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SOME EQUIVALENT QUASINORMS ON Lφ,E

Pnar Zengin Alp and Emrah Evren Kara

Abstract. In this paper we define a new operator ideal Lφ,E by using block sequence
spaces and symmetric norming function. Also we define different quasi-norms on this
class and deal with equivalence of these quasi-norms.
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1. Introduction

The operator ideal theory has a special importance in functional analysis. One
of the most important methods of constructing operator ideals is using s− num-
bers. Pietsch defined the approximation numbers of a bounded linear operator in
Banach spaces, in 1963 [14]. Later on, the other examples of s−numbers, namely
Kolmogorov numbers, Weyl numbers, etc. are introduced to the Banach space
setting.

In this paper, we denote the set of all natural numbers and nonnegative real
numbers by N and R

+, respectively.

A finite rank operator is defined as a bounded linear operator whose dimension
of the range space is finite [10].

Let ω be the set of all real valued sequences. A sequence space is any vector
subspace of ω.

Maddox defined the linear space l (p) as follows in [8]:

l (p) =

{

x ∈ ω :

∞
∑

n=1

|xn|
pn < ∞

}

,

where (pn) is a bounded sequence of strictly positive real numbers.
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The set of all sequences whose generalized weighted mean transforms are in the
space l (p) is the sequence space l (u, v; p) which is is introduced by Altay and Başar
in [1] as follows:

l (u, v; p) =

{

x ∈ ω :

∞
∑

n=1

∣

∣

∣

∣

∣

un

n
∑

k=1

vkxk

∣

∣

∣

∣

∣

pn

< ∞

}

,

where un, vk 6= 0 for all n, k ∈ N .

If pn = p for all n ∈ N, l (u, v; p) = Z (u, v; lp) which is defined by Malkowsky
and Savaş [12] as follows:

Z (u, v; lp) =

{

x ∈ ω :
∞
∑

n=1

∣

∣

∣

∣

∣

un

n
∑

k=1

vkxk

∣

∣

∣

∣

∣

p

< ∞

}

,

where 1 < p < ∞.

The Cesaro sequence space cesp is defined as

cesp =

{

x = (xk) ∈ ω :

∞
∑

n=1

(

1

n

n
∑

k=1

|xk|

)p

< ∞

}

,

where 1 < p < ∞ ([18], [21], [22]). Afterwards, Mursaleen and Khan defined the
Cesaro vector-valued sequence space by

Ces (X, p, q) =

{

x = (xk) :
∞
∑

k=1

(

1

Qk

k
∑

n=1

|xn|

)pk

< ∞

}

,

where p = (pk) and q = (qk) are bounded sequences of positive real numbers and

Qn =
n
∑

k=0

qk, (n ∈ N) [13]. Here if qk = 1 for each k then Ces (X, p, q) is reduced to

cesp.

Let E and F be real or complex Banach spaces. L (E,F ) and L denotes the
space of all bounded linear operators from E to F and the space of all bounded
linear operators between any two arbitrary Banach spaces, respectively.

A map s = (sn) : L → R
+ assigning to every operator T ∈ L a non-negative

scalar sequence (sn (T ))n∈N
is called an s−number sequence if the following condi-

tions are satisfied for all Banach spaces E,F,E0 and F0:

(S1) ‖T ‖ = s1 (T ) ≥ s2 (T ) ≥ . . . ≥ 0 for every T ∈ L (E,F ) ,

(S2) sm+n−1 (S + T ) ≤ sm (S) + sn (T ) for every S, T ∈ L (E,F ) and m,n ∈ N,

(S3) sn (RST ) ≤ ‖R‖ sn (S) ‖T ‖ for some R ∈ L (F, F0) , S ∈ L (E,F ) and
T ∈ L (E0, E) , where E0, F0 are arbitrary Banach spaces,

(S4) If rank (T ) ≤ n, then sn (T ) = 0,

(S5) sn (I : ln2 → ln2 ) = 1, where I denotes the identity operator on the n−dimensional
Hilbert space ln2 , where sn (T ) denotes the n− th s−number of the operator T [2].
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One of the example of s-number sequence is the approximation number, which is
defined by Pietsch. The n−th approximation number, denoted by an (T ), is defined
as

an (T ) = inf {‖T −A‖ : A ∈ L (E,F ) , rank (A) < n} ,

where T ∈ L (E,F ) and n ∈ N [14].

