r =1,2,... put
m,n— oo

Kw:{wmweNxNﬂmm@%ﬁzé}

and 1
M,z ={(m,n) € NXN: | fon(z), 2| < ;}

for each (fixed) x € X and each nonzero z € Y. Then, dz(K, ) =0 and

(33) le B} Mgw D...D Mi@ B Mi—i—l,m D ...
and
(3.4) do(M,p) =1, r=1,2, ..

for each (fixed) x € X and each nonzero z € Y.

Now, we have to show that for (m,n) € M, ;, {fmn} is convergent to f. Suppose
that {fmn} is not convergent to f. Therefore, there is € > 0 such that

[ frn (), 2l = [ f(2), 2] = €

for infinitely many terms and some z € X and each nonzero z € Y. Let

M.z = {(m,n) : | fmn(x) — f(2), 2] <}
and e > 1 (r = 1,2,...). Then, d2(M.,) = 0 and by (3.3) M, , C (M.,). Hence,
d2(M, ;) = 0 which contradicts (3.4). Therefore, {fmn} is convergent to f.
Conversely, suppose that there exists a subset K, = {(m,n)} C N x N for each
(fixed) € X and each nonzero z € Y such that dz(K,) = 1 and hg [ frn(x), 2] =

|| f(x), 2|, i-e., there exist an N(x,¢) such that for each (fixed) x € X, each nonzero
z €Y and each € > 0, m,n > N implies || fmn(x), 2| = || f(2), || < . Now,
Keo ={(m,n) : | fmn(2), 2| > €} CNXN—{(myi1,n841), (My42,nN42), -}

for each (fixed) x € X and each nonzero z € Y. Therefore, do(K. ) <1—1=0 for
each (fixed) = € X and each nonzero z € Y. Hence, { f,,} is pointwise statistically
convergent to f. O
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Definition 3.4. A double sequence of functions { f,,,} is said to uniformly statis-
tically convergent to f, if for every € > 0 and for each nonzero z € Y,

lim —~{(m,n),m < i,n < g : | fmn(@) — F(@), 2] > £} = 0,

1,j—00 1]
for all x € X. That is, for all x € X and for each nonzero z € Y
(3.5) [fmn(z) = f(2),2]] <&, aa (m,n).

In this case, we write fomn =st (||, -]]v)-

Theorem 3.7. Let D be a compact subset of X and f and {fmn}, m,n=1,2,...
be continuous functions on D. Then,

fmn :;st f(”’ ||Y)
on D if and only if
Sty — lim ||Cmn($)uz|| = O’
m,n—o0

where Cpn = max [ frn (@) = f(2), 2]

Proof. Suppose that {f,.,} uniformly statistically convergent to f on D. Since f
and {fmn} are continuous functions on D, so (fmn(z) — f(x)) is continuous on D,
for each m,n € N. By statistically convergence for ¢ > 0

dy({(m,n) € NXN: |[fun(2) — f(2), 2] = €}) = 0,

for each x € D and for each nonzero z € Y. Hence, for € > 0 it is clear that

€
Cmn = WAX || frun (€) = f(2), 2| 2 | fun (@) = f(2), 2]l = 5

for each z € D and for each nonzero z € Y. Thus we have

st— lim ¢, =0.
m,n—00
Now, suppose that st — lim ¢, = 0. We let following set
m,n—oo

A(e) = {(m,n) € N x N max|| frn(z) - f(2), 2]| = €},

for € > 0 and for each nonzero z € Y. Then, by hypothesis we have d2(A(g)) = 0.
Since for € > 0

MaX | firn (2) = f(2), 2l| 2 |l fin(2) — f(2), 2l 2 €
we have
{(m,n) e NXN: || frn(z) — f(2), 2] = €} C A(e)

and so
d2({(m,n) € NX N: || frun(z) — f(2), 2] 2 €}) =0,

for each € D and for each nonzero z € Y. This proves the theorem. [
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Now, we can give the relations between well-known convergence models and our
studied models as the following result.

Corollary 3.1. () foun = (-5 lv) = foon — FUI Aly) = fon —st LUl - ly)-
(""")fmn = f(||7 ||Y) = fmn st f(”v HY) = fmn —st f(||7 ||Y)

Now, we give the concept of statistical Cauchy sequence and investigate rela-
tionships between statistical Cauchy sequence and statistical convergence of double
sequences of functions in 2-normed space.

Definition 3.5. The double sequences of functions { f,,,} is said to be statistically
Cauchy sequence, if for every € > 0 and each nonzero z € Y, there exist two numbers
k =k(e, z) , t =t(e, z) such that

da({(m,n) € N X N: || frun(z) — fre(x), 2| > €}) =0, for each (fixed) = € X,
i.e., for each nonzero z € Y,
[fam(z) = fie(2), 2| <&, a.a. (m,n).

Theorem 3.8. Let {fmn} be a statistically Cauchy sequence of double sequence of
functions in a finite dimensional 2-normed space (X, ||.,.]|). Then, there exists a
convergent sequence of double sequences of functions {gmn} in (X, ||.,.||) such that

fmn = gmn, for a.a. (m,n).

