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Abstract. In this paper, we study f—biharmonic curves as the critical points of the
f—bienergy functional Es(¢p) = fo | 7(¥)? | ¥4, on a Lorentzian para-Sasakian
manifold M. We give necessary and sufficient conditions for a curve such that has
a timelike principal normal vector on lying a 4-dimensional conformally flat, quasi-
conformally flat and conformally symmetric Lorentzian para-Sasakian manifold to be
an f—biharmonic curve. Moreover, we introduce proper f—biharmonic curves on the
Lorentzian sphere Si.
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1. Introduction

Harmonic maps ¢ : (M,g) — (N,h) between Riemannian manifolds are the
critical points of the energy functional defined by

(11) Bw) =5 [ 140 o,

for every compact domain 2 C M. The Euler-Lagrange equation of the energy
functional gives the harmonic equation defined by vanishing of

(1.2) T(¢Y) = traceVdy,

where 7(1) is called the tension field of the map .

As a generalization of harmonic maps, biharmonic maps between Riemannian
manifolds were introduced by J. Eells and J.H. Sampson [7]. Biharmonic maps
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between Riemannian manifolds ¢ : (M,g) — (N, h) are the critical points of the
bienergy functional

(13) Bav) = 5 [ 170) 0,

for any compact domain 2 C M.

In [3], G.Y. Jiang derived the first and the second variation formulas for the
bienergy, showing that the Euler-Lagrange equation associated to Ey is

n@) = —JY(r(®))
—AT(¥) — traceRN (dip, T(¢))dap,

where J¥ is the Jacobi operator of ©». The equation 75(1)) = 0 is called biharmonic
equation. Clearly, any harmonic maps is always a biharmonic map. A biharmonic
map that is not harmonic is called a proper biharmonic map.

For some recent geometric study of biharmonic maps see [14, 17, 18, 19, 24] and
the references therein. Also for some recent progress on biharmonic submanifolds
see [1, 2, 16, 20, 21] and for biharmonic conformal immersions and submersions see
[15, 25, 27].

The concept of f—biharmonic maps were initiated by W.J. Lu [23]. A smooth
map ¢ : (M, g) = (N, h) between Riemannian manifolds is called an f—biharmonic
map if it is a critical point of the f—bienergy functional defined by

(1.4) Bay(w) =5 [ £1700) P oy,

for every compact domain  C M.
The Euler-Lagrange equation gives the f—biharmonic map equation [23]

Ty = fra(@)+ (AF)TW) + 2V (@)
= 0,

where 7(¢) and 72(¢)) are the tension and bitension fields of v, respectively. There-
fore, we have the following relationship among these types of maps [26]:

(1.5) Harmonic maps C Biharmonic maps C f — Bitharmonic maps.

From now on we will call an f—biharmonic map, which is neither harmonic nor
biharmonic, a proper f—biharmonic map (see also [28]).

The study of Lorentzian almost paracontact manifold was initiated by K. Mat-
sumoto [9]. He also introduced the notion of Lorentzian para-Sasakian manifold.
In [4], I. Mihai and R. Rosca defined the same notion independently and there after
many authors [5, 11, 22] studied Lorentzian para-Sasakian manifolds.

Moreover, in [17] some geometric result for spacelike and timelike curves in a
4-dimensional conformally flat, quasi-conformally flat and conformally symmetric
Lorentzian para-Sasakian manifold to be proper biharmonic were given. Motivated
by this work, we introduced f—biharmonic curves on Lorentzian para-Sasakian
manifold and Lorentzian sphere St.
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2. Preliminaries

2.1. f—Biharmonic Maps

f—Biharmonic maps are critical points of the f—bienergy functional for maps
¥ (M,g) — (N, h) between Riemannian manifolds:

(21) Bay(w) = [ F17(0) P,

where (2 is a compact domain of M.

The following Theorem was proved in [23]:

Theorem 2.1. A map ¢ : (M,g) — (N, h) between Riemannian manifolds is an
f—biharmonic map if and only if

(2.2) o = fra() + (A7) + 2V 0y 7(¥) = 0,

where 7(1) and T2(1) are the tension and bitension fields of 1, respectively. 1o, § (1)
is called the f—bitension field of map .

A special case of f—biharmonic maps is f—biharmonic curves. We have the
following.

Lemma 2.1. [26] An arclength parametrized curve v : (a,b) — (N™, g) is an
f—biharmonic curve with a function f : (a,b) — (0,00) if and only if

(2.3) FOVENVENEA = RN (Y, VA W) + 2 VEVEAY + VI =0.
2.2. Lorentzian almost paracontact manifolds

Let M be an n-dimensional differentiable manifold with a Lorentzian metric g,
ie., g is a smooth symmetric tensor field of type (0,2) such that at every point
p € M, the tensor

gp: ToM x T,M — R,

is a non-degenerate inner product of signature (—,+,+,...,+), where T, M is the
tangent space of M at the point p. Then (M,g) is called a Lorentzian mani-
fold. A non-zero vector X, € T, M can be spacelike, null or timelike, if it satisfies
9p(Xp, Xp) >0, gp(Xp, Xp) =0 or gp(Xp, X,) < 0, respectively.

