FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. Vol. 33, No 5 (2018), 705–719

https://doi.org/10.22190/FUMI1805705Y

# STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES OF FUNCTIONS AND SOME PROPERTIES IN 2-NORMED SPACES

## Sevim Yegül and Erdinç Dündar

Abstract. In this study, we introduced the concepts of pointwise and uniform convergence, statistical convergence and statistical Cauchy double sequences of functions in 2-normed space. Also, were studied some properties about these concepts and investigated relationships between them for double sequences of functions in 2-normed spaces. Keywords: Uniform convergence, Statistical Convergence, Double sequences of Functions, Statistical Cauchy sequence, 2-normed Spaces.

## 1. Introduction and Background

Throughout the paper,  $\mathbb{N}$  and  $\mathbb{R}$  denote the set of all positive integers and the set of all real numbers, respectively. The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [16] and Schoenberg [35]. Gökhan et al. [21] introduced the concepts of pointwise statistical convergence and statistical Cauchy sequence of real-valued functions. Balcerzak et al. [5] studied statistical convergence and ideal convergence for sequence of functions. Duman and Orhan [7] studied  $\mu$ -statistically convergent function sequences. Gökhan et al. [22] introduced the notion of pointwise and uniform statistical convergence of double sequences of real-valued functions. Dündar and Altay [8,9] studied the concepts of pointwise and uniformly  $\mathcal{I}$ -convergence and  $\mathcal{I}^*$ -convergence of double sequences of functions and investigated some properties about them. Also, a lot of development have been made about double sequences of functions (see [4,14,20]).

The concept of 2-normed spaces was initially introduced by Gähler [18,19] in the 1960's. Gürdal and Pehlivan [25] studied statistical convergence, statistical Cauchy sequence and investigated some properties of statistical convergence in 2-normed spaces. Sharma and Kumar [32] introduced statistical convergence, statistical Cauchy sequence, statistical limit points and statistical cluster points in probabilistic 2-normed space. Statistical convergence and statistical Cauchy sequence

Received September 18, 2018; accepted October 29, 2018 2010 Mathematics Subject Classification. Primary 40A30, 40A35, Secondary 46A70 of functions in 2-normed space were studied by Yegül and Dündar [37]. Sarabadan and Talebi [31] presented various kinds of statistical convergence and  $\mathcal{I}$ -convergence for sequences of functions with values in 2-normed spaces and also defined the notion of  $\mathcal{I}$ -equistatistically convergence and study  $\mathcal{I}$ -equistatistically convergence of sequences of functions. Futhermore, a lot of development have been made in this area (see [1–3,6,15,23,24,26–29,33,34]).

#### 2. Definitions and Notations

Now, we recall the concepts of double sequences, density, statistical convergence, 2-normed space and some fundamental definitions and notations (See [5,10–13,17, 19–21,23–25,30–32,36]).

Let X be a real vector space of dimension d, where  $2 \le d < \infty$ . A 2-norm on X is a function  $\|\cdot,\cdot\|: X\times X\to \mathbb{R}$  which satisfies the following statements:

- (i) ||x,y|| = 0 if and only if x and y are linearly dependent.
- (ii) ||x,y|| = ||y,x||
- (iii)  $\|\alpha x, y\| = |\alpha| \|x, y\|, \ \alpha \in \mathbb{R}$
- (iv)  $||x, y + z|| \le ||x, y|| + ||x, z||$ .

The pair  $(X, \|\cdot, \cdot\|)$  is then called a 2-normed space. As an example of a 2-normed space we may take  $X = \mathbb{R}^2$  being equipped with the 2-norm  $\|x,y\| :=$  the area of the parallelogram based on the vectors x and y which may be given explicitly by the formula

$$||x,y|| = |x_1y_2 - x_2y_1|; \quad x = (x_1, x_2), \quad y = (y_1, y_2) \in \mathbb{R}^2.$$

In this study, we suppose X to be a 2-normed space having dimension d; where  $2 \le d < \infty$ .

Let  $(X, \|., .\|)$  be a finite dimensional 2-normed space and  $u = \{u_1, \dots, u_d\}$  be a basis of X. We can define the norm  $\|.\|_{\infty}$  on X by  $\|x\|_{\infty} = \max\{\|x, u_i\| : i = 1, ..., d\}$ .

Associated to the derived norm  $\|.\|_{\infty}$ , we can define the (closed) balls  $B_u(x,\varepsilon)$  centered at x having radius  $\varepsilon$  by  $B_u(x,\varepsilon) = \{y : \|x-y\|_{\infty} \le \varepsilon\}$ , where  $\|x-y\|_{\infty} = \max\{\|x-y,u_j\|, j=1,...,d\}$ .

Throughout the paper, we let X and Y be two 2-normed spaces,  $\{f_n\}_{n\in\mathbb{N}}$  and  $\{g_n\}_{n\in\mathbb{N}}$  be two sequences of functions and f,g be two functions from X to Y.

The sequence of functions  $\{f_n\}_{n\in\mathbb{N}}$  is said to be convergent to f if  $f_n(x) \to f(x)(\|.,.\|_Y)$  for each  $x \in X$ . We write  $f_n \to f(\|.,.\|_Y)$ . This can be expressed by the formula  $(\forall y \in Y)(\forall x \in X)(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \geq n_0)\|f_n(x) - f(x), y\| < \varepsilon$ .

If  $K \subseteq \mathbb{N}$ , then  $K_n$  denotes the set  $\{k \in K : k \leq n\}$  and  $|K_n|$  denotes the cardinality of  $K_n$ . The natural density of K is given by  $\delta(K) = \lim_{n \to \infty} \frac{1}{n} |K_n|$ , if it exists.

The sequence  $\{f_n\}_{n\in\mathbb{N}}$  is said to be (pointwise) statistical convergent to f, if for every  $\varepsilon>0$ ,  $\lim_{n\to\infty}\frac{1}{n}\big|\{n\in\mathbb{N}:\|f_n(x)-f(x),z\|\geq\varepsilon\}\big|=0$ , for each  $x\in X$  and each nonzero  $z\in Y$ . It means that for each  $x\in X$  and each nonzero  $z\in Y$ ,  $\|f_n(x)-f(x),z\|<\varepsilon$ , a.a. (almost all) n. In this case, we write

$$st - \lim_{n \to \infty} ||f_n(x), z|| = ||f(x), z|| \quad or \quad f_n \to_{st} f(||., .||_Y).$$

The sequence of functions  $\{f_n\}$  is said to be statistically Cauchy sequence, if for every  $\varepsilon > 0$  and each nonzero  $z \in Y$ , there exists a number  $k = k(\varepsilon, z)$  such that  $\delta(\{n \in \mathbb{N} : \|f_n(x) - f_k(x), z\| \ge \varepsilon\}) = 0$ , for each  $x \in X$ , i.e.,  $\|f_n(x) - f_k(x), z\| < \varepsilon$ , a.a. n.