Proof. First note that {fmn,} is a statistically Cauchy sequence of functions in
(X, |I-/lsc). Choose a natural number k(1) and j(1) such that the closed ball B. =
Bu(fr(1yj) (), 1) contains fi,, () for a.a. (m,n) and for each € X. Then, choose
a natural number k(2) and j(2) such that the closed ball By = By(fx(2)j2) (), 3)
contains fy,, () for a.a. (m,n) and for each z € X. Note that B2 = Bl N By also
contains fy,n(z) for a.a. (m,n) and for each z € X. Thus, by continuing of this
process, we can obtain a sequence {BJ,},>1 of nested closed balls such that diam
(B;) < 5-. Therefore,

() B.. = {h()},

where h is a function from X to Y. Since each B], contains fy,,(z) for a.a. (m,n)
and for each x € X, we can choose a sequence of strictly increasing natural numbers
{S;}r>1 such that for each z € X,

1 1
%H(m,n)ENXN.fmn(x)gBuH <;, if m,n>S,.

Put T, = {(m,n) e NxN:m,n > S,, fmn(z) & B]} for each z € X, for all
r>1and R = Uf’;l R,. Now, for each x € X, define the sequence of functions
{gmn} as following

gmn(:t):{ h(z) , if (mn)e RxR

fmn(x) otherwise.
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Note that, lig gmn(z) = h(x), for each z € X. In fact, for each € > 0 and

for each x € X, choose a natural number m such that ¢ > % > 0. Then, for each
m,n > S, and for each x € X, gpn(x) = h(z) or gmn(z) = fmn(z) € Bl and so in
each case

1gmn(z) = h(z)]loo < diam(By,) <

or—1 '
Since, for each =z € X,

{(m,n) € NXN: gmn(z) # fu(x)} € {(m,n) € NXN: fr,(z) & B},

we have
%H(m’n) e NxN: gmn(iv) 7é fmn(x)}l
1 r
< —[{(n,m) ENXN: frun(z) ¢ By}
1
< -,
r
and so

da({(m,n) e N X N: gpmn() # frn(z)}) = 0.
Thus, gmn(z) = fimn(x) for a.a. mun and for each z € X in (X, ||.]|oc)- Suppose
that {u1,...,uq} is a basis for (X, ||.,.||). Since, for each = € X,
im |lgmn(z) = h(@)|oc =0 and ||gmn(x) = h(z), will < ||gmn(z) = h(2)]o

m,n— 0o

for all 1 <14 < d, then we have

lim ||gmn(x) — h(z), 2] = 0,

m,n— 0o

for each € X and each nonzero z € X. It completes the proof. O

Theorem 3.9. The sequence { fimn} is statistically convergent if and only if { frn}
is a statistically Cauchy sequence of double sequence of functions.

Proof. Assume that f be function from X to Y and st — lim || fmn(z), 2| =
m,n— oo

I f(x), || for each x € X and each nonzero z € Y and ¢ > 0. Then, for each z € X
and each nonzero z € Y, we have

IS
5

Foun ) = £ (@), 211 < 2

a.a. (m,n).

If k = k(e,2) and t = (e, z) are chosen so that for each # € X and each nonzero
z€eY,
€

Feel) = £), 2l < 5
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and so we have

[ fran () = fre(@), 2l < | fonn
< +

—~

z) = f(@), 2l + 1f () = fra (), 2]

=g, a.a. (m,n).

N ™

€
2
Hence, {fmn} is statistically Cauchy sequence of double sequence of functions.

Now, assume that {f,,,} is statistically Cauchy sequence of double sequence of
function. By Theorem 3.8, there exists a convergent sequence {gm,} from X to Y
such that fi.n, = gmn for a.a. (m,n). By Theorem 3.3, we have

st —lim || frun (2), 2| = [ f(2), 2],

for each x € X and each nonzero z € Y. []

Theorem 3.10. Let {fn} be a double sequence of functions. The following state-
ments are equivalent

(0) {fmn} is (pointwise) statistically convergent to f(x),
(13) {fmn} is statistically Cauchy,

(#i1) There ewxisits a subsequence {gmn} of {fmn} such that lim | gmn(x), 2| =
m,n— oo

I1f (), 2]

Proof. Proof of this Theorem is as an immediate consequence of Theorem 3.6 and
Theorem 3.9. O

Definition 3.6. Let D be a compact subset of X and { f,.n, } be a double sequence
of functions on D. {f.} is said to be statistically uniform Cauchy if for every ¢ > 0
and each nonzero z € Y, there exists k = k(e, z), t = t(, z) such that

d2({(m,n) € NX Nt || frun(2) — fre(z), 2] =2 €}) =0
forall z € X.

Theorem 3.11. Let D be a compact subset of X and {fmn}, be a sequence of
bounded functions on D. Then, {fmn} is uniformly statistically convergent if and
only if it is uniformly statistically Cauchy on D.

Proof. Proof of this theorem is similar the Theorem 3.9. So, we omit it. O
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