Let M be an n-dimensional differentiable manifold equipped with a structure
(p,&,m), where ¢ is a (1, 1)-tensor field, £ is a vector field, n is a 1-form on M such
that [9]

(2.4) P*X =X +n(X)e,
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(2.5) n(e) = 1.

The above equations imply that
77090:05 <P§:07 Tank(@):n_l
Then M admits a Lorentzian metric g, such that

9(pX,9Y) = g(X,Y) +n(X)n(Y),

and M is said to admit a Lorentzian almost paracontact structure (¢, £, 7, g). Then
we get

(2.6) 9(X, &) = n(X).

The manifold M endowed with a Lorentzian almost paracontact structure (¢, &, 7, g)
is called a Lorentzian almost paracontact manifold [9, 10]. In equations (2.4) and
(2.5) if we replace £ by —¢, we obtain an almost paracontact structure on M defined
by I. Sato [6].

A Lorentzian almost paracontact manifold equipped with the structure (¢, &, 7, g)
is called a Lorentzian para-Sasakian manifold [9] if

(2.7) (Vx@)Y = g(X,Y)E+n(Y)X + 2n(X)n(Y)E.

The conformal curvature tensor C' is given by

B 1 S(Y, W)X — S(X, W)Y
CX, Y)W = R(X,Y)W — n_2 { +9(Y,W)QX — g(X,W)QY }
+m {9(Y, W)X — g(X, W)Y},

where S(X,Y) = g(QX,Y). The Lorentzian para-Sasakian manifold is called con-
formally flat if conformal curvature tensor vanishes i.e., C' = 0.

The quasi-conformal curvature tensor C is defined by

CX, Y)W = aR(X,Y)W_b{ S(Y, W)X - S(X,W)Y }

+9(Y,W)QX — g(X, W)QY

r a
—— | —+2b Y IW)X —g(X, W)Y
L (g + 20) W)X — g WY,
where a,b constants such that ab # 0. Similarly the Lorentzian para-Sasakian
manifold is called quasi-conformally flat if C' = 0.

We know that a conformally flat and quasi-conformally flat Lorentzian para-
Sasakian manifold M™ (n > 3) is of constant curvature 1 and also a Lorentzian
para-Sasakian manifold is locally isometric to a Lorentzian unit sphere if the relation
R(X,Y)-C = 0holds on M [12]. For a conformally symmetric Riemannian manifold
[13], we get VC = 0. Thus for a conformally symmetric space the relation R(X,Y)-
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C = 0 satisfies. Hence a conformally symmetric Lorentzian para-Sasakian manifold
is locally isometric to a Lorentzian unit sphere [12].

Therefore, for a conformally flat, quasi-conformally flat and conformally sym-
metric Lorentzian para-Sasakian manifold M, we have [12]

(2.8) R(X, Y)W = g(Y, W)X — g(X, W)Y,
for any vector fields X, Y, W € T'M.

3. f—Biharmonic Curves in Lorentzian Para-Sasakian Manifolds

For a Lorentzian para-Sasakian manifold M, an arbitrary curve v : I — M,
v = 7(s) is called spacelike, timelike or lightlike (null), if all of its velocity vectors
v'(s) are spacelike, timelike or lightlike (null), respectively. In this section, we
give some conditions for a curve having timelike normal vector on a 4-dimensional
conformally flat, quasi-conformally flat and conformally symmetric Lorentzian para-
Sasakian manifold M to be an f—biharmonic curve.

Theorem 3.1. Let~v: 1 — M be a curve parametrized by arclength and M be a
4-dimensional conformally flat, quasi-conformally flat and conformally symmetric
Lorentzian para-Sasakian manifold. Asuume that {T, N, B1, Ba} be an orthonormal
Frenet frame field along v such that principal normal vector N is timelike. Then
is a proper f—biharmonic curve if and only if one of the following cases happens:

i) The first curvature k1 of the y solves the following ordinary differential equa-
tion,

(3.1) 3(k1)? — 2k1KY = 4kT — 42,

_3
with f =t1k, >and k2 = 0.

11) The first curvature k1 of the v solves the following ordinary differential equa-
tion,

(3.2) 3(k))? — 2k kY = 4w] + 4kTES — 4K3,

_s
with f =t1ky ?, k2 #0, k3 =0, 22 =13

75«/1

Proof. Let v be a curve parametrized by arclength on lying a 4-dimensional con-
formally flat, quasi-conformally flat and conformally symmetric Lorentzian para-
Sasakian manifold M and let {T, N, By, Ba} be an orthonormal Frenet frame field
along v such that principal normal vector N is timelike.

In this case for this curve, the Frenet frame equations are given by [8]

VTT 0 K1 0 0 T
(33) VTN _ K1 0 %) 0 N
VTBl 0 K2 0 K3 Bl

VTBQ 0 0 —KR3 0 B2
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where T, N, By, By are mutually orthogonal vectors and k1, k2 and k3 are respec-
tively the first, the second and the third curvature of the ~.

