FACTA UNIVERSITATIS (NIS)
SER. MATH. INFORM. Vol. 35, No 1 (2020), 121-130
https://doi.org/10.22190/FUMI2001121B

CONFORMAL AND PARACONTACTLY GEODESIC
TRANSFORMATIONS OF ALMOST PARACONTACT METRIC
STRUCTURES

Adara M. Blaga

© 2020 by University of Ni§, Serbia | Creative Commons License: CC BY-NC-ND

Abstract. We give the expressions of the virtual and the structure tensor fields of an
almost paracontact metric structure. We also introduce the notion of paracontactly
geodesic transformation and prove that the structure tensor field is invariant under
conformal and paracontactly geodesic transformations. For the particular case of para-
Kenmotsu structure, we give a necessary and sufficient condition for a conformal trans-
formation to map it to an a-para-Kenmotsu structure and show that a para-Kenmotsu
manifold admits no nontrivial paracontactly geodesic transformation of the metric. In
the conformal case, the virtual tensor field is invariant.
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1. Introduction

Let M be a (2n + 1)-dimensional smooth manifold, ¢ a (1, 1)-tensor field called
the structure endomorphism, £ a vector field called the characteristic vector field, n
a 1-form called the contact form and g a pseudo-Riemannian metric on M. In this

case, we say that (p,&,n,g) defines an almost paracontact metric structure on M
[2] if

1. ¢?X = X —n(X)¢, for any X € x(M);
2. n(§) =1;
3. 9(eX, YY) = —g(X,Y) + n(X)n(Y), for any X, Y € x(M)

and ¢ induces on the 2n-dimensional distribution kern an almost paracomplex
structure P and the eigensubbundles corresponding to the eigenvalues 1 and —1 of
P, respectively, have equal dimension n.

From the definition, it follows that & = 0, n(¢X) =0, n(X) = g(X,¢), g(§,€) =
L g(pX,Y) = —g(X,pY), for any X, Y € x(M) and ker ¢? = ker ¢.
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2. The virtual and the structure tensor fields

Consider BE(X,Y) = $o((Vyx9)pY + @(Voex@)pY)) the wirtual and

CE(X,Y) = %@((waw)ng — o((Verxp)pY)) the structure tensor fields of the
almost paracontact metric structure (¢, &, n, g) which is connected to the Nijenhuis
tensor field of ¢ used in studying the normality of the structure.

Proposition 2.1. The virtual and the structure tensor fields of the almost para-
contact metric structure (,&,n,9g) have the following properties:

1. p(BE(X,Y)) = BE(¢X,Y) = —BE(X, ¢Y);

2. BE(pX,pY) = —BE(X,Y);

3. 9(B&(X,Y),Z) + g(Y,B&(X, Z)) = 0;

4. p(CE(X,Y)) = —C&(pX,Y) = —C (X, pY);

5. CE(pX,pY) = CE(X,Y);

6. 9(Co(X,Y), Z) +g(Y,05(X, Z)) = 0,
forany X, Y, Z € x(M).

Proof. Notice that

1
BE(X,Y) = §¢(V¢X¢2Y — o(Vex @Y ) + 0(Veax9®Y — (Ve x9Y))) =

1
= §[¢(V¢x<p2Y) — @*(Vx9Y) + ¢* (Ve x9’Y) — 0> (Ve xY)).

We have:
p(BE(X,Y)) = %[WQ(VpwaY) — P (Vox oY) + 0> (Vprx9?Y) — ¢! (V2 x Y )],
B&(pX,Y) = %[@(%mﬁﬂ — P*(Verx9Y) + 0> (Vs x9?Y) — 9° (Vs x Y )],
BE(X,0Y) = %[@(wa?’Y) — P (Vox @Y ) + (V2 x0°Y) — 0> (Ve x Y )],

1
BE(pX,pY) = §[¢(V¢2X<P3Y) —* (Ve x @Y )+ 0* (Vs x 'Y ) —0* (Vs x 0°Y).

Because ¢® = ¢ and * = ? it follows p(B&(X,Y)) = B&(pX,Y) = —B&(X, ¢Y)
and BE(pX,pY) = —BE(X,Y).