Let X be a 2-normed space. A double sequence  $(x_{mn})$  in X is said to be convergent to  $L \in X$ , if for every  $z \in X$ ,  $\lim_{m,n\to\infty} ||x_{mn} - L,z|| = 0$ . In this case, we write  $\lim_{n \to \infty} x_{mn} = L$  and call L the limit of  $(x_{mn})$ .

Let  $K \subset \mathbb{N} \times \mathbb{N}$ . Let  $K_{mn}$  be the number of  $(j,k) \in K$  such that  $j \leq m, k \leq n$ . That is,  $K_{mn} = |\{(j,k) : j \leq m, k \leq n\}|$ , where |A| denotes the number of elements in A. If the double sequence  $\{\frac{K_{mn}}{mn}\}$  has a limit then we say that K has double natural density and is denoted by  $d_2(K) = \lim_{m,n \to \infty} \frac{K_{mn}}{mn}$ .

A double sequence  $x=(x_{mn})$  of real numbers is said to be statistically convergent to  $L \in \mathbb{R}$ , if for any  $\varepsilon > 0$  we have  $d_2(A(\varepsilon)) = 0$ , where  $A(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : |x_{mn} - L| \ge \varepsilon\}$ .

Let  $\{x_{mn}\}$  be a double sequence in 2-normed space  $(X, \|., .\|)$ . The double sequence  $(x_{mn})$  is said to be statistically convergent to L, if for every  $\varepsilon > 0$ , the set  $\{(m,n) \in \mathbb{N} \times \mathbb{N} : \|x_{mn} - L, z\| \ge \varepsilon\}$  has natural density zero for each nonzero z in X, in other words  $(x_{mn})$  statistically converges to L in 2-normed space  $(X, \|., .\|)$  if  $\lim_{m,n\to\infty} \frac{1}{mn} |\{(m,n) : \|x_{mn} - L, z\| \ge \varepsilon\}| = 0$ , for each nonzero z in X. It means that for each  $z \in X$ ,  $\|x_{mn} - L, z\| < \varepsilon$ , a.a. (m,n). In this case, we write  $st - \lim_{m,n\to\infty} \|x_{mn}, z\| = \|L, z\|$ .

A double sequence  $(x_{mn})$  in 2-normed space  $(X, \|., \|)$  is said to be statistically Cauchy sequence in X, if for every  $\varepsilon > 0$  and every nonzero  $z \in X$  there exist two number  $M = M(\varepsilon, z)$  and  $N = N(\varepsilon, z)$  such that  $d_2(\{(m, n) \in \mathbb{N} \times \mathbb{N} : \|x_{mn} - x_{MN}, z\| \ge \varepsilon\}) = 0$ , i.e., for each nonzero  $z \in X$ ,  $\|x_{mn} - x_{MN}, z\| < \varepsilon$ , a.a. (m, n).

A double sequence of functions  $\{f_{mn}\}$  is said to be pointwise convergent to f on a set  $S \subset \mathbb{R}$ , if for each point  $x \in S$  and for each  $\varepsilon > 0$ , there exists a positive integer  $N = N(x,\varepsilon)$  such that  $|f_{mn}(x) - f(x)| < \varepsilon$ , for all m,n > N. In this case we write  $\lim_{m,n \to \infty} f_{mn}(x) = f(x)$  or  $f_{mn} \to f$ , on S.

A double sequence of functions  $\{f_{mn}\}$  is said to be uniformly convergent to f on a set  $S \subset \mathbb{R}$ , if for each  $\varepsilon > 0$ , there exists a positive integer  $N = N(\varepsilon)$  such that

for all m, n > N implies  $|f_{mn}(x) - f(x)| < \varepsilon$ , for all  $x \in S$ . In this case we write  $f_{mn} \rightrightarrows f$ , on S.

A double sequence of functions  $\{f_{mn}\}$  is said to be pointwise statistically convergent to f on a set  $S \subset \mathbb{R}$ , if for every  $\varepsilon > 0$ ,

$$\lim_{i,j\to\infty} \frac{1}{ij} |\{(m,n), m \le i \text{ and } n \le j : |f_{mn}(x) - f(x)| \ge \varepsilon\}| = 0,$$

for each (fixed)  $x \in S$ , i.e., for each (fixed)  $x \in S$ ,  $|f_{mn}(x) - f(x)| < \varepsilon$ , a.a. (m, n). In this case, we write  $st - \lim_{m,n\to\infty} f_{mn}(x) = f(x)$  or  $f_{mn} \to_{st} f$ , on S.

A double sequence of functions  $\{f_{mn}\}$  is said to be uniformly statistically convergent to f on a set  $S \subset \mathbb{R}$ , if for every  $\varepsilon > 0$ ,

$$\lim_{i,j\to\infty} \frac{1}{ij} |\{(m,n), m \le i \text{ and } n \le j : |f_{mn}(x) - f(x)| \ge \varepsilon\}| = 0,$$

for all  $x \in S$ , i.e., for all  $x \in S$ ,  $|f_{mn}(x) - f(x)| < \varepsilon$ , a.a. (m, n). In this case we write  $f_{mn} \rightrightarrows f$ , on S.

Let  $\{f_{mn}\}$  be a double sequence of functions defined on a set S. A double sequence  $\{f_{mn}\}$  is said to be statistically Cauchy if for every  $\varepsilon>0$ , there exist  $N(=N(\varepsilon))$  and  $M(=M(\varepsilon))$  such that  $|f_{mn}(x)-f_{MN}(x)|<\varepsilon$  a.a. (m,n) and for each (fixed)  $x\in S$ , i.e.,

$$\lim_{i,j \to \infty} \frac{1}{ij} |\{(m,n), m \le i \text{ and } n \le j : |f_{mn}(x) - f_{MN}(x)| \ge \varepsilon\}| = 0$$

for each (fixed) $x \in S$ 

**Lemma 2.1.** [9] Let f and  $f_{mn}$ , m, n = 1, 2, ..., be continuous functions on  $D = [a, b] \subset \mathbb{R}$ . Then  $f_{mn} \rightrightarrows f$  on D if and only if  $\lim_{m,n\to\infty} c_{mn} = 0$ , where  $c_{mn} = \max_{x\in D} |f_{mn}(x) - f(x)|$ .

