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Abstract. In this paper, we study the concept of intuitionistic fuzzy sublattices and
intuitionistic fuzzy ideals with respect to an intuitionistic fuzzy t-norm on an adequate
lattice. Some characterizations and properties of these intuitionistic fuzzy sublattices
and ideals with respect to intuitionistic fuzzy t-norm are established.
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1. Introduction

In 1965, Zadeh introduced the concept of fuzzy sets (FS for short) establishing
its fundamental properties [24]. Later, several authors studied this new concept and
its applications to many areas of modern mathematics, see for example [11–13,15].
In the same way, Yuan and Wu [6] studied the relationship between fuzzy ideals and
fuzzy congruences on a distributive lattice and obtained that the lattice of fuzzy
ideals is isomorphic to the lattice of fuzzy congruence on a generalized Boolean
algebra. Ajmal and Thomas [2] defined and characterized fuzzy sublattice as a
fuzzy algebra. In 1983, Atanassov [4] introduced the concept of intuitionistic fuzzy
sets (IFS for short) and established many of its fundamental properties. After a few
years, Thomas and Nair [22,23] studied intuitionistic fuzzy sublattice, intuitionistic
fuzzy ideals and intuitionistic fuzzy filters on a lattice, for more details we refer
to [1,14,16,17,20,22,23]. In this paper, we introduce the notion of T -intuitionistic
fuzzy sublattice by associating the conditions mentioned in the definition of an
intuitionistic fuzzy sublattice [22, 23] we obtain a general condition which reduces
the four conditions in only one. Thus, based on an intuitionistic fuzzy triangular
norm, the study of intuitionistic fuzzy sublattice becomes so simple. Moreover, we
extend the notion of intuitionistic fuzzy ideal to T -intuitionistic fuzzy ideal with
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respect to (T -intuitionistic fuzzy ideal w.r.t for short) the lattice operations and
we investigate their various characterizations and properties.

The remainder of the paper is structured as follows. In Section 2, we recall
the necessary basic concepts and properties of fuzzy sublattices and fuzzy ideals,
intuitionistic fuzzy set. Also, we recall some definitions and theorems which we will
need in the sequel.

In Section 3, we introduce the notion of intuitionistic fuzzy Triangular norms
and Triangular conorms as well as some concepts related to an intuitionistic fuzzy
triangular norm such as triangular intuitionistic fuzzy sublattices and the intersec-
tion of triangular intuitionistic fuzzy subsets w.r.t an intuitionistic triangular norm.
In Section 4, we introduce and study the notion of triangular intuitionistic fuzzy
ideals and we provide several characterizations results related to triangular intu-
itionistic fuzzy sublattices, triangular intuitionistic fuzzy subsets, and triangular
intuitionistic fuzzy ideals. Finally, some conclusions and open questions are given
in Section 5.

2. Preliminaries

The purpose of this section is to provide a basic introduction to the poset,
lattices and ideal and we recall some definitions and theorems which we need in the
sequel. Throughout this paper, L denotes a lattice (L,6) and Ld denotes its dual-
order lattice (L,>). To avoid any confusion or misunderstanding in some formulas,
we use the notation (6,∧,∨) to refer the (order, min, max) on the lattice L and
(≤,min,max) to refer the (usual order, min, max) on the real interval [0, 1].

2.1. Fuzzy Sublattices

According to Zadeh [24], a fuzzy set on a set X is defined to be a mapping :

µ : X → [0, 1]

For x ∈ X , µ(x) is interpreted as the degree of membership of x in the fuzzy set
µ .

Definition 2.1. [23] A fuzzy subset µ of L is called a fuzzy sublattice of L if,

(i) µ(x ∨ y) ≥ min(µ(x), µ(y)}

(ii) µ(x ∧ y) ≥ min(µ(x), µ(y)}, ∀x, y ∈ L.

Definition 2.2. [23] A fuzzy subset µ of L is called a fuzzy ideal of L if,

(i) µ(x ∨ y) ≥ min(µ(x), µ(y)}

(ii) µ(x ∧ y) ≥ max(µ(x), µ(y)}, ∀x, y,∈ L.
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2.2. Intuitionistic fuzzy sets

The definition of an intuitionistic fuzzy set was introduced by Atanassov [4, 5].

Definition 2.3. [4] Let X be a non-empty set. An intuitionistic fuzzy set (IFS)
A of X is an object of the following form A = {(x, µA(x), νA(x)) | x ∈ X}, where
µA : X → [0, 1] and νA : X → [0, 1] define the degree of membership and degree
of nonmembership of the element x ∈ X respectively and for any x ∈ X , we have
0 ≤ µA(x) + νA(x) ≤ 1. The collections of all intuitionistic fuzzy set of X will be
denoted by IFS(X).

Note that for the extreme case µA(x) + νA(x) = 1, A is a fuzzy set.

Definition 2.4. [22, 23] Let L be a lattice and A = {x, µA(x), νA(x)/x ∈ L} be
an intuitionistic fuzzy subset of L. Then A is called an intuitionistic fuzzy sublattice
(IFL) of L if the following conditions are satisfied for all x, y ∈ L:

1. µA(x ∨ y) ≥ min{µA(x), µA(y)};

2. µA(x ∧ y) ≥ min{µA(x), µA(y)};

3. νA(x ∨ y) ≤ max{νA(x), νA(y)};

4. νA(x ∧ y) ≤ max{νA(x), νA(y)}.

Definition 2.5. [23] An intuitionistic fuzzy set I of L is called an intuitionistic
fuzzy ideal (IFI) of L, if the following conditions are satisfied for all x, y ∈ L:

1. µI(x ∨ y) ≥ min{µI(x), µI(y)};

2. µI(x ∧ y) ≥ max{µI(x), µI(y)};

3. νI(x ∨ y) ≤ max{νI(x), νI(y)};

4. νI(x ∧ y) ≤ min{νI(x), νI(y)}.

