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Abstract. In the present paper, we introduce sequence spaces over n-normed spaces
defined by a Musielak-Orlicz function M = (My) of order («, 3). We examine some
topological properties and prove some inclusion relations between the resulting sequence
spaces.
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1. Introduction and preliminaries

Mursaleen and Noman [29] introduced the notion of A\-convergent and A-bounded
sequences as follows : Let A = (Ax)32, be a strictly increasing sequence of positive
real numbers tending to infinity i.e.

O<Xdp<AQ<- and \f >0 as k—

and said that a sequence © = (zx) € w is A-convergent to the number L, called the
A-limit of z if A, (z) — L as m — oo, where

1 m
:HZ (A = Ak-1)
k=1

The sequence x = (1) € w is A-bounded if sup,,, |Am(x)] < co. It is well known
[29] that if lim,, z,, = a in the ordinary sense of convergence, then

lim (ﬁ (i()\k — Npot)|z — a|) = 0.

k=1
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This implies that

m

. . 1
lim A, () — af = Jim | =30 = A1)k —a)| = 0
M =1

which yields that lim,, A,,(z) = a and hence x = (z3) € w is A-convergent to a.

The concept of 2-normed spaces was initially developed by Géhler [14] in the
mid of 1960’s, while that of n-normed spaces one can see in Misiak [22]. Let n € N
and X be a linear space over the field K, where K is the field of real or complex
numbers of dimension d, where d > n > 2. A real valued function ||-,--- || on X"
satisfying the following four conditions:

[y

. @1, e, -+, xy|] = 0 if and only if 21, 29, - - , 2, are linearly dependent in X;

[\

. |x1, e, -+, xy|| is invariant under permutation;
3. |lax1, za, -+ x|l = |a| |21, 22, -, 2| for any @ € K, and
4. ||x+$l7x27"' ,(EnH S ||$7$27"' 7xn|| + ||.’I]/,.’I]2,"' 7:En||

is called a n-norm on X, and the pair (X, ||-,--- ,||) is called a n-normed space over
the field K.

For example, if we take X = R" being equipped with the n-norm
[|z1, 22, - ,2n||g = the volume of the n-dimensional parallelopiped spanned by
the vectors z1, 22, - ,x, which may be given explicitly by the formula

||:E17:E27' o 7x’ﬂ||E = |det(xu)|,

where x; = (%1, T2, - ,2in) € R™ for each i = 1,2,--- ,n. Let (X,]||,---,|])
be an n-normed space of dimension d > n > 2 and {aj,as2, - ,a,} be linearly
independent set in X. Then, the following function ||, ,||oc on X"~ ! given by

|21, 22, Tn_1lloo = max{||z1, 22, -+, Tpn_1,0i|]| 15 =1,2,-- ,n}

defines an (n — 1)-norm on X with respect to {a1,az2, -+ ,an}.

An Orlicz function M is a function, which is continuous, non-decreasing and
convex with M(0) =0, M(z) > 0 for x > 0 and M(x) — o0 as & — 0.

Let w be the space of all real or complex sequences 2 = (x). Lindenstrauss and
Tzafriri [20] used the idea of Orlicz function to define the following sequence space

= frew: () <),

which is called as an Orlicz sequence space. The space £;; is a Banach space with

the norm -
I|z|| = inf{p >0: ZM(@) < 1}.
k=1 p
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It is shown in [20] that every Orlicz sequence space £j; contains a subspace iso-
morphic to £,(p > 1). The Ag-condition is equivalent to M (Lz) < kLM (z) for all
values of > 0, and for L > 1. A sequence M = (M},) of Orlicz functions is called
a Musielak-Orlicz function (see [33]). A sequence N' = (Ny) is defined by

Ni(v) = sup{|v|u — My(u) : u >0}, k=1,2,---

is called the complementary function of a Musielak-Orlicz function M. For a given
Musielak-Orlicz function M, the Musielak-Orlicz sequence space taq and its sub-
space haq are defined as follows

tim = {wa:IM(caz) < oo for some c>0},

hap = {a: cw: Ipm(cx) < oo forall ¢ > 0},
where Iy is a convex modular defined by