#### 3. Main Results

In this paper, we study concepts of convergence, statistical convergence and statistical Cauchy sequence of double sequences of functions and investigate some properties and relationships between them in 2-normed spaces.

Throughout the paper, we let X and Y be two 2-normed spaces,  $\{f_{mn}\}_{(m,n)\in\mathbb{N}\times\mathbb{N}}$  and  $\{g_{mn}\}_{(m,n)\in\mathbb{N}\times\mathbb{N}}$  be two double sequences of functions, f and g be two functions from X to Y.

**Definition 3.1.** A double sequence  $\{f_{mn}\}$  is said to be pointwise convergent to f if, for each point  $x \in X$  and for each  $\varepsilon > 0$ , there exists a positive integer  $k_0 = k_0(x, \varepsilon)$  such that for all  $m, n \geq k_0$  implies  $||f_{mn}(x) - f(x), z|| < \varepsilon$ , for every  $z \in Y$ . In this case, we write  $f_{mn} \to f(||.,...||_Y)$ .

**Definition 3.2.** A double sequence  $\{f_{mn}\}$  is said to be uniformly convergent to f, if for each  $\varepsilon > 0$ , there exists a positive integer  $k_0 = k_0(\varepsilon)$  such that for all  $m, n > k_0$  implies  $||f_{mn}(x) - f(x), z|| < \varepsilon$ , for all  $x \in X$  and for every  $z \in Y$ . In this case, we write  $f_{mn} \rightrightarrows f(||\cdot, \cdot||_Y)$ .

**Theorem 3.1.** Let D be a compact subset of X and f and  $f_{mn}$ , (m, n = 1, 2, ...), be continuous functions on D. Then,

$$f_{mn} \rightrightarrows f(\|.,.\|_Y)$$

on D if and only if

$$\lim_{m \to \infty} c_{mn} = 0,$$

where  $c_{mn} = \max_{x \in D} ||f_{mn}(x) - f(x), z||$ .

*Proof.* Suppose that  $f_{mn} \rightrightarrows f(\|.,.\|_Y)$  on D. Since f and  $f_{mn}$  are continuous functions on D, so  $(f_{mn}(x) - f(x))$  is continuous on D, for each  $(m,n) \in \mathbb{N} \times \mathbb{N}$ . Since  $f_{mn} \rightrightarrows f(\|.,.\|_Y)$  on D then, for each  $\varepsilon > 0$ , there is a positive integer  $k_0 = k_0(\varepsilon) \in \mathbb{N}$  such that  $m, n > k_0$  implies

$$||f_{mn}(x) - f(x), z|| < \frac{\varepsilon}{2}$$

for all  $x \in D$  and every  $z \in Y$ . Thus, when  $m, n > k_0$  we have

$$c_{mn} = \max_{x \in D} \|f_{mn}(x) - f(x), z\| < \frac{\varepsilon}{2} < \varepsilon.$$

This implies

$$\lim_{m,n\to\infty} c_{mn} = 0.$$

Now, suppose that

$$\lim_{m,n\to\infty} c_{mn} = 0.$$

Then, for each  $\varepsilon > 0$ , there is a positive integer  $k_0 = k_0(\varepsilon) \in \mathbb{N}$  such that

$$0 \le c_{mn} = \max_{x \in D} ||f_{mn}(x) - f(x), z|| < \varepsilon,$$

for  $m, n > k_0$  and every  $z \in Y$ . This implies that  $||f_{mn}(x) - f(x), z|| < \varepsilon$ , for all  $x \in D$ , every  $z \in Y$  and  $m, n > k_0$ . Hence, we have

$$f_{mn} \rightrightarrows f(\|.,.\|_{Y}),$$

for all  $x \in D$  and every  $z \in Y$ .  $\square$ 

**Definition 3.3.** A double sequence  $\{f_{mn}\}$  is said to be (pointwise) statistical convergent to f, if for every  $\varepsilon > 0$ ,

$$\lim_{i,j \to \infty} \frac{1}{ij} |\{(m,n), m \le i, n \le j : ||f_{mn}(x) - f(x), z|| \ge \varepsilon\}| = 0,$$

for each (fixed)  $x \in X$  and each nonzero  $z \in Y$ . It means that for each (fixed)  $x \in X$  and each nonzero  $z \in Y$ ,

$$||f_{mn}(x) - f(x), z|| < \varepsilon, \quad a.a. \ (m, n).$$

In this case, we write

$$st - \lim_{m \to \infty} ||f_{mn}(x) - z|| = ||f(x), z|| \quad or \quad f_{mn} \longrightarrow_{st} f(||., .||_Y).$$

**Remark 3.1.**  $\{f_{mn}\}$  is any double sequence of functions and f is any function from X to Y, then set

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}: \|f_{mn}(x)-f(x),z\|\geq \varepsilon, \text{ for each } x\in X \text{ and each } z\in Y\}=\emptyset,$$

since if  $z = \overrightarrow{0}$  (0 vektor),  $||f_{mn}(x) - f(x), z|| = 0 \not\geq \varepsilon$  so the above set is empty.