Pietsch [14] defined an operator T ∈ L (E,F ) to be lp type operator if
∞
∑

n=1
(an (T ))

p
< ∞ for 0 < p < ∞. Then, in [3] Constantin defined the class of

ces − p type operators by using the Cesaro sequence spaces, where an operator

T ∈ L (E,F ) is called ces − p type if
∞
∑

n=1

(

1
n

n
∑

k=1

ak (T )

)p

< ∞, 1 < p < ∞.

Afterwards Tita in [24] proved that the class of lp type operators and the class of
ces− p type operators are coincides.

As a generalization of lp type operators, A − p type operators were examined
in [5]. Also in [9], [10], [11] Maji and Srivastava studied the class A(s) − p of
s−type cesp operators using s−number sequence and Cesaro sequence spaces and

they introduced a new class A
(s)
p,q of s−type ces (p, q) operators by using weighted

Cesaro sequence space for 1 < p < ∞. Recently, the class of s−type Z (u, v; lp)
operators have been defined and studied on some properties of this class in [4].

The idea of quasi-normed operator ideals is developed by the fact that, some
important operator ideals which do not possess a natural norm should also be
covered. There exists a lot of different quasi-norms on every operator ideal. In
addition to this, the nice quasi-norms are determined by the completeness of the
corresponding topology [15].

Now give the definitions of operator ideal and quasi-norm:

Let E′ be the dual of E, which is composed of continuous linear functionals on
E. Let x′ ∈ E′ and y ∈ F , then the map x′ ⊗ y : E → F is defined by

(x′ ⊗ y) (x) = x′ (x) y, x ∈ E.

A subcollection F of L is called an operator ideal if each component
F (E,F ) = F ∩ L (E,F ) satisfies the following conditions:

(OI − 1) if x′ ∈ E′, y ∈ F , then x′ ⊗ y ∈ F (E,F ) ,

(OI − 2) if S, T ∈ F (E,F ) , then S + T ∈ F (E,F ) ,

(OI − 3) if S ∈ F (E,F ) , T ∈ L (E0, E) and R ∈ L (F, F0) , then
RST ∈ F (E0, F0)[15].

A function α : F → R
+ is said to be a quasi-norm on the operator ideal F if the

following conditions hold:

(QN − 1) If x′ ∈ E′, y ∈ F , then α (x′ ⊗ y) = ‖x′‖ ‖y‖ ;

(QN − 2) there exists a constant C ≥ 1 such that α (S + T ) ≤ C [α (S) + α (T )] ;

(QN − 3) if S ∈ F (E,F ) , T ∈ L (E0, E) and R ∈ L (F, F0) , then
α (RST ) ≤ ‖R‖α (S) ‖T ‖[15].
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In particular if C = 1 then α becomes a norm on the operator ideal F.

An ideal F with a quasi-norm α,which is denoted by [F, α] , is said to be a quasi-
Banach operator ideal if each component F (E,F ) is complete under the quasi-norm
α.

Let ℓ∞ be the space of all bounded real sequences and K ⊂ ℓ∞ be the set of all
sequences x such that card {i ∈ N, xi 6= 0} < n and x1 ≥ x2 ≥ . . . ≥ 0.

A function φ : K → R is called symmetric norming function, if the following
conditions satisfied

(φ1) φ(x) > 0 for every x ∈ K,

(φ2) φ (αx) = αφ (x) for every x ∈ K and α ≥ 0,

(φ3) φ (x+ y) ≤ φ (x) + φ (y) for every x, y ∈ K

(φ4) φ (1, 0, 0, . . .) = 1

(φ5) if the inequality
k
∑

1
xi ≤

k
∑

1
yi holds for k = 1, 2, . . . , then φ (x) ≤ φ (y)

holds [28].