Ipm(x) = Z(Mk)(ack),x = (x) € tm.
k=1

We consider ty equipped with the Luxemburg norm
lz|| = mf{k >0 IM(%) < 1}
or equipped with the Orlicz norm
l2|]° = inf{%(l + (k) k> 0},
Let X be a linear metric space. A function p : X — R is called paranorm, if

1. p(x) >0 for all z € X,
2. p(—z) =p(z) for all z € X,
3. p(x+y) <p(zx)+py) for all z,y € X,

4. if (A\,) is a sequence of scalars with \,, — A as n — oo and (z,,) is a sequence
of vectors with p(z, —z) — 0 as n — oo, then p(A, 2, — Ax) = 0 asn — .

A paranorm p for which p(z) = 0 implies 2 = 0 is called total paranorm and the
pair (X, p) is called a total paranormed space. It is well known that the metric of
any linear metric space is given by some total paranorm.

For some other recent works related to sequence spaces, we refer the interested
reader to [4, 9, 16, 17, 18, 19, 21, 23, 24, 27, 30, 31, 32, 34, 35, 44] and reference
therein.

The notion of statistical convergence was introduced by Fast [10]. Over the years
and under different names, statistical convergence has been discussed in the theory
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of Fourier analysis, ergodic theory and number theory. Later on, it was further
investigated from the sequence space point of view and linked with summability
theory (see [1, 2, 3, 5, 8, 12, 15, 26, 28, 36, 37]). In recent years, generalizations
of statistical convergence have appeared in the study of strong integral summabil-
ity and the structure of ideals of bounded continuous functions on locally compact
spaces. Statistical convergence and its generalizations are also connected with sub-
sets of the stone-Cech compactification of natural numbers. Moreover, statistical
convergence is closely related to the concept of convergence in probability. In the
recent past, Colak [6] introduced the concept of statistical convergence order « (also
see [7, 38]).

By a lacunary sequence we mean an increasing sequence 6 = (k;.) of non-negative
integers such that kg = 0 and h, = k. — k,—1 — o0 as r — oco. Throughout this
paper the intervals determined by 6 will be denoted by I, = (k.—1, k] and the ratio

kf—il will be abbreviated by ¢,, and g; = k1 for convenience.

1
Ng:{xew: lim h—TZ|xk—l|:O, for some l}.

T—00
kel,.

The notion of lacunary statistically convergent sequences of order (o, ) was
first defined by Sengiil [40] and then studied in [41, 42, 43, 25]. Let 8 = (k,) be a
lacunary sequence and 0 < a < 8 < 1 be given. We say that the sequence = = (zy,)
is S8 (6)-statistically convergent(or lacunary statistically convergent sequences of
order (a, ) if there is a real number L such that

1
TIEEOEHk €l :|zpy—L| >} =0,

where I, = (ky_1,kr] and hY denotes the ath power (h,)* of h,, that is h* =
(h&) = (h§,hs, - h%,---) and |{k < n : k C E}|? denotes the Bth power of
number of elements of E not exceeding n. In the present case this convergence is
indicated by S2(#) — limzy = L. S#(#) will denote the set of all S?(#)-statistically
convergent sequences. If § = (27), then we will write S? (see [39]). If a = 8 = 1
and 6 = (27), then we obtain the notion of statistical convergence. The choice of
B =1and 0 = (2") gives the notion of statistical convergence of order o due to
Colak [6]. Further, if we take @« = 8 = 1, then we obtain the notion of lacunary
statistical convergence given by Fridy and Orhan [13].