**Theorem 3.2.** If for each  $x \in X$  and each nonzero  $z \in Y$ ,

$$st - \lim_{m,n \to \infty} ||f_{mn}(x), z|| = ||f(x), z||$$
 and  $st - \lim_{m,n \to \infty} ||f_{mn}(x), z|| = ||g(x), z||$ 

then, for each  $x \in X$  and each nonzero  $z \in Y$ 

$$||f_{mn}(x), z|| = ||g_{mn}(x), z||$$

$$(i.e., f = g).$$

*Proof.* Assume  $f \neq g$ . Then,  $f - g \neq \overrightarrow{0}$ , so there exists a  $z \in Y$  such that f, g and z are linearly independent (such a z exists since  $d \geq 2$ ). Therefore, for each  $x \in X$  and each nonzero  $z \in Y$ ,

$$||f(x) - g(x), z|| = 2\varepsilon, \text{ with } \varepsilon > 0.$$

Now, for each  $x \in X$  and each nonzero  $z \in Y$ , we get

$$2\varepsilon = ||f(x) - g(x), z|| = ||(f(x) - f_{mn}(x)) + (f_{mn}(x) - g(x)), z||$$
  
$$\leq ||f_{mn}(x) - g(x), z|| + ||f_{mn}(x) - f(x), z||$$

and so

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}:\|f_{mn}(x)-g(x),z\|<\varepsilon\}\subseteq\{(m,n)\in\mathbb{N}\times\mathbb{N}:\|f_{mn}(x)-f(x),z\|\geq\varepsilon\}.$$

But, for each  $x \in X$  and each nonzero  $z \in Y$ ,

$$d_2(\{(m,n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - g(x), z|| < \varepsilon\}) = 0,$$

then contradicting the fact that  $f_{mn} \longrightarrow_{st} g(\|.,.\|_Y)$ .  $\square$ 

**Theorem 3.3.** If  $\{g_{mn}\}$  is a convergent sequence of double sequences of functions such that  $f_{mn} = g_{mn}$ , a.a. (m,n) then,  $\{f_{mn}\}$  is statistically convergent.

*Proof.* Suppose that for each  $x \in X$  and each nonzero  $z \in Y$ ,

$$d_2(\{(m,n) \in \mathbb{N} \times \mathbb{N} : f_{mn}(x) \neq g_{mn}(x)\}) = 0$$
 and  $\lim_{m,n\to\infty} \|g_{mn}(x),z\| = \|f(x),z\|$ , then for every  $\varepsilon > 0$ ,

$$\{(m,n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - f(x), z|| \ge \varepsilon\}$$

$$\subseteq \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||g_{mn}(x) - f(x), z|| \ge \varepsilon\}$$

$$\cup \{(m,n) \in \mathbb{N} \times \mathbb{N} : f_{mn}(x) \neq g_{mn}(x) \}.$$

Therefore,

(3.1) 
$$d_2(\{(m,n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - f(x), z|| \ge \varepsilon\})$$

$$\le d_2(\{(m,n) \in \mathbb{N} \times \mathbb{N} : ||g_{mn}(x) - f(x), z|| \ge \varepsilon)$$

$$+d_2(\{(m,n) \in \mathbb{N} \times \mathbb{N} : f_{mn}(x) \ne g_{mn}\}).$$

Since  $\lim_{m,n\to\infty} \|g_{mn}(x),z\| = \|f(x),z\|$ , for each  $x\in X$  and each nonzero  $z\in Y$ , the set  $\{(m,n)\in\mathbb{N}\times\mathbb{N}:\|g_{mn}(x)-f(x),z\|\geq\varepsilon\}$  contains finite number of integers and so

$$d_2(\{(m,n)\in\mathbb{N}\times\mathbb{N}:||g_{mn}(x)-f(x),z||\geq\varepsilon\})=0.$$

Using inequality (3.1) we get for every  $\varepsilon > 0$ 

$$d_2(\{(m,n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - f(x), z|| \ge \varepsilon\}) = 0,$$

for each  $x \in X$  and each nonzero  $z \in Y$  and so consequently

$$st - \lim_{m,n \to \infty} ||f_{mn}(x), z|| = ||f(x), z||.$$

**Theorem 3.4.** If  $st - \lim ||f_{mn}(x), z|| = ||f(x), z||$  for each  $x \in X$  and each nonzero  $z \in Y$ , then  $\{f_{mn}\}$  has a subsequence of function  $\{f_{m_in_i}\}$  such that

$$\lim_{i \to \infty} \|f_{m_i n_i}(x), z\| = \|f(x), z\|$$

for each  $x \in X$  and each nonzero  $z \in Y$ .

*Proof.* Proof of this Theorem is as an immediate consequence of Theorem 3.3. □

**Theorem 3.5.** Let  $\alpha \in \mathbb{R}$ . If for each  $x \in X$  and each nonzero  $z \in Y$ ,

$$st - \lim_{m,n \to \infty} ||f_{mn}(x), z|| = ||f(x), z|| \text{ and } st - \lim_{m,n \to \infty} ||g_{mn}(x), z|| = ||g(x), z||,$$

then

(i) 
$$st - \lim_{m,n\to\infty} ||f_{mn}(x) + g_{mn}(x), z|| = ||f(x) + g(x), z||$$
 and

(ii) 
$$st - \lim_{m \to \infty} \|\alpha f_{mn}(x), z\| = \|\alpha f(x), z\|.$$

*Proof.* (i) Suppose that

$$st - \lim_{m,n \to \infty} ||f_{mn}(x), z|| = ||f(x), z|| \text{ and } st - \lim_{m,n \to \infty} ||g_{mn}(x), z|| = ||g(x), z||$$

for each  $x \in X$  and each nonzero  $z \in Y$ . Then,  $\delta(K_1) = 0$  and  $\delta(K_2) = 0$  where

$$K_1 = K_1(\varepsilon, z) : \left\{ (m, n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - f(x), z|| \ge \frac{\varepsilon}{2} \right\}$$

and

$$K_2 = K_2(\varepsilon, z) : \left\{ (m, n) \in \mathbb{N} \times \mathbb{N} : ||g_{mn}(x) - g(x), z|| \ge \frac{\varepsilon}{2} \right\}$$

for every  $\varepsilon > 0$ , each  $x \in X$  and each nonzero  $z \in Y$ . Let

$$K = K(\varepsilon, z) = \{ (m, n) \in \mathbb{N} \times \mathbb{N} : || (f_{mn}(x) + g_{mn}(x)) - (f(x) + g(x)), z|| \ge \varepsilon \}.$$

To prove that  $\delta(K) = 0$ , it suffices to show that  $K \subset K_1 \cup K_2$ . Let  $(m_0, n_0) \in K$  then, for each  $x \in X$  and each nonzero  $z \in Y$ ,

(3.2) 
$$||(f_{m_0n_0}(x) + g_{m_0n_0}(x)) - (f(x) + g(x)), z|| \ge \varepsilon.$$