It’s given that ([27], [19]) for all symmetric norming functions φ, the function
φ(p) defined as

φ(p) : (xi) ∈ K → (φ ({xp
i }))

1
p , 1 ≤ p ≤ ∞

is also a symmetric norming function. For more details on symmetric norming
functions we refer to ([7], [20], [23], [25]-[27], [30], [31]).

By using the properties of symmetric norming function and the sequence (an (T )) ,
the class Lφ (E,F ) is defined in [25] and [29] as follows

Lφ (E,F ) = {T ∈ L (E,F ) : φ ({an (T )}) < ∞} .

Let E = (En) be a partition of finite subsets of the positive integer such that

maxEn < minEn+1

for n = 1, 2, . . . . In [6] Foroutannia defined the sequence space lp (E) as

lp (E) =







x = (xn) ∈ ω :

∞
∑

n=1

∣

∣

∣

∣

∣

∣

∑

j∈En

xj

∣

∣

∣

∣

∣

∣

p

< ∞







, (1 ≤ p < ∞)

with the seminorm ‖|·|‖p,E , which is defined in the following way:

‖|x|‖p,E =





∞
∑

n=1

∣

∣

∣

∣

∣

∣

∑

j∈En

xj

∣

∣

∣

∣

∣

∣

p



1
p

.

For example, if En = {2n− 1, 2n} for all n, then x = (xn) ∈ lp (E) if and only if
∞
∑

n=1
|x2n−1 + x2n|

p
< ∞. It is obvious that ‖|·|‖p,E cannot be a norm, since we have
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‖|x|‖p,E = 0 while x = (1,−1, 0, 0, . . .) 6= θ and En = {2n− 1, 2n} for all n. In the
special case En = {n} for n = 1, 2, . . . , we have lp (E) = lp and ‖|x|‖p,E = ‖x‖p .

For more information about block sequence spaces, we refer to [16],[17].

In [32], the class of lp (E) type operators, which is denoted by Lp,E (E,F ) ,
is given and it is shown that this class is a quasi-Banach operator ideal by the
quasinorm

‖T ‖p,E =





∞
∑

n=1





∑

j∈En

sj (T )





p



1
p

.

Also a new class of operators Lφ(p),E is defined. Further it is proved that by quasi-
norm

‖T ‖φ(p),E
= φ(p)











∑

j∈Ei

sj (T )











this class is a quasi-Banach operator ideal.

2. Main Results

Now we define a new class Lφ,E (E,F ) including the class Lφ (E,F ) as

Lφ,E (E,F ) =







T ∈ L (E,F ) : φ











∑

j∈En

sj (T )









 < ∞







.

For example if we take En = {n} for n = 1, 2, . . . , we have Lφ,E (E,F ) = Lφ (E,F ) .
Also if we take En = {2n− 1, 2n} for all n, we get φ ({s2n−1 (T ) + s2n (T )}) < ∞.

In this section we show some equivalent quasinorms on operator ideal Lφ,E (E,F ).

Theorem 2.1. ‖T ‖φ,E = φ

({

∑

j∈En

sj (T )

})

is a quasinorm on operator ideal

Lφ,E (E,F ) .

Proof. If x′ ∈ E and y ∈ F, then the equality

φ











∑

j∈En

sj (x
′ ⊗ y)









 = φ ({s1 (x
′ ⊗ y)}) = ‖x′ ⊗ y‖ = ‖x′‖ ‖y‖ < ∞

holds since x′ ⊗ y is a rank one operator, sn (x
′ ⊗ y) = 0 for n ≥ 2. Therefore

‖x′ ⊗ y‖φ,E = ‖x′‖ ‖y‖ and x′ ⊗ y ∈ Lφ,E.