Let M = (My) be a Musielak-Orlicz function, p = (pg) be a bounded sequence
of positive real numbers. In the present paper, we define the following sequence
spaces:

Wi MAO,ps, |-l = {2 = (oa) € w:

1 A Pr1B
lim — 3 k_SHMk(HM,Zl,ZQ,--- zaeall)] ] =0, p >0, s> 0},
o b S p
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WM, p5 | o) = {o = (@) € ws
1 A —L B
lim — Z k_SHMk(Hﬂ,Zh---,Zn71||)rk} =0, for some L, p > 0, 520}
r—00 hg P
kel
and
wg(MaAueupasv ||7 : 7”)00 = {‘T = (‘Tk) cw:
1 A Pe1 B
sup — Z k*SHMk(H k(x)721722,"' ,zn,1||)] k] <o, p>0,s> 0}.
v h p
kel,
If we take M(x) = x, we get
wg(A,@,p,s, ||a e a'||)0 = {I = (Ik) cw:
1 A Pr1B
lim — Z k_s{(H k(x),zl,z%--- ,zn_1||> k} =0, p>0, s> 0},
r—00 h,ff P
kel,
Wi (A, 0,p,5, -+ ) = {2 = (wn) €
1 A — L B
lim -— Z kis{(HL,Zlv e ,anlH)pk} =0, forsomelL, p>0, s> O}
r—00 hg‘ P
kel,
and
Wl (8,0, .5, [l s+ oo = {2 = (w0) €
1 A Pr1 B
sUp o Z k_s{(H k;x),zl,z%--- 7zn_1||> k] <oo, p>0, s> O}.
" kel

If we take p = (pr) =1 for all k € N, we have

WHMALO5, |1+ ello = {o = (@x) € w
1 _ Ar(z) B8
_ s - = >
rli{go h?‘ Z k |:Mk(|| P y Z15 22 y Zn 1||):| 07 p > 07 s = 0}7
kel,
WEM A, 5| ) = {a= @) e w:
. 1 _ Ak(CL‘)—L B

—_ S S — PR = >

T1i>rlélo ha Z k [Mk(H P ) 21, ,zn_lﬂﬂ 0, for some L, p>0, 3_0}
kel,

and
Wi MAB, 5, e oe = {2 = (1) € w:

1 A 8
sup e 3 [ (1P sz zl)] < > 00520
" kel
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The following inequality will be used throughout the paper. If 0 < py, < suppy = H,
K = max(1,27-1) then

(1.1) lak + bi | < K{|ax[™ + [by [P}

for all k and ag, b, € C. Also |a|P* < max(1,|a|?) for all a € C.

2. Main results

In this section, we study some topological properties of sequence spaces over n-
normed spaces defined by a Musielak-Orlicz function of order (¢, 8) and prove some
inclusion relations between the resulting spaces.

Theorem 2.1. Let M = (My) be a Musielak-Orlicz function, p = (px) be a
bounded sequence of positive real numbers the spaces w3 (M, A, 0,p,s, |- ,-o,
wl (M, A, 0,p,8, |- ,) and wP (M, A, 0,p, 8, ,||)ec are linear spaces over
the field of complex number C.

Proof. Let x = (z),y = (yx) € w3 (M, A, 0,p,5,]-,-|)o and a, 8 € C. In order
to prove the result we need to find some p3 such that

1 A B
hm _ Zk_SH:Mk(”Mle?ZQa”' ,Zn71||>:|pk:| :O
reree hg kel, P3

Since z = (21),y = (yx) € wWE(M, A, 0,p,5, |- ,|)o, there exist positive numbers
p1, p2 > 0 such that

g 2 [ (12 ez sl] ] 0

" kel
and
! A Pr B
lim — Z k=S H:Mk (HM721722, - ’Zn71||:| k:| _o.
7—00 h;} 02
kel,.
Define p3 = max(2|a|p1,2|B|p2). Since (M) is non-decreasing, convex function

and so by using inequality (1.1), we have
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S SLIEY 2 (| BB o zal]™)