Suppose to the contrary, that  $(m_0, n_0) \notin K_1 \cup K_2$ . Then,  $(m_0, n_0) \notin K_1$  and  $(m_0, n_0) \notin K_2$ . If  $(m_0, n_0) \notin K_1$  and  $(m_0, n_0) \notin K_2$  then, for each  $x \in X$  and each nonzero  $z \in Y$ ,

$$||f_{m_0n_0}(x) - f(x), z|| < \frac{\varepsilon}{2} \text{ and } ||g_{m_0n_0}(x) - g(x), z|| < \frac{\varepsilon}{2}.$$

Then, we get

$$||(f_{m_0n_0}(x) + g_{m_0n_0}(x)) - (f(x) + g(x)), z||$$

$$\leq ||f_{m_0n_0}(x) - f(x), z|| + ||g_{m_0n_0}(x) - g(x), z||$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon,$$

for each  $x \in X$  and each nonzero  $z \in Y$ , which contradicts (3.2). Hence,  $(m_0, n_0) \in K_1 \cup K_2$  and so  $K \subset K_1 \cup K_2$ .

(ii) Let  $\alpha \in \mathbb{R}$  ( $\alpha \neq 0$ ) and for each  $x \in X$  and each nonzero  $z \in Y$ ,

$$st - \lim_{m,n \to \infty} ||f_{mn}(x), z|| = ||f(x), z||.$$

Then, we get

$$d_2\left(\left\{(m,n)\in\mathbb{N}\times\mathbb{N}:\|f_{mn}(x)-f(x),z\|\geq\frac{\varepsilon}{|\alpha|}\right\}\right)=0.$$

Therefore, for each  $x \in X$  and each nonzero  $z \in Y$ , we have

$$\{(m,n) \in \mathbb{N} \times \mathbb{N} : \|\alpha f_{mn}(x) - \alpha f(x), z\| \ge \varepsilon\}$$

$$= \{(m,n) \in \mathbb{N} \times \mathbb{N} : |\alpha| \|f_{mn}(x) - f(x), z\| \ge \varepsilon\}$$

$$= \left\{(m,n) \in \mathbb{N} \times \mathbb{N} : \|f_{mn}(x) - f(x), z\| \ge \frac{\varepsilon}{|\alpha|}\right\}.$$

Hence, density of the right hand side of above equality equals 0. Therefore, for each  $x \in X$  and each nonzero  $z \in Y$ , we have

$$st - \lim_{m \to \infty} \|\alpha f_{mn}(x), z\| = \|\alpha f(x), z\|.$$

**Theorem 3.6.** A double sequence of functions  $\{f_{mn}\}$  is pointwise statistically convergent to a function f if and only if there exists a subset  $K_x = \{(m,n)\} \subseteq \mathbb{N} \times \mathbb{N}$ , m, n = 1, 2, ... for each (fixed)  $x \in X$   $d_2(K_x) = 1$  and  $\lim_{m,n\to\infty} \|f_{mn}(x),z\| = \|f(x),z\|$  for each (fixed)  $x \in X$  and each nonzero  $z \in Y$ .

*Proof.* Let  $st_2 - \lim_{m,n\to\infty} ||f_{mn}(x),z|| = ||f(x),z||$ . For r = 1, 2, ... put

$$K_{r,x} = \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x), z|| \ge \frac{1}{r}\}$$

and

$$M_{r,x} = \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x), z|| < \frac{1}{r}\}$$

for each (fixed)  $x \in X$  and each nonzero  $z \in Y$ . Then,  $d_2(K_{r,x}) = 0$  and

$$(3.3) M_{1,x} \supset M_{2,x} \supset \dots \supset M_{i,x} \supset M_{i+1,x} \supset \dots$$

and

$$(3.4) d_2(M_{r,x}) = 1, r = 1, 2, \dots$$

for each (fixed)  $x \in X$  and each nonzero  $z \in Y$ .

Now, we have to show that for  $(m, n) \in M_{r,x}$ ,  $\{f_{mn}\}$  is convergent to f. Suppose that  $\{f_{mn}\}$  is not convergent to f. Therefore, there is  $\varepsilon > 0$  such that

$$||f_{mn}(x), z|| = ||f(x), z|| \ge \varepsilon$$

for infinitely many terms and some  $x \in X$  and each nonzero  $z \in Y$ . Let

$$M_{\varepsilon,x} = \{(m,n) : ||f_{mn}(x) - f(x), z|| < \varepsilon\}$$

and  $\varepsilon > \frac{1}{r}$  (r = 1, 2, ...). Then,  $d_2(M_{\varepsilon,x}) = 0$  and by (3.3)  $M_{r,x} \subset (M_{\varepsilon,x})$ . Hence,  $d_2(M_{r,x}) = 0$  which contradicts (3.4). Therefore,  $\{f_{mn}\}$  is convergent to f.

Conversely, suppose that there exists a subset  $K_x = \{(m, n)\} \subseteq \mathbb{N} \times \mathbb{N}$  for each (fixed)  $x \in X$  and each nonzero  $z \in Y$  such that  $d_2(K_x) = 1$  and  $\lim_{m,n\to\infty} ||f_{mn}(x),z|| = ||f(x),z||$ , i.e., there exist an  $N(x,\varepsilon)$  such that for each (fixed)  $x \in X$ , each nonzero  $z \in Y$  and each  $\varepsilon > 0$ ,  $m, n \ge N$  implies  $||f_{mn}(x),z|| = ||f(x),z|| < \varepsilon$ . Now,

$$K_{\varepsilon,x} = \{(m,n) : ||f_{mn}(x), z|| \ge \varepsilon\} \subseteq \mathbb{N} \times \mathbb{N} - \{(m_{N+1}, n_{N+1}), (m_{N+2}, n_{N+2}), \ldots\}$$

for each (fixed)  $x \in X$  and each nonzero  $z \in Y$ . Therefore,  $d_2(K_{\varepsilon,x}) \leq 1 - 1 = 0$  for each (fixed)  $x \in X$  and each nonzero  $z \in Y$ . Hence,  $\{f_{mn}\}$  is pointwise statistically convergent to f.  $\square$ 

**Definition 3.4.** A double sequence of functions  $\{f_{mn}\}$  is said to uniformly statistically convergent to f, if for every  $\varepsilon > 0$  and for each nonzero  $z \in Y$ ,

$$\lim_{i,j \to \infty} \frac{1}{ij} |\{(m,n), m \le i, n \le j : ||f_{mn}(x) - f(x), z|| \ge \varepsilon\}| = 0,$$

for all  $x \in X$ . That is, for all  $x \in X$  and for each nonzero  $z \in Y$ 

(3.5) 
$$||f_{mn}(x) - f(x), z|| < \varepsilon, \quad a.a \quad (m, n).$$

In this case, we write  $f_{mn} \rightrightarrows_{st} f(\|.,.\|_Y)$ .