2.3. Intuitionistic fuzzy Triangular norms and Triangular conorms

Triangular norms and conorms (t-norms and t-conorms, for short) are important
tools for the interpretation of the union and intersection of fuzzy sets [3]. Particu-
larly, they are very useful for a lot of notions, like conjunction and disjunction in
fuzzy logic, antisymmetry, and transitivity of fuzzy relations, etc.

Berthold Schweizer and Abe Sklar in [21] gave an axiomatic approach to t-
norms as they are used today. Deschrijver, Cornelis, and Kerre have been extended
triangular norms to intuitionistic fuzzy triangular norms [7, 8]. In [9] Deschrijver
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and Kerre have shown that intuitionistic fuzzy sets can also be seen as L-fuzzy sets
in the sense of Goguen [15]. Consider the set L∗ and operation defined by

L∗ = {(a1, a2) ∈ [0, 1]
2
, a1 + a2 ≤ 1}

(a1, a2) 6 L∗ (b1, b2) ⇔ a1 ≤ b1 and a2 ≥ b2, ∀ (a1, a2) , (b1, b2) ∈ L∗

The structure (L∗,6L∗) is a complete lattice [9].

We denote its units by 0L∗ = (0, 1) and 1L∗ = (1, 0).

Equivalently, this lattice can also be defined as an algebraic structure (L∗,∧L∗ ,∨L∗) where
the meet operator ∧L∗ and the join operator ∨L∗ are defined as follows, for (x1, x2) , (y1, y2) ∈
L∗ :

(x1, x2) ∧L∗ (y1, y2) = (min (x1, y1) ,max (x2, y2))

(x1, x2) ∨L∗ (y1, y2) = (max (x1, y1) ,min (x2, y2))

Using this lattice, we easily see that with every intuitionistic fuzzy set A =
{(x, µA(x), νA(x)) | x ∈ X} corresponds to an L∗-fuzzy set, i.e., a mapping A :
X −→ L∗. In the sequel, we will use the same notation for an intuitionistic fuzzy
set and its associated L∗-fuzzy set. So for the intuitionistic fuzzy set A we will also
use the notation

A (x) = (µA(x), νA(x)) .

In the following, we give some elementary notions and definitions on intuitionistic
fuzzy sets operations, intuitionistic fuzzy t-norms and intuitionistic fuzzy t-conorms.

Definition 2.6. [8, 10] An intuitionistic fuzzy t-norm T is a commutative, asso-

ciative, and increasing mapping T : (L∗)
2
−→ L∗ satisfying T (1L∗ , x) = x, for all

x ∈ L∗.

Definition 2.7. [8, 10] An intuitionistic fuzzy t-conorm is a commutative, asso-

ciative, and increasing mapping S : (L∗)
2
−→ L∗ satisfying S(0L∗ , x) = x, for all

x ∈ L∗.

Definition 2.8. [8, 10] An intuitionistic fuzzy t-norm T (resp. t-conorm S) is
called t-representable intuitionistic fuzzy t-norm if there exists a fuzzy t-norm T
and a fuzzy t-conorm S (resp. a fuzzy t-conorm S′ and fuzzy t-norm T ′ ) on
[0, 1] such that, for all x, y ∈ L∗, T (x, y) = (T (x1, y1), S(x2, y2)) (resp.S (x, y) =
(S′ (x1, y1) , T ′ (x2, y2) . T and S (resp. S′ and T ′) are called the representants of T
(resp.S).

Also, in intuitionistic fuzzy set theory S-union and T -intersection can be mod-
eled by the newly defined intuitionistic fuzzy t-norms and t-conorms. We define,
for all x ∈ X and A, B intuitionistic fuzzy sets in X
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(A ∩B) (x) = T (A (x) , B (x)) ,

(A ∪B) (x) = S (A (x) , B (x)) .

Definition 2.9. [2] Let A ∈ IFS (X) where A (x) = (µA (x) , νA (x)) , for x ∈ X,
the sets

1. [A] (x) = (µA (x) , µc

A
(x)).

2. 〈A〉 (x) = (νc
A

(x) , νA (x)).

are called, respectively, necessity and possibility operators.

Definition 2.10. [2] Let A be an intuitionistic fuzzy set on a set X . The support
of A is the crisp subset on X given by

Supp(A) = {x ∈ X | 0L∗ <L∗ A(x)}

Remark 2.1. Let A be an intuitionistic fuzzy set on a set X. According to Definition
2.10, the support of A is the crisp subset onX given by {x ∈ X | µA (x) > 0 or µA (x) = 0 and ν (x) < 1} .

The following theorem gives the condition which makes an intuitionistic fuzzy
triangular norm a representable triangular norm.

Theorem 2.1. [8,10] Given a fuzzy t-norm T and a fuzzy t-conorm S satisfying
∀ (a, b) ∈ [0, 1] , T (a, b) ≤ 1−S (1 − a, 1 − b), the mappings T and S defined by, for
x, y ∈ L∗, T (x, y) = (T (x1, y1) , S (x2, y2)) and S (x, y) = (S (x1, y1) , T (x2, y2))
are an t-representable intuitionistic fuzzy t-norm and an t-representable intuition-
istic fuzzy t-conorm respectively.

Remark 2.2. If T (resp. S) is a t-representable intuitionistic fuzzy t-norm (resp. t-
representable intuitionistic fuzzy t-conorm), we denoted by T = (T, S) (resp. S = (S, T )),
where

∀ (a, b) ∈ [0, 1] : S (a, b) ≤ 1− T (1− a, 1− b) .