Let S, T ∈ Lφ,E. Then we have that
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∞
∑

n=1





∑

j∈En

sj (S + T )



 ≤
∞
∑

n=1





∑

j∈En

s2j−1 (S + T ) +
∑

j∈En

s2j (S + T )





≤
∞
∑

n=1



2
∑

j∈En

s2j−1 (S + T )





≤

∞
∑

n=1



2
∑

j∈En

sj (S) + sj (T )



 .

By using (φ5) we can get

φ











∑

j∈En

sj (S + T )









 ≤ φ











2





∑

j∈En

sj (S) +
∑

j∈En

sj (T )















≤ 2



φ















∑

j∈En

sj (S)













 + φ















∑

j∈En

sj (T )



















< ∞.

It follows that
‖S + T ‖φ,E ≤ 2

(

‖S‖φ,E + ‖T ‖φ,E

)

and also S + T ∈ Lφ,E.

We have that

∞
∑

n=1





∑

j∈En

sj (RST )



 ≤

∞
∑

n=1





∑

j∈En

‖R‖ ‖T ‖ sj (S)





≤ ‖R‖ ‖T ‖

∞
∑

n=1





∑

j∈En

sj (S)



 .

By using the properties of φ function, we obtain

φ











∑

j∈En

sj (RST )









 ≤ ‖R‖ ‖T ‖φ











∑

j∈En

sj (S)









 < ∞

and also the inequality

‖RST ‖φ,E ≤ ‖R‖ ‖T ‖ ‖S‖φ,E

holds.

Hence, ‖T ‖φ,E = φ

({

∑

j∈En

sj (T )

})

is a quasinorm on operator ideal Lφ,E (E,F ) .
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Proposition 2.1. The quasinorm ‖T ‖
+
φ,E = φ

({

∑

j∈En

s2j−1 (T )

})

is equivalent

with ‖T ‖φ,E .

Proof. The equivalence can be easily seen from the fact that

k
∑

n=1

∑

j∈En

s2j−1 (T ) ≤
k
∑

n=1

∑

j∈En

sj (T ) ≤ 2
k
∑

n=1

∑

j∈En

s2j−1 (T ) .

Remark 2.1. For the particular case if En = {n} for n = 1, 2, . . . , we get Proposition
1.1 in [28].

Proposition 2.2. The quasinorm ‖T ‖φ(p),E
is equivalent with

‖T ‖
∇

φ(p),E
= φ(p)











1

n

n
∑

i=1

∑

j∈Ei

sj (T )









 , 1 < p < ∞

where

En = {nN −N + 1, nN −N + 2, . . . , nN} forall n.

Proof. This is a consequence of Hardy’s inequality.

k
∑

n=1





∑

j∈En

sj (T )





p

≤

k
∑

n=1





1

n

n
∑

i=1

∑

j∈Ei

sj (T )





p

≤

(

p

p− 1

)p k
∑

n=1





∑

j∈En

sj (T )





p

.

Remark 2.2. In particular case if we take N = 1 we get Proposition 1.2 in [28].

Theorem 2.2. If (αn) is a nonincreasing positive sequence and limαNn 6= 0, then
the quasinorm ‖T ‖φ(p),E

is equivalent with the quasinorm

‖T ‖
◦

φ(p),E
= φ(p)

({

1

α1 + . . .+ αn

n
∑

i=1

∑

j∈Ei

sj (T )

})

, 1 < p < ∞ where

En = {nN −N + 1, nN −N + 2, . . . , nN} for all n .

Proof. We know that the sequences (αn) and (sn (T )) are decreasing, so we can
write that

1

nα1
nαNn

∑

j∈Ei

sj (T ) =
αNn

α1

∑

j∈Ei

sj (T ) ≤
1

α1 + . . .+ αn

n
∑

i=1

∑

j∈Ei

αjsj (T )

≤
1

nαNn

α1

n
∑

i=1

∑

j∈Ei

sj (T ) .
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If limαNn = α 6= 0, we get

α

α1

∑

j∈Ei

sj (T ) ≤
1

α1 + . . .+ αn

n
∑

i=1

∑

j∈Ei

αjsj (T ) ≤
α1

α





1

n

n
∑

i=1

∑

j∈Ei

sj (T )



 .