**Theorem 3.7.** Let D be a compact subset of X and f and  $\{f_{mn}\}$ , m, n = 1, 2, ... be continuous functions on D. Then,

$$f_{mn} \rightrightarrows_{st} f(\|.,.\|_Y)$$

on D if and only if

$$st_2 - \lim_{m,n \to \infty} ||c_{mn}(x), z|| = 0,$$

where  $c_{mn} = \max_{x \in S} ||f_{mn}(x) - f(x), z||$ .

*Proof.* Suppose that  $\{f_{mn}\}$  uniformly statistically convergent to f on D. Since f and  $\{f_{mn}\}$  are continuous functions on D, so  $(f_{mn}(x) - f(x))$  is continuous on D, for each  $m, n \in \mathbb{N}$ . By statistically convergence for  $\varepsilon > 0$ 

$$d_2(\{(m,n)\in\mathbb{N}\times\mathbb{N}:||f_{mn}(x)-f(x),z||\geq\varepsilon\})=0,$$

for each  $x \in D$  and for each nonzero  $z \in Y$ . Hence, for  $\varepsilon > 0$  it is clear that

$$c_{mn} = \max_{x \in D} ||f_{mn}(x) - f(x), z|| \ge ||f_{mn}(x) - f(x), z|| \ge \frac{\varepsilon}{2}$$

for each  $x \in D$  and for each nonzero  $z \in Y$ . Thus we have

$$st - \lim_{m,n \to \infty} c_{mn} = 0.$$

Now, suppose that  $st - \lim_{m,n \to \infty} c_{mn} = 0$ . We let following set

$$A(\varepsilon) = \{ (m, n) \in \mathbb{N} \times \mathbb{N} : \max_{x \in D} ||f_{mn}(x) - f(x), z|| \ge \varepsilon \},$$

for  $\varepsilon > 0$  and for each nonzero  $z \in Y$ . Then, by hypothesis we have  $d_2(A(\varepsilon)) = 0$ . Since for  $\varepsilon > 0$ 

$$\max_{x \in D} \|f_{mn}(x) - f(x), z\| \ge \|f_{mn}(x) - f(x), z\| \ge \varepsilon$$

we have

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}: ||f_{mn}(x)-f(x),z||\geq\varepsilon\}\subset A(\varepsilon)$$

and so

$$d_2(\{(m,n)\in\mathbb{N}\times\mathbb{N}:||f_{mn}(x)-f(x),z||\geq\varepsilon\})=0,$$

for each  $x \in D$  and for each nonzero  $z \in Y$ . This proves the theorem.  $\square$ 

Now, we can give the relations between well-known convergence models and our studied models as the following result.

Corollary 3.1. (i) 
$$f_{mn} \rightrightarrows f(\|\cdot,\cdot\|_Y) \Rightarrow f_{mn} \longrightarrow f(\|\cdot,\cdot\|_Y) \Rightarrow f_{mn} \longrightarrow_{st} f(\|\cdot,\cdot\|_Y)$$
.  
(ii)  $f_{mn} \rightrightarrows f(\|\cdot,\cdot\|_Y) \Rightarrow f_{mn} \rightrightarrows_{st} f(\|\cdot,\cdot\|_Y) \Rightarrow f_{mn} \longrightarrow_{st} f(\|\cdot,\cdot\|_Y)$ .

Now, we give the concept of statistical Cauchy sequence and investigate relationships between statistical Cauchy sequence and statistical convergence of double sequences of functions in 2-normed space.

**Definition 3.5.** The double sequences of functions  $\{f_{mn}\}$  is said to be statistically Cauchy sequence, if for every  $\varepsilon > 0$  and each nonzero  $z \in Y$ , there exist two numbers  $k = k(\varepsilon, z)$ ,  $t = t(\varepsilon, z)$  such that

$$d_2(\{(m,n)\in\mathbb{N}\times\mathbb{N}:||f_{mn}(x)-f_{kt}(x),z||\geq\varepsilon\})=0$$
, for each (fixed)  $x\in X$ ,

i.e., for each nonzero  $z \in Y$ ,

$$||f_{nm}(x) - f_{kt}(x), z|| < \varepsilon, \quad a.a. \ (m, n).$$

**Theorem 3.8.** Let  $\{f_{mn}\}$  be a statistically Cauchy sequence of double sequence of functions in a finite dimensional 2-normed space  $(X, \|., .\|)$ . Then, there exists a convergent sequence of double sequences of functions  $\{g_{mn}\}$  in  $(X, \|., .\|)$  such that  $f_{mn} = g_{mn}$ , for a.a. (m, n).

Proof. First note that  $\{f_{mn}\}$  is a statistically Cauchy sequence of functions in  $(X, \|.\|_{\infty})$ . Choose a natural number k(1) and j(1) such that the closed ball  $B_u^1 = B_u(f_{k(1)j(1)}(x), 1)$  contains  $f_{mn}(x)$  for a.a. (m, n) and for each  $x \in X$ . Then, choose a natural number k(2) and j(2) such that the closed ball  $B_2 = B_u(f_{k(2)j(2)}(x), \frac{1}{2})$  contains  $f_{mn}(x)$  for a.a. (m, n) and for each  $x \in X$ . Note that  $B_u^2 = B_u^1 \cap B_2$  also contains  $f_{mn}(x)$  for a.a. (m, n) and for each  $x \in X$ . Thus, by continuing of this process, we can obtain a sequence  $\{B_u^r\}_{r\geq 1}$  of nested closed balls such that diam  $(B_u^r) \leq \frac{1}{2r}$ . Therefore,

$$\bigcap_{r=1}^{\infty} B_u^r = \{h(x)\},\,$$

where h is a function from X to Y. Since each  $B_u^r$  contains  $f_{mn}(x)$  for a.a. (m, n) and for each  $x \in X$ , we can choose a sequence of strictly increasing natural numbers  $\{S_r\}_{r\geq 1}$  such that for each  $x\in X$ ,

$$\frac{1}{mn}|\{(m,n)\in\mathbb{N}\times\mathbb{N}:f_{mn}(x)\not\in B_u^r\}|<\frac{1}{r},\ if\ m,n>S_r.$$