Now, we give some basic examples of t-representable intuitionistic fuzzy t-norm
and t-representable intuitionistic fuzzy t-conorm (see also [8]).

For all x, y ∈ L∗,

(i) TM (x, y) = (min (x1, y1) ,max (x2, y2)),

(ii) TL (x, y) = (max (0, x1 + y1 − 1) ,min (1, x2 + 1 − y1, y2 + 1 − x1)).

Consequently, we can consider the minimum intuitionistic fuzzy t-norm and the
 Lukasiewicz intuitionistic fuzzy t-norm, where theire duals are
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SM (x, y) = (max (x1, y1) ,min (x2, y2)) and

SL (x, y) = (min (1, x1 + 1 − y2, y1 + 1 − x2) ,max (0, x2 + y2 − 1)) .

The following lemma will be used to prove some properties.

Lemma 2.1. Let a ∈ L∗. Then, T (a, 0L∗) = 0L∗ .

Proof. Let a ∈ L∗. We have T (a, 0L∗) 6L∗ T (1L∗ , 0L∗) = 0L∗ . Then, T (a, 0L∗) =
0L∗ .

Conclusion 2.1. Consider the lattice L∗and 0L∗ ∈ L∗, then T (0L∗ , 0L∗) = 0L∗ .

Proposition 2.1. Let a, b ∈ L∗. Then,

1. If 0L∗ <L∗ a and 0L∗ <L∗ b then 0L∗ <L∗ T (a, b) ,

2. 0L∗ <L∗ TM (a, b) then (0L∗ <L∗ a and 0L∗ <L∗ b) ,

3. TM (a, a) = a,

4. a 6L∗ S (a, b) ,

5. T (a, b) 6L∗ a,

6. a = TM (a, b) if and anly if a 6L∗ b.

Proof. Let a, b ∈ L∗.

1. Using the property of T is monotonicity and Conclusion 2.1.

2. Assume that 0L∗ = a or 0L∗ = b, then, TM (a, b) = 0L∗ .

3. Using the definition of TM = ∧M .

4. We have a = S (a, 0L∗) 6L∗ S (a, b) . Then, a 6L∗ S (a, b) .

5. We have T (a, b) 6L∗ T (a, 1L∗) = a. Then, T (a, b) 6L∗ a.

6. Using the property of TM .

Throughout this paper, all intuitionistic fuzzy t-norms T ( respectively intu-
itionistic fuzzy t-conorms S ) are t-representable intuitionistic fuzzy t-norm (resp,
t-representable intuitionistic fuzzy t-conorm).
The following definition inspired from [18,19] extends the notion dominance to the
intuitionistic fuzzy case.
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Definition 2.11. Let T1 and T2 be two t-representable intuitionistic fuzzy t-
norms. T1 is said to dominate another t-norm T2 (briefly, T2 ≪ T1) if and only
if, for any quadruple (x = (x1, x2) , y = (y1, y2) , u = (u1, u2) , v = (v1, v2)) ∈ (L∗),
the following holds:

T2 (T1 (x, u) , T1 (y, v)) 6L∗ T1 (T2 (x, y) , T2 (u, v))

The following lemma will be used to prove the subsequent results.

Lemma 2.2. For any be a t-representable intuitionistic fuzzy t-norm T , we have T ≪
TM .

Proof. Let x, y, u, v ∈ L∗,

{

TM (x, y) 6L∗ x and TM (u, v) 6L∗ u,
TM (x, y) 6L∗ y and TM (u, v) 6L∗ v.

Then,
{

T (TM (x, y) , TM (u, v)) 6L∗ T (x, u) ,
T (TM (x, y) , TM (u, v)) 6L∗ T (y, v) .

Hence,

TM (T (TM (x, y) , TM (u, v)) , T (TM (x, y) , TM (u, v))) 6L∗

TM (T (x, u) , T (y, v)) .

So,
T (TM (x, y) , TM (u, v)) 6L∗ TM (T (x, u) , T (y, v)) .

Lemma 2.3. Any t-representable intuitionistic fuzzy t-norm T dominates itself,
i.e., for any quadruple (x, y, u, v) ∈ (L∗)

4
, we have

T (T (x, u) , T (y, v)) = T (T (x, y) , T (u, v)) .

Proof. Direct.

Remark 2.3. 1. The greatest t-representable intuitionistic fuzzy t-norm w.r.t 6L∗ is
TM , defined by TM (x, y) = x ∧

L∗
y.

2. The smallest t-representable intuitionistic fuzzy t-conorm w. r. t 6L∗ is SM , defined
by SM (x, y) = x ∨

L∗
y for all x, y ∈ L∗.

Moreover, TM (x, y) 6L∗ SM (x, y) for all x, y ∈ L∗. Indeed, let x,y ∈ L∗, where
x = (x1, x2) and y = (y1, y2) .
We have min (x1, y1) ≤ max (x1, y1) and max (x2, y2) ≥ min (x2, y2) ,
then (min (x1, y1) ,max (x2, y2)) 6L∗ (max (x1, y1) ,min (x2, y2)) ,
then TM (x, y) 6L∗ SM (x, y) .
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Remark 2.4. It easy to see that T (x, y) 6L∗ TM (x, y) and SM (x, y) 6L∗ S (x, y) for all
x, y ∈ L∗. Indeed, let x, y ∈ L∗, then x = (x1, x2) and y = (y1, y2) . We have T (x1, y1) ≤
min (x1, y1) and S (x2, y2) ≥ max (x2, y2) then T (x, y) 6L∗ TM (x, y) and SM (x, y) 6L∗

S (x, y) .
Finaly, T (x, y) 6L∗ TM (x, y) 6L∗ SM (x, y) 6L∗ S (x, y) .