In view of the Frenet formulas given in (3.3) and equation (2.8), we obtain

VTT = IilN,
VrVrT = k2T 4+ &) N + k1k2B1,

VrVeVrT = (3kik)T + (K + &3 + kik3)N
—|—(2I£/11£2 + Iilli/z)Bl + (Iiﬂinig)BQ,

and
R(T,V1T)T = —k1N,

where K1,k and k3 are the first, the second and the third curvature of the -,
respectively.

Considering Theorem 2.1 and equation (2.3), we get
_ (3r1kY)T + (K] + K3 + K1K3 + K1 N)
+(2I<Llll$2 + Iilﬁé)Bl + (Iilﬁgﬁg)Bg
+2f [/@%T + KIN + filKJQBl] + [ [k1N]
= 0.

T2,f

Comparing the coefficients of above equation, we obtain that -y is an f—biharmonic
curve if and only if

of

(3.4) 3Kk1K] + 2&1? =0,

(3.5) I€/11+I€?+I€1H§+I€1+2lillf?l+,‘€1f7nZO,
(3.6) 2K Ko + k1KY + 2/@1112? =0,

(3.7) Kikoks = 0.

Let 1 be a non zero constant. Then from (3.4) we get f is constant. So « is
biharmonic. Let k3 be a non zero constant. From (3.4) and (3.6) one can easily see
that f is constant and ~ is biharmonic.
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By using (3.4) - (3.7), if k2 = 0, then f—biharmonic curve equation reduces to

!/
(3.8) k1K) + 2/{%? =0,

! 1"
(3.9) K] 4 13+ Ky +2f$'1f? —|—/<;1f7 =0.

3

Integrating the equation (3.8) we get f = t1x, ? and using this result in (3.9), we
arrive at ().

Otherwise, by use of (3.4) - (3.7), if k1 # constant and ko # constant f—biharmonic
curve the equation is equivalent to

(3.10) Rl =1,

(3.11) (fr1)" = —fra(s] + K3 + 1),
(3.12) fPRTRg = to,

(3.13) K3 =0.

_3
In view of (3.10), we find f = t1, * and using this result in (3.11), we get ;2 = 3.
Finally substituting these equation in (3.11), we arrive at (i¢). O

Proposition 3.1. Let M be a 4-dimensional conformally flat, quasi-conformally
flat and conformally symmetric Lorentzian para-Sasakian manifold and v : 1 — M
be an f—biharmonic spacelike curve parametrized by arclength such that principal
normal vector is timelike. If v has constant geodesic curvature then 7y is biharmonic.

4. f-Biharmonic Curves on Lorentzian Sphere S}

Suppose that M is a 4-dimensional conformally flat, quasi-conformally flat and
conformally symmetric Lorentzian para-Sasakian manifold. Since M is locally iso-
metric to a Lorentzian unit sphere S, we give some characterizations for f—biharmonic
curves in S}. The Lorentzian unit sphere of radius 1 can be seen as the hyper-
quadradic

Si={peRi:<pp>=1}
in a Minkowski space R} with the metric

<, >:—da? +drj + da; + doi + dad.
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Let v : I — S{ be a curve parametrized by arclength. For an arbitrary vector field
X along v, we have

(4.1) VoX = X'+ <T,X >,

where V is covariant derivative along «y in St.

Since St is a Lorentzian space form of the scalar curvature 1, we have
RX,)Y)W=<Y,W>X-<X,W>Y,

for all vector fields X,Y, W in the tangent bundle of S}, where R is the curvature
tensor of Sf.

Now, we give the following:

Proposition 4.1. Lety: I — S} be a non-geodesic f—biharmonic curve parametrized
by arclength and {T, N, By, B2} be a Frenet frame along v such that

g(T,T) :g(BlvBl) = 9(32732) =1, g(NvN) =

Then, we have

@ _ (K o m ] f_”),,( ooam 1 )
(42)  ~ (m+n1f+f 4+ 5 +21f+f+1 —0.

Proof. Using (3.5) and taking the covariant derivative of the second equation in
(3.3), we get
V%N = VT(FLlT-i-IigBl)
= m V7T + kayVrBy
(k3 + K3)N + kokzBs.

Using (3.5) in (4.3), we have

- (ML 1)
(4.3) VN = (er SFrFELN

On the other hand from (4.1), we arrive at

VAN = Vp(N'+<T,N>7)
= N'4+<T,N >~
= N'4+<T,VrN—<N,T>vy>rv
= N'+<T,5T+ KkaBy > ¥
= N"+k1y.

From (4.3) and (4.4), we obtain

" / "
<—+ S +f—+1>N=N”+fm.

(4.4) e P 7
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Also in view of (4.1), we have

ViT =T+ <T,T>~vy=+" 47,

which yields

(4.5) N = %1(7” +7).

By use of (4.5) and (4.4), we obtain (4.2). O
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