Put  $T_r = \{(m, n) \in \mathbb{N} \times \mathbb{N} : m, n > S_r, f_{mn}(x) \notin B_u^r\}$  for each  $x \in X$ , for all  $r \geq 1$  and  $R = \bigcup_{r=1}^{\infty} R_r$ . Now, for each  $x \in X$ , define the sequence of functions  $\{g_{mn}\}$  as following

$$g_{mn}(x) = \begin{cases} h(x) &, & \text{if } (m,n) \in R \times R \\ f_{mn}(x) &, & \text{otherwise.} \end{cases}$$

Note that,  $\lim_{m,n\to\infty}g_{mn}(x)=h(x)$ , for each  $x\in X$ . In fact, for each  $\varepsilon>0$  and for each  $x\in X$ , choose a natural number m such that  $\varepsilon>\frac{1}{r}>0$ . Then, for each  $m,n>S_r$  and for each  $x\in X$ ,  $g_{mn}(x)=h(x)$  or  $g_{mn}(x)=f_{mn}(x)\in B_u^r$  and so in each case

$$||g_{mn}(x) - h(x)||_{\infty} \le diam(B_u^r) \le \frac{1}{2^{r-1}}.$$

Since, for each  $x \in X$ ,

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}:g_{mn}(x)\neq f_n(x)\}\subseteq\{(m,n)\in\mathbb{N}\times\mathbb{N}:f_{mn}(x)\notin B_n^r\},\$$

we have

$$\frac{1}{mn} |\{(m,n) \in \mathbb{N} \times \mathbb{N} : g_{mn}(x) \neq f_{mn}(x)\}|$$

$$\leq \frac{1}{mn} |\{(n,m) \in \mathbb{N} \times \mathbb{N} : f_{mn}(x) \notin B_u^r\}|$$

$$< \frac{1}{r},$$

and so

$$d_2(\{(m,n)\in\mathbb{N}\times\mathbb{N}:g_{mn}(x)\neq f_{mn}(x)\})=0.$$

Thus,  $g_{mn}(x) = f_{mn}(x)$  for a.a. m,n and for each  $x \in X$  in  $(X, ||.||_{\infty})$ . Suppose that  $\{u_1, ..., u_d\}$  is a basis for (X, ||...||). Since, for each  $x \in X$ ,

$$\lim_{m,n\to\infty} \|g_{mn}(x) - h(x)\|_{\infty} = 0 \quad and \quad \|g_{mn}(x) - h(x), u_i\| \le \|g_{mn}(x) - h(x)\|_{\infty}$$

for all  $1 \le i \le d$ , then we have

$$\lim_{m,n\to\infty} \|g_{mn}(x) - h(x), z\|_{\infty} = 0,$$

for each  $x \in X$  and each nonzero  $z \in X$ . It completes the proof.  $\square$ 

**Theorem 3.9.** The sequence  $\{f_{mn}\}$  is statistically convergent if and only if  $\{f_{mn}\}$  is a statistically Cauchy sequence of double sequence of functions.

*Proof.* Assume that f be function from X to Y and  $st - \lim_{m,n\to\infty} \|f_{mn}(x),z\| = \|f(x),z\|$  for each  $x\in X$  and each nonzero  $z\in Y$  and  $\varepsilon>0$ . Then, for each  $x\in X$  and each nonzero  $z\in Y$ , we have

$$||f_{mn}(x) - f(x), z|| < \frac{\varepsilon}{2}, \quad a.a. \quad (m, n).$$

If  $k = k(\varepsilon, z)$  and  $t = t(\varepsilon, z)$  are chosen so that for each  $x \in X$  and each nonzero  $z \in Y$ ,

$$||f_{kt}(x) - f(x), z|| < \frac{\varepsilon}{2},$$

and so we have

$$||f_{mn}(x) - f_{kt}(x), z|| \le ||f_{mn}(x) - f(x), z|| + ||f(x) - f_{kt}(x), z||$$
  
 $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \quad a.a. \quad (m, n).$ 

Hence,  $\{f_{mn}\}\$  is statistically Cauchy sequence of double sequence of functions.

Now, assume that  $\{f_{mn}\}$  is statistically Cauchy sequence of double sequence of function. By Theorem 3.8, there exists a convergent sequence  $\{g_{mn}\}$  from X to Y such that  $f_{mn} = g_{mn}$  for a.a. (m, n). By Theorem 3.3, we have

$$st - \lim ||f_{mn}(x), z|| = ||f(x), z||,$$

for each  $x \in X$  and each nonzero  $z \in Y$ .  $\square$ 

**Theorem 3.10.** Let  $\{f_{mn}\}$  be a double sequence of functions. The following statements are equivalent

- (i)  $\{f_{mn}\}\ is\ (pointwise)\ statistically\ convergent\ to\ f(x),$
- (ii)  $\{f_{mn}\}\ is\ statistically\ Cauchy,$
- (iii) There exists a subsequence  $\{g_{mn}\}$  of  $\{f_{mn}\}$  such that  $\lim_{m,n\to\infty} \|g_{mn}(x),z\| = \|f(x),z\|$ .

*Proof.* Proof of this Theorem is as an immediate consequence of Theorem 3.6 and Theorem 3.9.  $\ \square$ 

**Definition 3.6.** Let D be a compact subset of X and  $\{f_{mn}\}$  be a double sequence of functions on D.  $\{f_{mn}\}$  is said to be statistically uniform Cauchy if for every  $\varepsilon > 0$  and each nonzero  $z \in Y$ , there exists  $k = k(\varepsilon, z)$ ,  $t = t(\varepsilon, z)$  such that

$$d_2(\{(m,n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - f_{kt}(x), z|| \ge \varepsilon\}) = 0$$

for all  $x \in X$ .

**Theorem 3.11.** Let D be a compact subset of X and  $\{f_{mn}\}$ , be a sequence of bounded functions on D. Then,  $\{f_{mn}\}$  is uniformly statistically convergent if and only if it is uniformly statistically Cauchy on D.