Remark 2.5. Note that it does not hold that for all x, y ∈ L∗, neither TM (x, y) = x nor
TM (x, y) = y. For example, TM ((0.5, 0.3) , (0.2, 0.1)) = (0.2, 0.3) .

3. T -Intuitionistic fuzzy sublattices

In this section, we introduce and study the notion of an intuitionistic fuzzy sub-
lattice w. r. t a t-representable intuitionistic fuzzy t-norm, intuitionistic fuzzy ideal
w. r. t a t-representable intuitionistic fuzzy t-norm. Also, their characterizations
w. r. t a t-representable intuitionistic fuzzy t-norm.

Definition 3.1. Let T be a t-representable intuitionistic fuzzy t-norm, L a crisp
lattice and A an intuitionistic fuzzy set. A is called an intuitionistic fuzzy sublattice
on lattice L w. r. t the t-representable intuitionistic fuzzy t-norm T if and only if
the following inequality holds

(3.1) T (A (x) , A (y)) 6L∗ A(x ∨ y) ∧L∗ A(x ∧ y)

Notation 3.1. The set of all the intuitionistic fuzzy lattices on a lattice L w. r. t
a t-representable intuitionistic fuzzy t-norm T will be denoted by T -IFL(L).

Remark 3.1. If A ∈ TM -IFL(L), then A is an intuitionistic fuzzy lattice on lattice
L, within the meaning of K. V. Thomas and L. S. Nair in [23]. So intuitionistic fuzzy
lattice w. r. t the t-representable intuitionistic fuzzy t-norm T is a generalization of the
intuitionistic fuzzy lattice.

Example 3.1. Consider the lattice L = {1, 2, 3, 6} the set of all divisors of 6. Let
A be the intuitionistic fuzzy set given by A (1) = (0.1, 0), A (2) = (0.4, 0.3), A (3) =
(0.5, 0.5), A (6) = (0.2, 0.3) .

Then, A is a TL-IFL (L) . Indeed, it suffices to prove it for x, y ∈ L we get that
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Fig. 3.1: The Hasse diagram of D(6)

x y A(x) A(y) x ∧ y A(x ∧ y) x ∨ y A(x ∨ y)
1 1 (0.1, 0.2) (0.1, 0.2) 1 (0.1, 0.2) 1 (0.1, 0.2)
1 2 (0.1, 0.2) (0.4, 0.3) 1 (0.1, 0.2) 2 (0.4, 0.3)
1 3 (0.1, 0.2) (0.5, 0.5) 1 (0.1, 0.2) 3 (0.5, 0.5)
1 6 (0.1, 0.2) (0.2, 0.3) 1 (0.1, 0.2) 6 (0.2, 0.3)
2 1 (0.4, 0.3) (0.1, 0.2) 1 (0.1, 0.2) 2 (0.4, 0.3)
2 2 (0.4, 0.3) (0.4, 0.3) 2 (0.4, 0.3) 2 (0.4, 0.3)
2 3 (0.4, 0.3) (0.5, 0.5) 1 (0.1, 0.2) 6 (0.2, 0.3)
2 6 (0.4, 0.3) (0.2, 0.3) 2 (0.4, 0.3) 6 (0.2, 0.3)
3 1 (0.5, 0.5) (0.1, 0.2) 1 (0.1, 0.2) 3 (0.5, 0.5)
3 2 (0.5, 0.5) (0.4, 0.3) 1 (0.1, 0.2) 6 (0.4, 0.3)
3 3 (0.5, 0.5) (0.5, 0.5) 3 (0.5, 0.5) 3 (0.5, 0.5)
3 6 (0.5, 0.5) (0.2, 0.3) 3 (0.5, 0.5) 6 (0.2, 0.3)
6 1 (0.2, 0.3) (0.1, 0.2) 1 (0.1, 0.2) 6 (0.2, 0.3)
6 2 (0.2, 0.3) (0.4, 0.3) 2 (0.4, 0.3) 6 (0.2, 0.3)
6 3 (0.2, 0.3) (0.5, 0.5) 3 (0.5, 0.5) 6 (0.2, 0.3)
6 6 (0.2, 0.3) (0.2, 0.3) 6 (0.2, 0.3) 6 (0.2, 0.3)
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TL(A(x),(A(y)) A(x ∧ y) ∧L∗ A(x ∨ y) The inequality 3.1
(0, 0.4) (0.1, 0.2) True
(0, 0.5) (0.1, 0.3) True
(0, 0.7) (0.1, 0.5) True
(0, 0.5) (0.1, 0.3) True
(0, 0.5) (0.1, 0.3) True
(0, 0.6) (0.4, 0.3) True
(0, 0.8) (0.1, 0.3) True
(0, 0.6) (0.2, 0.3) True
(0, 0.7) (0.1, 0.5) True
(0, 0.8) (0.5, 0.5) True
(0, 1) (0.2, 0.5) True

(0, 0.8) (0.1, 0.3) True
(0, 0.5) (0.2, 0.3) True
(0, 0.6) (0.2, 0.5) True
(0, 0.8) (0.2, 0.3) True
(0, 0.6) (0.1, 0.5) True

The following lemma is immediate and shows the generality of our work.

Lemma 3.1. If A ∈ TM -IFL (L) then A ∈ T -IFL (L), the converse is note true.