r kel, P3

% ZI H ( aApk;g(x)’Zl’”' yzn-1l + |%3(y),217.” ;anlH)}pk}ﬂ

<85 T gt [ (P )]
T kel,

1 [P Aw(y) e
+ E Z ﬁk HMk(HTJhZQa"' 7Zn—1||)} }
kel,
1 Ar(x P B
R | C——
T kel P1
1 s A L6
+ Kh_a Zk |:|:MK(H k(y)uzl7227"' 7277,—1||):| :|
T kel, P2
— 0Oasr — oo.
Thus we have ax + By € wl (M, A, 0,p,s, |- ,)o. Hence
wl(M,A,0,p,s,|---,-)o is a linear space. Similarly, we can prove that
wl (M, A, 0,p,s, |- ,-]|) and w? (M, A,0,p,s,| - ,-||)e are linear spaces. [

Theorem 2.2. Let M = (M) be a Musielak-Orlicz function, p = (px) be a
bounded sequence of positive real numbers. Then wS(M,A,0,p,s, |- ,|)o is

a topological linear spaces paranormed by
x PR BN\
)7217227"'72n—1||>:| :| ) Sl}u

o)< o (e 3 o 12

" kel

where H = max(1, sup pg) < oo.
k

Proof. Clearly g(x) > 0 for z = (1) € w2 (M, A, 0,p,s, ||, ,-||)o. Since My(0) =
0 we get g(0) = 0. Again if g(z) = 0 then

. pr. k() P8y
i (1 5 4 [ )] <1} 0
h kel P
This implies that for a given € > 0 there exists some p.(0 < p. < €) such that

(S [ )] 5

T kel,

Thus

(3 e [ (12 )] ])

" kel
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Suppose (zr) # 0 for each k € N. This implies that Ag(x) # 0 for each k € N. Let
e — 0 then
Ak(I
||Tvzla'227" ' ,Zn,1H — O0.

It follows that

(S e (1 )] T

" kel

which is a contradiction. Therefore Ay (z) = 0 for each k and thus (z3) = 0 for each
k € N. Let p; > 0 and p2 > 0 be such that

(hl_o‘ Z k_SHMk(”A];(;C),Zl,z%... 7Zn—1|‘)j|pkj|5)% <1

T kel,

CIAEE

PR BN
)7217227"' 7Zn—1|‘):| jl ) S 1.
" kel

Let p = p1 + p2, then by using Minkowski’s inequality, we have

and

1

(s S [ (P )] )

oS k(R )]

p1+ p2

Ax(@)
p1ﬁ—1p2)[| ]:7130

|-

3 R1y %22, """ 7Zn—l||i|

IN

ke [Mk(

IN

) (2 [P )] )

1+ P2 T kel,

IN

Since p, p1 and po are non-negative, so we have

gty =t (o« (0 w1 (1L )] ] 1)
T kel,

< inf{(pl)% . (hia Z ksHMkOAkp(lx)azlv"' )Zn71|‘):|pk:|ﬂ)%§1

" kel

}
it {(on) ¥+ (2 3k [ (1 )] <

" kel,
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Therefore g(x + y) < g(x) + g(y). Finally we prove that the scalar multiplication is
continuous. Let y be any complex number. By definition

gty =it (o (e 3k [ (1 )] <1
" kel
Thus

o) = imt {7 (= 7 ko [ (12 oy o)) <),

" kel,

where ¢t = \TP\' Since |p/Pm < max(1, |u|*"PP"), we have

1

g(px) <max(1, |0 inf {45 : (2 Sk [[Mk(n"%(””), e zn_lu)}”}") "<l
T kel,

So the fact that scalar multiplication is continuous follows from the above inequality.
This completes the proof of the theorem. O

Theorem 2.3. Let M = (M) be a Musielak-Orlicz function. If
sup[My(x)[P* < oo for all fized x > 0, then w2(M,A,0,p,s, |- ,)o C
k

wg(M,A,H,p,s, H7 Ty ”)00

Proof. Let x = (zx) € w(M,A,0,p,s,]---,||)o, then there exists a positive

number p; such that

I S YA (E (),zl,zg,---,zn_ln)]”f:o

r kel,

Define p = 2p;. Since (M}) is non-decreasing, convex and so by using inequality
(1. 1) we have