By using Hardy’s inequality we obtain

n
∑

i=1





α

α1

∑

j∈Ei

sj (T )





p

≤

n
∑

i=1





1

α1 + . . .+ αn

n
∑

i=1

∑

j∈Ei

αjsj (T )





p

≤

n
∑

i=1

(α1

α

)p





1

n

n
∑

i=1

∑

j∈Ei

sj (T )





p

≤
(α1

α

)p
(

p

p− 1

)p n
∑

i=1

∑

j∈Ei

(sj (T ))
p
, 1 < p < ∞.

By the property (φ5) it results

α1

α
‖T ‖φ(p),E

≤ ‖T ‖◦φ(p),E
≤

α1

α

p

p− 1
‖T ‖φ(p),E

.

Hence ‖T ‖φ(p),E
is equivalent with ‖T ‖◦φ(p),E

.

Remark 2.3. In particular case if we take N = 1 then we get Theorem 1.4 in [28].

Theorem 2.3. Let (un) and (wn) are sequences of non-negative real numbers such

that u1 ≥ u2 ≥ ... ≥ un ≥ . . . and w1 ≤ w2 ≤ ... ≤ wn ≤ ... and wn ≤ n ≤
wn

un

. Let

lim
n→∞

uNn 6= 0, then the quasinorm ‖T ‖φ(p),E
is equivalent to

‖T ‖
γ

φ(p),E
= φ(p)











1

wn

n
∑

i=1

∑

j∈Ei

ujsj (T )









 for 1 ≤ p < ∞.

where

En = {nN −N + 1, nN −N + 2, . . . , nN} for all n.

Proof. Since the sequences (un) and (an (T )) are decreasing, we can write

1

n
nuNn

∑

j∈Ei

sj (T ) ≤
1

wn

n
∑

i=1

∑

j∈Ei

ujsj (T ) ≤
1

nuNn

u1

n
∑

i=1

∑

j∈Ei

sj (T ) .
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Summing from n = 1 to k, we get

k
∑

n=1



uNn

∑

j∈Ei

sj (T )





p

≤

k
∑

n=1





1

wn

n
∑

i=1

∑

j∈Ei

ujsj (T )





p

≤
k
∑

n=1





u1

nuNn

n
∑

i=1

∑

j∈Ei

sj (T )





p

.

If lim
n→∞

uNn = u 6= 0, then we obtain

up

k
∑

n=1





∑

j∈Ei

sj (T )





p

≤

k
∑

n=1





1

wn

n
∑

i=1

∑

j∈Ei

ujsj (T )





p

≤
(u1

u

)p
k
∑

n=1





1

n

n
∑

i=1

∑

j∈Ei

sj (T )





p

for every k ∈ N. By using Hardy’s inequality, we get

up

k
∑

n=1





∑

j∈Ei

sj (T )





p

≤

k
∑

n=1





1

wn

n
∑

i=1

∑

j∈Ei

ujsj (T )





p

≤
(u1

u

)p
(

p

p− 1

)p n
∑

i=1





∑

j∈Ei

sj (T )





p

for every k ∈ N. From the properties of the function φ, we obtain that

u ‖T ‖φ(p),E
≤ ‖T ‖

γ

φ(p),E
≤
(u1

u

)

(

p

p− 1

)

‖T ‖φ(p),E
.

Remark 2.4. For the particular case, if we choose N = 1, we get Theorem 2.2 in [30].
And also if we take ui = αi and wn = α1+α2+ ...+αn in Theorem 3, where N = 1 then
we obtain Theorem 1.4 in [28], where α1 ≤ 1. If we take ui = 1 and wn = n in Theorem
3, then we obtain Proposition 1.2 in [28].
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