Proof. Assume that A ∈ TM -IFL(L). Then TM (A (x) , A (y)) 6L∗ A(x ∨ y) ∧L∗

A(x∧y). Using the Remark 2.4, then T (A (x) , A (y)) 6L∗ A(x∨y)∧L∗ A(x∧y). So
A ∈ T -IFL (L) . The converse in general is not true. Indeed, let L be the lattice
in Example 3.1 and let A given by A (1) = (0.1, 0.2), A (2) = (0.4, 0.3), A (3) =
(0.5, 0.5), A (6) = (0.2, 0.3) . Then A is an TL-IFL (L) but A is note an TM -
IFL (L) . But TM (A(2), (A(3)) = (0.4, 0.5) 
L∗ (0.1, 0.3) = A(2∧ 3)∧L∗ A(2∨ 3) =
A(1) ∧L∗ A(6). Then A is note an TM -IFL (L) .

The following theorems about the intersection of two T -intuitionistic fuzzy lat-
tices on lattice L

Theorem 3.2. The T -intersection of two T -intuitionistic fuzzy sublattices on a
lattice L is a T -intuitionistic fuzzy sublattice on the lattice L.

Proof. Let A,B ∈ T -IFL (L), i.e., T (A (x) , A (y)) 6L∗ A(x ∧ y) ∧L∗ A(x ∨ y) and
T (B (x) , B (y)) 6L∗ B(x ∧ y) ∧L∗ B(x ∨ y). We have for x ∈ L : (A ∩B) (x) =
T (A(x), B(x)). Using the Lemma 2.2 and 2.3.
We have T (T (A (x) , A (y)) , T (B (x) , B (y))) 6L∗

T (A(x ∧ y) ∧L∗ A(x ∨ y), B(x ∧ y) ∧L∗ B(x ∨ y)) .

Hence, T (T (A (x) , B (x)) , T (A (y) , B (y))) 6L∗

T (A(x ∧ y), B(x ∧ y)) ∧L∗ T (A(x ∨ y), B(x ∨ y)).

Thus, T ((A ∩B) (x) , (A ∩B) (y)) 6L∗

(A ∩B) (x ∧ y) ∧L∗ (A ∩B) (x ∨ y). Then, A ∩B ∈ T -IFL (L).
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Corollary 3.1. Let L be a lattice. If A ∈ T -IFL (L) and B ∈ TM -IFL (L), then
A ∩B ∈ T -IFL (L).

Proof. Obviously according to Lemma 3.1.

The following theorem characterizes the intersection of two T -intuitionistic fuzzy
sublattices on lattice L, where the intersection of intuitionistic fuzzy sets is given
w. r. t another t-representable intuitionistic fuzzy t-norm T .

Theorem 3.3. Let L be a lattice, A,B ∈ T -IFL (L) and let T ′ be a t-representable
intuitionistic fuzzy t-norm dominates T . Then, the T ′-intersection of A and B is a
T ′-IFL (L).

Proof. Suppose that T is dominated by T ′.

Let A and B be in T -IFL (L) i.e.,

T (A (x) , A (y)) 6L∗ A(x ∧ y) ∧L∗ A(x ∨ y) and

T (B (x) , B (y)) 6L∗ B(x ∧ y) ∧L∗ B(x ∨ y) for any x, y ∈ L.
Then

T ′ (T (A (x) , A (y)) , T (B (x) , B (y)))

6L∗ T ′ (A(x ∧ y) ∧L∗ A(x ∨ y), B(x ∧ y) ∧L∗ B(x ∨ y)) .

From T ≪ T ′, Lemma 2.2 and the transitivity of 6L∗ it follows that

T (T ′ (A (x) , B (x)) , T ′ (A (y) , B (y)))

6 T ′ (A(x ∧ y), B(x ∧ y)) ∧L∗ T ′ (A(x ∨ y), B(x ∨ y)) .

As (A ∩B) (x) = T ′ (A(x), B(x)) for any x ∈ L, then,
T ((A ∩B) (x) , (A ∩B) (y)) 6L∗ (A ∩B) (x ∧ y) ∧L∗ (A ∩B) (x ∨ y).

So, A ∩B ∈ T ′-IFL (L).

Remark 3.2. The union of two T -IFLs need not be a T -IFL. Indeed, consider the
lattice given in Example 3.1 and defineA,B by A (1) = (0.7, 0.2), A (2) = (0.4, 0.5),A (3) =
(0.1, 0.5),A (6) = (0.2, 0.4) andB (1) = (0.6, 0.1),B (2) = (0.1, 0.5), B (3) = (0.3, 0.3),B (6) =
(0.2, 0.3) .
It is easy to see thatA and B are T -IFLs of L. If we put (A ∪B) (x) = SM (A(x),B(x)) for
all x ∈ L. (A ∪B) (1) = (0.7, 0.1), (A ∪B) (2) = (0.4, 0.5), (A ∪ B) (3) = (0.3, 0.3), (A ∪B) (6) =
(0.2, 0.3) .
But, TM ((A ∪B) (3) , (A ∪ B) (2)) = (0.3, 0.5) 
L∗

T ((A ∪B) (3 ∧ 2), (A ∪B) (3 ∨ 2)) = T ((A ∪ B) (1), (A ∪B) (6))
= (0.2, 0.3) .

So A ∪ B is not a T -IFL.

Proposition 3.1. Let L be a lattice. For any t-representable intuitionistic fuzzy
t-norm T , if A is a T -IFL (L) then [A] and 〈A〉 are T -IFLs of L.

