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Abstract. In this study, we describe the classical Bernoulli-Euler elastic curve in a
manifold by the property that the velocity vector field of the curve is harmonic. Then,
a condition is obtained for the elastic curve in a manifold. Finally, we give an example
which provides the condition mentioned in this paper and illustrate it with a figure.
Keywords: Energy; energy of a unit vector field; elastic curve.

1. Introduction

The history of the elastica or the elastic curve is very old and many researchers
have worked on this issue, for example [6, 11]. One can study a bent thin rod
and consider the energy it stores. The classical Euler-Bernoulli model assigns a
numerical value to this energy, which is proportional to fos k?(u)du. The elastica is
the critical point for this total squared curvature functional on regular curves with
given boundary conditions [§].

In [1] the author calculated the energy of the Frenet vector fields in R™, showing
that the energy of the velocity vector field was E(Vi(s)) = % [” k% (u)du. By means
of this result, we have seen that the speed vector field of the Bernoulli-Euler elastic
curve is harmonic.

In this paper, using the above result, we give a condition for elastica on a manifold.

Definition 1.1. Let (M, g) be a Riemann manifold and « : I — M, be a unit speed
curve.

If {E;}7_, is an orthonormal frame along o and
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VO;% E\ =k E,,
VO;%Ei =—kiFBi 1+ kEiy, Vi=2,..,r—1
V%Er = —kr—1Er—1,
where k1, ..., k._1 are positive functions with a real value on I, then « is said to be

an r-th order Frenet curve. These functions are called the curvature functions of
the curve a.

Proposition 1.1. The connection map K : T(T'*M) — T*M verifies the following
conditions.

1) 7oK = modr and moK = mow , where 7 : T(T*M) — T'M is the tangent

bundle projection.

2) For weT, M and a section & : M — T M, we have
K(d€(w)) = V€

where 7! M is the unit tangent bundle and V is the Levi-Civita covariant derivative
3].
Definition 1.2. For 1y, n2€T¢(T* M), we define

(1.1) gs(m,n2) =< dmr(m),dn(n2) >+ < K(m), K(n2) >

This gives a Riemannian metric on tangent bundle 7M. As mentioned, gs is called
the Sasaki metric. The metric g5 makes the projection 7 : T*M — M a Riemannian
submersion [3, 10].

Definition 1.3. Let f : (M,<,>) — (N,h) be a differentiable map between
Riemannian manifolds. The energy of f is given by

1 n
(12) &) =5 [ (e, drtea)e

a=1
where v is the canonical volume form in M and {e,} is a local basis of the tangent
space (see [12, 4], for example).

By a (smooth) variation of f we mean a smooth map f: M x(—¢,e) = N, (z,t) —
fi(x) (e > 0) such that fo = f. We can think of { f;} as a family of smooth mappings
which depend ’smoothly’ on a parameter ¢ € (—¢, €).

Definition 1.4. A smooth map f: (M, g) — (N, h) is said to be harmonic if

d
— :D)|i—o =
dtg(ft’ M=o =0

where £(f; D) = 3 [ (30—, h(df (eq), df (eq))vg, for all compact domains D and all
smooth variations f; of f supported in D, [2].
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Definition 1.5. Let « : [a,b] — R™ be a regular curve. Elastica is defined for the
curve « over the each point on a fixed interval [a,b] as a minimizer of the bending
energy:

b
(1.3) Ep = %/ k3 (s)ds,

with some boundary conditions [5, 7].

The right side of Equation (1.3) is the energy of the velocity vector field according
to [1]. By combining this resultant with the definition 1.4 we can give the following
definition

2. Elastica in a Manifold

Definition 2.1. A curve on a manifold is called a classical Bernoulli-Euler elastic

curve if the velocity vector field of the curve is harmonic.

Theorem 2.1. Let M be a Riemann manifold, « be r-th order Frenet curve in M
and afa) =p, a(b) =q. If « is classical elastic curve, then the following equation
is satisfied,

b
(2.1) / A(s)k1(8)ky (s)ds =0
where k; is the 1** curvature function and X is the real-valued function on [a, b].

Proof . Let o : I — M be the r-th order Frenet curve C' on ¢(U) C M and
a=gpoy, vy=(",¥m),y: I = UCR™¢:U — M. Let ({E;}_;) be the
Frenet frame field on «.

We define the A and v; functions to create a curve family between two fixed points
on the manifold. The functions are: X : [a,b] C I — R, A(s) = (s —a)(b—s),
Aa) =0, A\(b) =0 and A(s) #0 for all s € (a,b), of class C* and

A(s) E1(s) = (v1(s),v2(8), ...y vn(s)). v; :[a,b] = R.

Since {¢1(7(8)), ..., pm(7(s))} is a local basis of the tangent space, where @1, ..., o,
are first-order partial derivatives, we have

(2.2) AS)E1(s) = X v (8)wi(y(s)); where v; :[a,b] = R.
Let the collection of the curve be

(2.3) a(s) = @(71(3) + 101(5), -y Y (5) + tvm(s)),
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fort =0, a%s)=a(s) and
(9 0at)(s) = 7(5) = (71 (5) + 01 (5)s s Y (5) + b ().

From (2.2) we get A(a)E1(a) = 7, v;(a)pi(y(a)). Since A(a) = 0 we have v;(a) =0
and

7(a) = (m(a) + tvi(a), ..., Ym(a) + tvm(a) = (n(a), .., ym(a)) = ¥(a).

Similarly, we get v¢(b) = v(b). Using these results in (2.3) we obtain

a'(a) = (poq')(a) = a(a) = p and o' (b) = (¢ 0 v')(b) = a(b) = ¢.

These results show that a! is a curve segment from p to g on M. Take this collection
at(s) = a(s,t) for all curves. The expression for the energy of the velocity vector
field E1, of ot from p to ¢ on M becomes E(E1,).