*Proof.* Proof of this theorem is similar the Theorem 3.9. So, we omit it.  $\square$ 

# REFERENCES

- 1. M. Arslan, E. Dündar, *I-Convergence and I-Cauchy Sequence of Functions In 2-Normed Spaces*, Konural Journal of Mathematics, **6**(1) (2018), 57-62.
- M. Arslan, E. Dündar, On I-Convergence of sequences of functions in 2-normed spaces, Southeast Asian Bulletin of Mathematics, 42 (2018), 491–502.

- 3. M. Arslan, E. Dündar, Rough convergence in 2-normed spaces, Bulletin of Mathematical Analysis and Applications, 10(3) (2018), 1-9.
- 4. V. Baláz, J. Červeňanský, P. Kostyrko, T. Šalát, *I-convergence and I-continuity of real functions*, Acta Mathematica, Faculty of Natural Sciences, Constantine the Philosopher University, Nitra, **5** (2004), 43–50.
- M. BALCERZAK, K. DEMS, A. KOMISARSKI, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007), 715-729.
- H. Çakalli, S. Ersan, New types of continuity in 2-normed spaces, Filomat, 30(3) (2016), 525-532.
- 8. E. DÜNDAR, B. ALTAY,  $\mathcal{I}_2$ -convergence of double sequences of functions, Electronic Journal of Mathematical Analysis and Applications, 3(1) (2015), 111-121.
- E. DÜNDAR, B. ALTAY, *I*<sub>2</sub>-uniform convergence of double sequences of functions, Filomat, 30(5) (2016), 1273–1281.
- 10. E. DÜNDAR, B. ALTAY,  $\mathcal{I}_2$ -convergence and  $\mathcal{I}_2$ -Cauchy of double sequences, Acta Mathematica Scientia, **34**(2) (2014), 343-353.
- 11. E. DÜNDAR, B. ALTAY, On some properties of  $\mathcal{I}_2$ -convergence and  $\mathcal{I}_2$ -Cauchy of double sequences, Gen. Math. Notes, 7(1) (2011), 1-12.
- 12. E. DÜNDAR, Ö. TALO,  $\mathcal{I}_2$ -convergence of double sequences of fuzzy numbers, Iranian Journal of Fuzzy Systems,  $\mathbf{10}(3)$  (2013), 37–50.
- E. DÜNDAR, B. ALTAY, Multipliers for bounded \$\mathcal{I}\_2\$-convergent of double sequences, Math. Comput. Modelling, 55(3-4) (2012), 1193-1198.
- 14. E. DÜNDAR, On some results of  $\mathcal{I}_2$ -convergence of double sequences of functions, Mathematical Analysis Sciences and Applications E-notes,  $\mathbf{3}(1)$  (2015), 44–52.
- 15. E. DÜNDAR, M. ARSLAN, S. YEGÜL, On I-Uniform Convergence of Sequences of Functions In 2-Normed Spaces, (Under Review).
- 16. H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
- 17. J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
- 18. S. GÄHLER, 2-metrische Räume und ihre topologische struktur, Math. Nachr. 26 (1963), 115-148.
- 19. S. GÄHLER, 2-normed spaces, Math. Nachr. 28 (1964), 1-43.
- 20. F. Gezer, S. Karakuş,  $\mathcal{I}$  and  $\mathcal{I}^*$  convergent function sequences, Math. Commun. 10 (2005), 71-80.
- A. GÖKHAN, M. GÜNGÖR, On pointwise statistical convergence, Indian J. Pure Appl. Math., 33(9) (2002), 1379–1384.
- 22. A. GÖKHAN, M. GÜNGÖR, M. ET, Statistical convergence of double sequences of real-valued functions, Int. Math. Forum, 2(8) (2007), 365-374.
- H. Gunawan, M. Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math. 27 (3) (2001), 321–329.
- M. GÜRDAL, S. PEHLIVAN, The statistical convergence in 2-Banach spaces, Thai J. Math. 2 (1) (2004), 107-113.
- 25. M. GÜRDAL, S. PEHLIVAN, Statistical convergence in 2-normed spaces, Southeast Asian Bulletin of Mathematics, 33 (2009), 257–264.

- M. GÜRDAL, I. AÇIK, On I-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl. 11 (2) (2008), 349-354.
- 27. M. GÜRDAL, On ideal convergent sequences in 2-normed spaces, Thai J. Math. 4 (1) (2006), 85-91.
- 28. M. Mursaleen, S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca 62 (2012), 49-62.
- 29. M. MURSALEEN, A. ALOTAIBI, On *I-convergence in random 2-normed spaces*, Math. Slovaca **61** (6) (2011), 933-940.
- F. Nuray, U. Ulusu, E. Dündar, Lacunary statistical convergence of double sequences of sets, Soft Computing, 20(7) (2016), 2883–2888.
- 31. S. Sarabadan, S. Talebi, Statistical convergence and ideal convergence of sequences of functions in 2-normed spaces, Internat. J. Math. Math. Sci. 2011 (2011), 10 pages.
- 32. A. Sharma, K. Kumar, Statistical convergence in probabilistic 2-normed spaces, Mathematical Sciences, 2(4) (2008), 373-390.
- 33. A. Şahiner, M. Gürdal, S. Saltan, H. Gunawan, *Ideal convergence in 2-normed spaces*, Taiwanese J. Math. **11** (2007), 1477–1484.
- 34. E. Savaş, M. Gürdal, Ideal Convergent Function Sequences in Random 2-Normed Spaces, Filomat, 30(3) (2016), 557-567.
- 35. I.J. SCHOENBERG, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
- 36. U. Ulusu, E. Dündar, *I-Lacunary Statistical Convergence of Sequences of Sets*, Filomat, **28**(8) (2014), 1567–1574.
- 37. S. Yegül, E. Dündar, On Statistical Convergence of Sequences of Functions In 2-Normed Spaces, *Journal of Classical Analysis*, **10**(1) (2017), 49–57.

Sevim Yegül Hoca Ahmet Yesevi Mah. 1007. Sok. Yeşil Pınar Sitesi 03200 Afyonkarahisar, Turkey sevimyegull@gmail.com

Erdinç Dündar
Faculty of Science
Department of Mathematics
03200 Afyonkarahisar, Turkey

edundar@aku.edu.tr and erdincdundar79@gmail.com