Proof. Let L be a lattice and assume that A is a T -IFL (L). We have [A] =
{〈x, [A](x)〉 | [A](x) ∈ L∗}, where
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[A](x) = (µA (x) , µc

A
(x)) and µA (x) + µc

A
(x) = 1. Then for any x,y ∈ L,

A ∈ T -IFL (L) this implies T (A (x) , A (y)) 6L∗ A(x ∨ y) ∧L∗ A(x ∧ y)

⇒ (T (µA (x) , µA (y)) , S (νA (x) , νA (y))) 6L∗

(min (µA (x ∨ y) , µA (x ∧ y)) ,max (νA (x ∨ y) , νA (x ∧ y)))

⇒

{

T (µA (x) , µA (y)) ≤ min (µA (x ∨ y) , µA (x ∧ y))
S (νA (x) , νA (y)) ≥ max (νA (x ∨ y) , νA (x ∧ y))

⇒ T (µA (x) , µA (y)) ≤ min (µA (x ∨ y) , µA (x ∧ y))

⇒ 1 − T (µA (x) , µA (y)) ≥ 1 − min (µA (x ∨ y) , µA (x ∧ y))

⇒ S (1 − µA (x) , 1 − µA (y)) ≥ max (1 − µA (x ∨ y) , 1 − µA (x ∧ y))

⇒ S (µc

A
(x) , µc

A
(y)) ≥ max (µc

A
(x ∨ y) , µc

A
(x ∧ y)) .

Then

T ([A] (x) , [A] (y)) = T ((µA (x) , µc

A
(x)) , (µA (y) , µc

A
(y))) ,

= (T (µA (x) , µA (y)) , S (µc

A
(x) , µc

A
(y))) ,

6L∗

(

min (µA (x ∨ y) , µA (x ∧ y))
,max (µc

A
(x ∨ y) , µc

A
(x ∧ y))

)

,

=
(µA (x ∨ y) , µc

A
(x ∨ y))

∧L∗ (µA(x ∧ y), µc

A
(x ∧ y)) ,

Hence [A] is a T -IFL of L.

Concerning the set 〈A〉 , we have for any x, y ∈ L,

T (〈A〉 (x) , 〈A〉 (y)) = T ((νc
A

(x) , νA (x)) , (νc
A

(y) , νA (y))) ,
= (T (νc

A
(x) , νc

A
(y)) , S (νA (x) , νA (y))) ,

6L∗ (min (νc
A

(x ∨ y) , νc
A

(x ∧ y)) ,max (νA (x ∨ y) , νA (x ∧ y))) ,
= ((νc

A
(x ∨ y) , νA (x ∨ y)) ∧L∗ (νc

A
(x ∧ y), νA (x ∧ y))) ,

= 〈A〉 (x ∨ y) ∧L∗ 〈A〉 (x ∧ y).

Hence 〈A〉 is a T -IFL of L.

Proposition 3.2. Let L be a lattice. For any t-representable intuitionistic fuzzy
t-norm T , if A is a T -IFL (L) then supp (A) is a crisp sublattice of L.

Proof. Let x, y ∈ supp (A) . Using Propriety 2.1. Then 0L∗ <L∗ A (x) and 0L∗ <L∗

A (y). Since T (A (x) , A (y)) 6L∗ A(x ∨ y) ∧L∗ A(x ∧ y) it follows that 0L∗ <L∗

A(x ∨ y) ∧L∗ A(x ∧ y). So 0L∗ <L∗ A(x ∨ y) and 0L∗ <L∗ A(x ∧ y). Hence x ∨ y ∈
supp (A) and x ∧ y ∈ supp (A) . Thus supp (A) is a crisp sublattice of L.

Remark 3.3. The converse of the above Proposition 3.2 does not holds in general. In-
deed, let L be the lattice in Example 3.1 and A ∈ IFL(L) given byA (1) = (0.4, 0.3),A (2) =
(0.7, 0.2), A (3) = (0.2, 0.2), A (6) = (0.4, 0.1). Obviously supp(A) = {1, 2, 3, 6} = L is
a crisp lattice. Since TM (A (2) , A (3)) = (0.2, 0.2) and 
L∗ A(2 ∨ 3) ∧L∗ A(2 ∧ 3) =
A(6) ∧L∗ A(1) = (0.4, 0.3), it follows that A is not an intuitionistic fuzzy lattice of L.
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4. T -Intuitionistic fuzzy ideal

The notion of an intuitionistic fuzzy ideal on a lattice was first introduced by
Thomas and Nair [23]. In this section, we give a new characterization of intuition-
istic fuzzy ideals on a lattice w. r. t a given intuitionistic fuzzy t-norm.

Definition 4.1. Let L be a lattice, T be a t-representable intuitionistic fuzzy
t-norm, S the intuitionistic triangular conorm associated to T and let I be an
intuitionistic fuzzy set. I is called an intuitionistic fuzzy ideal on the lattice L w.r.t
T if the following conditions are satisfied:

1. T (I (x) , I (y)) 6L∗ I(x ∨ y),

2. S (I (x) , I (y)) 6L∗ I(x ∧ y).

Notation 4.1. The set of all the intuitionistic fuzzy ideals on lattice L w. r. t an
intuitionistic fuzzy t-norm T will be denoted by T -IFI(L).

Example 4.1. Consider the lattice L of “all integer divisors of 18 ”. That is L =
{1, 2, 3, 6, 9, 18}. Let A be an intuitionistic fuzzy set given by A (1) = (0.7, 0.2), A (2) =
(0.5, 0.5), A (3) = (0.6, 0.3), A (6) = (0.4, 0.5), A (9) = (0.5, 0.5), A (18) = (0.4, 0.5) . It
easy to see that A is a T -IFI (L).

Fig. 4.1: The Hasse diagram of D(18)

Remark 4.1. In general, a TM -IFI (L) is not a T - IFI (L). Indeed, let L be the lattice
in Example 3.1 and A ∈ IFS(L) given by A (1) = (0.4, 0.2), A (2) = (0.4, 0.3), A (3) =
(0.1, 0.3), A (6) = (0.1, 0.3). Obviously A ∈ TM -IFI (L). Since SL (A (2) , A (3)) =
(0.8, 0) 
L∗ A(2 ∧ 3) = A(1) = (0.4, 0.2), it follows that A is not TL-IFI (L).