T (o

r Tke]

_ Suph Sk H (M721,227"'52n71”:|pk:|ﬂ

T kel, P

Ksup a Z k~° HMk(H V21,22, ,zn,lﬂrk}ﬁ
(

T kel,
1 B L Pk B
+ ngph Zk ZPkHMk HE 217227"'7%—1”)} }

IN

kel,
1 Ap(x) — L P18
< Kap o S e [ (12 )]
r T kel P1
1 L PR B
+ KSup—aZk [{Mk(H_ 215227'-~,2n71”):| :|
r h@ Fyerd P

< 0o0.
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Hence = = (z) € w2 (M, A, 0,p,5, ||, D)oo O
Theorem 2.4. Let 0 < infpy, = h < pr < suppr = H < oo and

M = (M), M" = (M])) be Musielak-Orlicz functions satisfying Aq-condition, then
we have

(7’) wg(MlaAueupasa ||7 7'”)0 C wg(M OM’,A,@,p,S, ||7 7'”)0;
(”) wg(M’,A,H,p,s, ||a te 7”) - wg(M OM/,A,G,p,S, ||7 . 7”)7
(7’“’) U’Q(M/aAaeaPaSa ”7 7”)00 - wg(M OM’,A,@,p,S, H? 7”)00
Proof. Let x = (z3) € w2 (M',A,0,p,s, -, ,-||)o then we have
1 T (o Ak(@) e
D P P —)

Let € > 0 and choose ¢ with 0 < § < 1 such that My (t) < e for 0 < ¢ < §. Let
(yx) = M, [|| A"p(w) 21,22, 7zn_1||} for all k € N. We can write

i 2 0 ()] =g [ (mtnl) ) ey S ()]

T kel, T kel
Uk<5 Y >0
So we have
pk p H 1 p]?
S [l < R S R (Ml
T keI, ’" keI,
Yy <o Yp<d
H 1 )P
(2.1) < LENT = 0 k[ (Ml
T kely,
Y <8

for yr, > 0,yp < % < 14 4. Since (M},)'s are non-decreasing and convex, it follows
that

1 2
Mi(ye) < Mi(1+55) < SM(2) + Mk( =),
Since M = (M},) satisfies Ag-condition, we can write
LYk LYk Yk
M, =T=—=Mj(2 —T—=My(2) =T=—=M(2).
w(yn) < 5T Mi(2) + 5175 Mi(2) = T Mx(2)
Hence,
M. (2 1 s
(2.2) — Z k= (Mp[ys] pk)B < max (1, (T ]3( ))H)h—a Z k ([yk]p’“)'@
h kEIr T kel

Y >0 Y <6
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From equation (2.1) and (2.2), we have x = (x3) € wS(MoM', A, 0,p, s, [, ,-[)o-
This completes the proof of (¢). Similarly we can prove that
wa (M A, 0,p,5, |-, o[) Cwi (Mo M A0, p,s, |-y ).
and
wa (M A, 0,95, Do € wi (Mo M A0, p,s, |l oo
o

Theorem 2.5. Let0 < h =infpy =pr <suppr = H < co. Then for a Musielak-
Orlicz function M = (My,) which satisfies Ag-condition, we have

(7’) wg(Aveapasa H7 T 7'”)0 - wg(M,A,H,p,s, ”7 T 7'”)0;
(”) wg(A,@,p,s, ||a o 7”) - wg(MaAvovpaSa ||a e a||)a
(ZZZ) wg(A,@,p,s, ||a . a||)00 C wg(MaAvovpaSa ||a o a||)00

Proof. The proof is on similar lines. We omit the details. O

Theorem 2.6. Let M = (My) be a Musielak-Orlicz function and 0 < h = inf py.

Then wg(M,A,G,p,s, I Do C wg(A,H,p,s, I, Do if and only if
. 1 —s P\ B
(2:3) Jm g 20K (((0)™)" = o0
T 6 -

for some t > 0.