Let TC; be the tangent bundle. So we have Ei, : C; — TC}, where TC; =
UjerTwt(;)C, Cr = o' (I) and Ty (;)Cy is the straight line through the point af(j)
in the E,, direction. Let m : T'Cy — C} be the bundle projection. By using Equation
(1.2) we calculate the energy of Fy, as

b
(24) (B =5 [ os(Ey(Br(als.0).dE, By (als. 0)ds

where ds is the element arc length. From (1.1) we have
gs(dElt (Elt)vdElt (Elt)) =< dﬂ-(dElt (Elt))vdﬂ-(dElt (Elt)) >
+< K(dElt (Elt))vK(dElt (Elt)) >

Since Ej, is a section, we have d(m)od(Ey,) = d(moEy,) = d(idc,) = idre,. By
Proposition 1.1, we also have that

OF1,

ds ’

K(dEy,(Ey,)) =V, B, = B, =
giving ) )
gS(dElt (Elt)7dE1t(Elt)) =< EltuElp >+ < E1t7E1t > .

Using these results in (2.4) we get

1 /° S
(25) 5(E1t):§/ (< Elt;Elt >+<E1t,E1t >)d$

By Definition 1.4, if Fj, is a harmonic, then ¢ =0 should be the critical point of

E(Ey,). Supposing that %\t:o =0, from (2.5) we obtain:

0E(E,) 2[1
ot 9t'2

b
0 0F,, OF;
— F F u u .
[/a [( 1., 81, >+ < 95 O3 >]d$

b
/ (KB, B, >+ < E;t,Eit >)ds]

N =
S5
Iy
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Since < Ey,, By, >=1 we have % < E1,, By, >= 0 and we get

OE(Ey,) 1 [0 OFE, 0E b 92E,, OE;
2. 2o | 2 e Tl s = e Tk gs,
(2:6)—%; 2aat<as’as>5/a osot " 05
We can write
g - 0F;, OF;, - 0’Ey, OF, - OE,, 0%FEy,
ds ot ds T 0sot’ Os ot 7 9s?
Thus, we can deduce,
0’Ey, OF, 0 0OFE, OFE, OE,, 0°FE;,
@7) sdt’ Bs ~ 0s - ot ds ot 05
Substituting (2.7) in (2.6), for, ¢t = 0, we have
OE(E,) /b o OE OF, OF, 9%E,
t — _ t _ t t d
o oo ) las < o B0 g (80)> = < 5 (5,.0), 55 (5, 0) >ds
and
0E(F,) B OF;, OF;, b
(2.8) o e — <ot (5,0), =5~ (5,0) >[q
b 2
OF;, 0*Es,
_/a <=5 (s,0), 532 (s,0) > ds.
From (2.2) and (2.3), we obtain,
(2.9) 0% (5.1) = M), (5).
and
Oa ’
(2.10) g(s’t)h:o =« (s) = E1(s).

Now we calculate the partial derivatives of (2.10) with respect to s and t; using
Frenet formulas, we get

2(1 " ’
1) D) = T80, =a” (5) = Bi(s) = ha(9)Ba(s)

and

0FEn, B FoRte! 9
ot 1 = 555:51) = 5185

From (2.9), we have

(212) 2200y, = D2 (5,00 = X () (5) + M(s)hs (5) i),
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It follows from (2.11) and (2.12) that

OE, OE, B )
< ot (570)5 s (850) >= /\(S)kl(s)

Considering the candidate function A(a) = A(b) = 0, we get:

(2.13) < 86E;f (s,0), agslt (5,0) >|2= A(B)k2(b) — Ma)k?(a) = 0.

From (2.11), we get

aafzh (87 O) = _k%(S)El (3) + k,l (S)EQ(S) + kl (S)kQ(S)Eg(S)

Therefore, (2.12) and (2.14) gives

(2.14)

OB,
(215) < (5.0,

0?F;,
0s2

(5,0) >= [=A()k7 ()] + BA(s)k1 (5)k (s)

Substituting (2.13) and (2.15) in (2.8) yields

b
Oe(E) = / (- A)EE(S)] + BA(s)ka (5)K ())ds = 0
and
b
) =D -3 [ Aok ()ds =0

We are looking the candidate function A(a) = A(b) =0,
which given [A(s)k?(s)] |°= 0 and

OE(E b :
9By) —3/ A(s)k1(s)ky (s)ds = 0
at =0 o
This completes the proof of the theorem. |

Example 1. Let ¢ : R? = R3¢ = (z,y, 1zy), o(R?) = M and a(s) = (3s, 5%, s%).
If we can choose A : [-10,10] — R, A(s) = 10? — 52 then A\(—10) = 0A(10) = 0 and
A(s) # 0 for all s € (—10,10). We calculate

6vs*+9s2+1

M) = st mr oy

_25°40s 1 2 3_ 3 2 1 2 2(95 .3
k,(s):G‘/m(\/gs + 452 +9)% — 3v/s% + 952 + 1(v/9s? + 452 + 9)2(35s> + 8s)
! (9s* + 452 +9)3 ’
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Fic. 2.1:

and

o0& (T, 10 ,
W= [ e <o

Thus « is an elastica on M, Figure 2.1.

Conclusion. In this paper, we have determined the classical Bernoulli-Euler elastic
curve that is the harmonic of the velocity vector field of the curve on a manifold.
We have obtained the collection of curves passing through p and g points using A
and v; functions on the manifold. We have also proposed a novel condition to be
the classical Bernoulli-Euler elastic curve in the collection of curves. In the end, we
have given an example of the elastic curve satisfying the novel condition on a two-
dimensional manifold and shown the graphs of both the manifold and the elastic
curve.
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