Remark 4.2. Every TM -IFI (L) is a TM -IFL (L). Indeed, if I is TM -IFI (L), then
TM (I (x) , I (y)) 6L∗ I ((x ∨ y) and SM (I (x) , I (y)) 6L∗ I ((x ∧ y), according with Re-
mark 2.3, it is not difficult to see that TM (I (x) , I (y)) 6L∗ I (x ∨ y)∧L∗ I (x ∧ y) , then I
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is a TM -IFL (L). The converse is not true as seen in the following example. Consider the
lattice L given in Example 3.1. Define A to be A (1) = (0.3, 0.2), A (2) = (0.2, 0.4), A (3) =
(0.2, 0.6), A (6) = (0.5, 0.4) . Hence A is a TM -IFL (L), but not a TM -IFI (L), because
SM (I (3) , I (6)) = (0.5, 0.4) 
L∗ I (3 ∧ 6) = I (3) = (0.2, 0.6) .

Lemma 4.1. If I ∈ T -IFI (L) then I ∈ TM -IFL (L).

Proof. Let L be a lattice and let I is T -IFI (L) then T (I (x) , I (y)) 6L∗ I(x ∨ y)
and S (I (x) , I (y)) 6L∗ I(x ∧ y). According to Lemma 2.4 and Propriety 2.1 we
obtain the result.

Remark 4.3. The converse of the Lemma 4.1 does not hold in general. Indeed, let
L be the lattice of “all integers divisors of 6” and A an IFS (L) defined by A (1) =
(0.1, 0), A (2) = (0.4, 0.3), A (3) = (0.1, 0.2), A (6) = (0.1, 0.3). Trivially, that A is a TM -
IFL (L) . But, since SM (A (1) , A (2)) = SM ((0.1, 0) , (0.4, 0.3)) = (0.4, 0) 
L∗ A (1 ∨ 2) =
A (6) = (0.1, 0.3) . It holds that A is not a T -IFI (L).

Theorem 4.2. For any I ∈ T -IFI (L) , then I ∈ T -IFL (L) .

Proof. Using Lemma 4.1 and Lemma 3.1 the theorem holds.

Conclusion 4.1. Every TM -IFI (L) is a T -IFL (L) .

In the following, we start with the key results.

As a corollary, we obtain the following interesting theorem of T -IFI (L).

Lemma 4.2. Let L be a lattice and I ∈ T -IFI (L). Then for any x, y ∈ L, if
x ≤ y, then I (y) 6L∗ I (x) .

Proof. Direct from [20, Corollary 3.1].

In the following theorem, we provide a basic characterization of TM -IFI (L).

Theorem 4.3. Let L be a lattice. Then it holds that I is a TM -IFI (L) if and
only if the following condition is satisfied:

(4.1) I (x ∨ y) = TM (I (x) , I (y)) .

Proof. Suppose that I is a TM -IFI (L). Then TM (I (x) , I (y)) 6L∗ I(x ∨ y). Since
{

x ≤ x ∨ y,
y ≤ x ∨ y.

we obtain from Lemma 4.2 that

{

I (x ∨ y) 6L∗ I (x) ,
I (x ∨ y) 6L∗ I (y) .

Then,TM (I (x ∨ y) , I (x ∨ y)) 6L∗ TM (I (x) , I (y)). Hence I (x ∨ y) 6L∗ TM (I (x) , I (y)).
So I (x ∨ y) = TM (I (x) , I (y)).

Conversely, suppose that I (x ∨ y) = TM (I (x) , I (y)), for any x, y ∈ L. Then it
is easy to see that TM (I (x) , I (y)) 6L∗ I(x ∨ y), for any x, y ∈ L∗. Next,
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we will show that SM (I (x) , I (y)) 6L∗ I(x ∧ y), for any x, y ∈ L. Let x, y ∈ L,
since x ∨ (x ∧ y) = x and y ∨ (x ∧ y) = y. Then it holds that I (x ∨ (x ∧ y)) =
I (x) and I (y ∨ (x ∧ y)) = I (y) . From hypothesis (4.1) is it follows that I (x) =
TM (I (x) , I (x ∧ y)) and I (y) = TM (I (y) , I (x ∧ y)) . Hence, I (x) 6L∗ I (x ∧ y)
and I (y) 6L∗ I (x ∧ y). Thus, SM (I (x) , I (y)) 6L∗ I(x ∧ y), for any x, y ∈ L∗.
Therefore, I is TM -IFI (L).

The following theorem provides basic properties of intuitionistic fuzzy ideals on
a lattice.

Proposition 4.1. Let L be a lattice. If A is a T -IFI (L) , then [A] and 〈A〉 are
T -IFIs of L.

Proof. Assume that A is an T -IFI (L) . Then for any x, y ∈ L : T (A (x) , A (y)) 6L∗

A(x ∨ y).

Then, (T (µA (x) , µA (y)) , S (νA (x) , νA (y))) 6L∗ (µA (x ∨ y) , νA (x ∨ y)) .

Hence,

{

T (µA (x) , µA (y)) ≤ µA (x ∨ y) ,
S (νA (x) , νA (y)) ≥ νA (x ∨ y) .

So, T (µA (x) , µA (y)) ≤ µA (x ∨ y) .

This implies, 1 − T (µA (x) , µA (y)) ≥ 1 − µA (x ∨ y)

Since, S (1 − µA (x) , 1 − µA (y)) ≥ 1 − µA (x ∨ y) .