Proof. Let wl(M, A, 0,p,5,])oc C w2(A,0,p,5,]---,[)o. Suppose that
(2.3) does not hold. Therefore there are subinterval I,.;y of the set of interval I,
and a number tg > 0, where

A
to = ||—k(x)721722, ooy Zp—1|| for all k,
P
such that
1 —s Pr\ B
(24) ho = Z k ((Mk(to)) ) §K<oo7m:1,273,...

(@) k€l

Let us define x = (z1,) as follows :

to kel
Ay (z :{ Plo, r(7) )
() 0, k ¢Ir(j)
Thus, by (2'4)7 MRS U’g(MaAa@apasa Ha e 7'”)00' But » ¢ wg(A,H,p,s, H7 T 7'”)0'

Hence (2.3) must hold.
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Conversely, suppose that (2.3) holds and let z € w? (M, A,0,p,s, ||, ,|)oo. Then
for each r,

1 s Ar(z Pr18
(2.5) EZk HM,CQ%),%ZQ,---,%1||)} ] < K < .

kel,
Suppose that = ¢ w?(A,0,p,s, |-+ ,-||)o. Then for some number € > 0, there is a
number ko such that for a subinterval I,.(;), of the set of interval I,
A
||Lx),zl,z2, coo s zp—1|| > efor k> k.

From properties of sequence of Orlicz functions, we obtain

[ (R

which contradicts (2.3), by using (2.5). Hence we get
wg(j\/l, A,0,p,s, ”7 T H)OO - wg(Av 0,p,s, ”7 T ”)0
This completes the proof. O

Theorem 2.7. Let M = (My,) be a Musielak-Orlicz function. Then the following

statements are equivalent :

(Z) wg(A,@,p,S, ||7 : 7”)00 - 'LUg(M,A,G,p,S, ||7 : 7'”)00;
(”) wQ(Aio’paSa ”a to 7'”)0 C U}g(M,A,Q,p,S, ||7 e 7'”)00;
(i) sUp o= Z kfs((Mk(t))pk)ﬁ < oo forall t>0.

" kel

Proof. (i) = (ii). Let (i) holds. To verify (ii), it is enough to prove

wg(A,@,p,S, ||7 T 7'”)0 C wg(MaAvovpaSa ”a e a||)00
Let # = (z) € w2(A,0,p,5,]-,|)o- Then for e > 0 there exists 7 > 0, such
that
OIS ") <
- 21, 2o 2 _
h”(2¢ 0 ) “1y 22, y An—1 €
kel,

Hence there exists K > 0 such that

1 s Ar(z Pr1B
sup—aZk HH it ),21,22,---,271_1”} ] < K.
by kel, P

So we get x = (xk) € '(Ug(M,A,G,p,S, Hv T 7”)00
(i) = (iii). Let (ii) holds. Suppose (iii) does not hold. Then for some ¢ > 0

1
suph—a Z k_s[(Mk(t))pk]ﬁ =00
" kel
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and therefore we can find a subinterval I,.(;), of the set of interval I, such that

(2.6) hj Z k_s{(Mk(l))pkr >4, j=1,2,3,-
r(7) kel J

Let us define z = (z1,) as follows :

£ kel
(z) 0, k& L.
Then = = (z) €  wlA,ps] ). But by (26), = ¢
w3 (M, A, 0,p,8, ] ,|)oo, which contradicts (ii). Hence (iii) must holds.
(iii) = (i). Let (iii) holds and suppose z = (zx) € wZ(A,0,p,5, |, oo
Suppose that z = (xk) ¢ U}g(M,A, 9,p7 5, ||7 T 7'”)007 then
1 s Ak(gp) Pr B B
(2.7) Slrlph—a Zk [[Mk(||7,z1,22,~-~ ,zn,lﬂ)} } = 00.

" kel,

Let t = || A’“p(z) 21,22, , zn—1|| for each k, then by (2.7)

1
sup Z kfs[(Mk(t))pk]ﬁ =00
L =

which contradicts (iii). Hence (i) must holds. O

Theorem 2.8. Let M = (My,) be a Musielak-Orlicz function. Then the following
statements are equivalent :

(l) wg(M7A797p787 ||7 7'||)0 C wg(A797p787 ||7 7|| 0
(”) wg(./\Il,A,G,p,s, ||7 7'”)0 C wg(A,H,p,s, ||7 7'”)007
(iid) inf — > k~*[(Mi(t)™*]” > 0 for allt > 0.

T kel,

Proof. (i) = (ii). It is obvious.
(ii) = (iii). Let the inclusion in (ii) hold. Suppose that (iii) does not hold. Then

. 1 —s P18
Hrlfﬁ Z k= [(M(t))""]" = 0 for some t > 0,
kel,
and we can find a subinterval I,.(;), of the set of interval I, such that

1 . 1
he Z k_s[(Mk(j))pk}B< ) j:172737"'
T(]) ]CEIT(]') ]

(2.8)

Let us define z = (zy,) as follows :
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Thus by (28),$ = (xk) € 'LUQ(M,A,G,]),S, ||7 T 7'”)0 but x = (Ik) ¢
wl(A,0,p, 8, ,-||)o, which contradicts (ii). Hence (iii) must hold.
(iii) = (i). Let (iii) holds. Suppose that z = (zx) € w2(M,A,0,p,5, |- ,-|)o-
Then

1 A pr1B
(2.9) }E;E:k‘SHA@(H ﬁxthz%.”7zn_ﬂD}k] S 0as T — oo,

kel,

Again suppose that © = (z3) & w2(A,0,p,s, |-+ ,-|])o for some number ¢ > 0 and

a subinterval I,.(;), of the set of interval I,., we have

A
(M@ el > e for all E.

Then from properties of the Orlicz function, we can write

[ (1282 2 maa)]] 2 [0000))

Consequently, by (2.9), we have

. 1 s
Jun g 2 [(Mi()™])” =0,
E r

which contradicts (iii). Hence (i) must hold. O
Theorem 2.9. (i) If 0 < infp, < pp <1 for all k € N, then
'LUg(M,A,G,p,S, ||7 R} ||) - wg(M,A,H,S, ||7 Ty ||)

(i) If 1 < pp <suppr = H < 00, for all k € N, then

wg(M,A,H,s, [+l € wg(MaAueapasa 551D
Proof. (i) Let = (1) € w3 (M, A, 0,p,s,]-,--,-||), then
. 1 s Ap(z) — L PR B
e S D )]
" kel

Since 0 < inf p < pr < 1. This implies that

.1 s Ap(z) — L g
TILH;OEICEZI k {Mk(”Tleaz%”' 7271—1H):|

1 A - L B
< lim — Z k_SHMk(Hk(L,Zl,Zz,”' ,an1||>rk} ;
o b S p
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therefore,
.1 s Ap(z) — L B
e TP )] 0
kel
Hence
'(Ug(M,A,G,p,S, Hv : 7”) c wg(M,A,H,S, H7 : 7”)
(ii) Let p > 1 for each k and sup py < co. Let = (z1) € wl (M, A, 0,5, ,-]),

then for each p > 0, we have

1 A - L LB
lim — k—SHMk(H’“(L,zl,zg,--- ,zn_lll)} k} —0<1.
ey P

Since 1 < p, < suppi < 00, we have
.1 s Ag(z) — L P18
S (A

e D (e S |

" kel,
=0
< 1.
Therefore = = (z) € w? (M, A, 0,p,s,|----,-||), for each p > 0. Hence
UJQ(M,A,G,S, ||a o 5||) - 'LUQ(M,A,G,]),S, ||7 : 7”)

This completes the proof of the theorem. O

Theorem 2.10. If0 < infpg < pxr <suppr = H < o0, for all k € N, then

wg(M,A,H,p,s, ||7 7”) = wg(M,A,e,S, ||7 7”)

Proof. The proof is on similar lines, we omit the details. O
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