Finally, S (µc

A
(x) , µc

A
(y)) ≥ µc

A
(x ∨ y)

Then
T ([A] (x) , [A] (y)) = T ((µA (x) , µc

A
(x)) , (µA (y) , µc

A
(y))) ,

= (T (µA (x) , µA (y)) , S (µc

A
(x) , µc

A
(y))) ,

6L∗ (µA (x ∨ y) , µc

A
(x ∨ y)) ,

= [A] (x ∨ y)

Now, for any x, y ∈ L : S (A (x) , A (y)) 6L∗ A(x ∧ y)

Then, (S (µA (x) , µA (y)) , T (νA (x) , νA (y))) 6L∗ (µA (x ∧ y) , νA (x ∧ y))

Hence,

{

S (µA (x) , µA (y)) ≤ µA (x ∧ y)
T (νA (x) , νA (y)) ≥ νA (x ∧ y)

So, S (µA (x) , µA (y)) ≤ µA (x ∧ y) .

This implies, 1 − S (µA (x) , µA (y)) ≥ 1 − µA (x ∧ y)

Since, T (1 − µA (x) , 1 − µA (y)) ≥ 1 − µA (x ∧ y)

Finally, T (µc

A
(x) , µc

A
(y)) ≥ µc

A
(x ∧ y)

Then
S ([A] (x) , [A] (y)) = S ((µA (x) , µc

A
(x)) , (µA (y) , µc

A
(y))) ,

= (S (µA (x) , µA (y)) , T (µc

A
(x) , µc

A
(y))) ,

6L∗ (µA (x ∧ y) , µc

A
(x ∧ y)) ,

= [A] (x ∧ y).

Hence [A] is an T -IFI of L. A similar proof for 〈A〉 is an T -IFI.
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The following proposition shows that the support of a T -IFI (L) is an ideal in
this lattice.

Proposition 4.2. Let L be a lattice. The following holds
If I is a T -IFI (L), then Supp(I) is an ideal in L.

Proof. Let L be a lattice. Suppose that I is a T -IFI (L) and show that Supp(I) is
a crisp ideal in L.
Let x ∈ Supp(I) and y ≤ x, then it hold that x∨y = x and 0L∗ <L∗ I (x) = I(x∨y).
Thus 0L∗ <L∗ T (I (x) , I (y)) . Using Propriety 2.1. We obtain, 0L∗ <L∗ I (y) hence
y ∈ Supp(I).
For x, y ∈ Supp(I), 0L∗ <L∗ I(x) and 0L∗ <L∗ I(y). Then 0L∗ <L∗ T (I (x) , I (y)) .
Using Propriety 2.1, then it follows from Theorem 4.3 that 0L∗ <L∗ I(x ∨ y) hence
x ∨ y ∈ Supp(I). Thus, Supp(I) is an ideal on L.

Remark 4.4. The converse of Lemma 4.2 does not hold in general. Indeed, consider
the lattice L given in Example 3.1 and I ∈ IFS(L) given by I (1) = (0.6, 0) , I (2) =
(0.5, 0.4) , I (3) = (0.5, 0.2) , I (6) = (0.8, 0.1). It is easy to verify that Supp(I) = L is an
ideal on L, but I is not a T -IFI (L) .

Theorem 4.4. The T -intersection of two T -intuitionistic fuzzy ideals on a lattice
L is a T -intuitionistic fuzzy ideal on the lattice L.

Proof. Let I1, I2 ∈ T -IFI(L). Then,
{

T (I1 (x) , I1 (y)) 6L∗ I1(x ∨ y)
T (I2 (x) , I2 (y)) 6L∗ I2(x ∨ y)

Hence, T (T (I1(x), I1(y)) , T (I2(x), I2(y))) 6L∗ T (I1(x ∨ y), I2(x ∨ y)) .

Using Lemma 2.3

T (T (I1(x), I2(x)) , T (I1(y), I2(y))) 6L∗ T (I1(x ∨ y), I2(x ∨ y)) ,

T ((I1 ∩ I2) (x) , (I1 ∩ I2) (y)) 6L∗ (I1 ∩ I2) (x ∨ y).

Then I1 ∩ I2 is an T -IFI of L.

Remark 4.5. The union of two T -IFIs need not be a T -IFI .

Now, we introduce the notion of intuitionistic fuzzy filter on a lattice.

Definition 4.2. Let T be an intuitionistic fuzzy t-norm and S it’s dual and let
L be a lattice and F = {〈x, F (x)〉 | F (x) ∈ L∗} be an IFS of L. F is called an
intuitionistic fuzzy filter with respect to the intuitionistic fuzzy t-norm T iff the
followings conditions hold

1. T (F (x) , F (y)) 6L∗ F (x ∧ y),

2. S (F (x) , F (y)) 6L∗ F (x ∨ y).
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The following immediate proposition shows that all result on ideals is true on
filters.

Proposition 4.3. Let (L,≤) be a lattice,
(

Ld,≥
)

its dual lattice and A ∈ IFS(L).

Then it holds that A ∈ T -IFI (L) if and only if A ∈ T -IFF
(

Ld
)

and conversely.

5. Conclusion and open questions

In this work, we have introduced the notion of T -intuitionistic fuzzy sublattice
by associating the conditions mentioned in the definition of intuitionistic fuzzy
sublattice [22, 23]. So a new equivalent definition is obtained which reduces the
four conditions in only one. Thus, based on an intuitionistic fuzzy triangular norm,
the study of intuitionistic fuzzy sublattices becomes so simple. Moreover, we extend
the notion of an intuitionistic fuzzy ideal to a T -intuitionistic fuzzy ideal w.r.t the
lattice operations and we investigate their various characterizations and properties.

Future work is anticipated in multiple directions. We think it makes sense to
study the notions of intuitionistic fuzzy prime ideals and intuitionistic fuzzy filters
for other types of lattices based on the intuitionistic fuzzy setting.
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