Similarly we can show p(CE(X,Y)) = —C&(eX,Y) = —C&(X,9Y) and
CE(pX, pY) = CE(X,Y).
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Taking into account that g(¢X,Y) = —g(X, ¢Y) and g(¢% X, p?Y) = —g(pX, ¢Y),
for any X, Y € x(M), we get:
9(B&(X,Y),Z) +g(Y,Bg(X, Z)) =

= %[—Q(Vgpxso?Y, 0Z) = 9(Vox @Y, 0*Z) + 9(V 2 x 9*Y, 0 Z) + g(V p2x Y, 9 Z) —
—9(Vex 9’ Z,0Y) = g(Vox 0 Z,0°Y) + g(V 2 x 0> 2, 0*Y ) + g(V o2 x 0 Z, 9Y )] =
= X gV, 02)) - X (9(4V. 7 2) +6* X (9(67Y, 7)) +0* X (9(6Y, 92))] = 0.
Similarly we can show g(C&(X,Y), Z) +g(Y,C&(X,Z)) =0. O

Let m and [ be the complementary projectors on the tangent bundle of M,
defined by:
m:=n®¢§ l:=I-n1®¢

and denoted by 9 := I'm(m) and £ := Im(l) (obviously, [ = ¢?). Then TM =
M L, and from the properties of the almost paracontact metric structure it follows
that 9 = ker ¢ and £ = kern.

By N, we denoted the Nijenhuis tensor field of ¢:
N@(va) = 902[Xa Y] + [QDX, (PY} - QO[SDX7 Y] - QP[X, QDY] =
= @2(VXY) - ‘PQ(VYX) + Vex Y = VoypX—
—p(VexY) + o(VypX) — o(VxeY) + o(Vey X).

Proposition 2.2. If (p,&,n,9) is an almost paracontact metric structure on M,
then ©*(Ny(pX,9Y)) =2(CE(Y,X) — CS(X,Y)), for any X, Y € x(M).

Proof. We have:
P*(Np(9X,90Y)) = 2 (¢*(Vox @Y ) — ¢° (Voy 9X) + Ve x9’Y — Viay o X —
—p(VerxY) + 0(Voy 9* X) — o(Vox 9?Y) + 9(Vey 9 X)) =
= 0" (Vox9Y) — 0" (VoroX) + 0 (Vo2 x9°Y) — 0* (Vey 0* X) —
—0*(Verx9Y) + ¢° (Voy 92 X) = 0> (Vox9?Y) + ¢*(V zwa)
Because ¢? = ¢ and ¢* = ? it follows
P (N (9 X, 0Y)) = *(Vox V) = 0> (Voy 9X) +¢° (Ve x 9?Y) = 9* (Voy 9* X ) —
—p(Verx0Y) + o(Voy 9’ X) — o(Vox @°Y) + o(Veey o X) =
= —[p(Vex@®Y) — 0*(Vex oY) — 9* (Ve x ©°Y) + 0(Viax Y )]+
He(Vere? X) = 02 (VeyeX) — ¢* (Vv 0°X) + ¢(Vey 9 X)| =
— —2CE(X,Y) +202(Y, X).
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Corollary 2.1. Let (p,&,m,9) be an almost paracontact metric structure on M.

1. If the Nijenhuis tensor field of ¢ vanishes identically, then the structure tensor
field is symmetric.

2. If the structure tensor field is symmetric, then N,(¢pX, ¢Y) € M, for any X,
Y e x(M).

Proof. From Proposition 2.2 we have for any X, Y € x(M):
P*(No(0X,9Y)) = 2(CE(Y, X) — CE(X,Y)).
1. If N, =0 follows C& (Y, X) — C&(X,Y) =0, for any X, Y € x(M).

2. fCE(Y,X) =CE(X,Y), for any X, Y € x(M) follows ©*(Ny(pX,Y)) =0
ie. Nu(pX,pY) € ker p? = ker o = 9.
U

3. Paracontactly geodesic transformations

We will introduce the notion of paracontactly geodesic transformation of an
almost paracontact metric structure and study the invariance of the virtual and
structure tensor fields under paracontactly geodesic transformations.

Recall that a diffeomorphism between two pseudo-Riemannian manifolds & :
(M,g) — (M,g) is called geodesic map, if it takes each geodesic of (M, g) to a
geodesic of (M, g). In this case, the pseudo-Riemannian metric § := ®*g on M is
called geodesic transformation of g. Note that the metrics g and g have common
geodesics.

Let (p,&,m, g) be an almost paracontact metric structure on the smooth manifold
M. Then:

Definition 3.1. A geodesic transformation g — § of the pseudo-Riemannian met-
ric g on M is called paracontactly geodesic transformation if (¢, &,7,g) is also an
almost paracontact metric structure on M.

A simple example similar like in the almost contact case [3] is the following.

Example 3.1. Let ®: (M, ,£,1,9) — (M, 3,£,7,3) be a geodesic map preserving the
almost paracontact structure, that is, ¢ = ®, oo (®.)7", € = &.(€), 7= (®*)"'n. Then
g — g := ®*g is a paracontactly geodesic transformation of g on M.

Let (¢, &,m, g) be an almost paracontact metric structure on the smooth manifold
M and g — g a paracontactly geodesic transformation of g.

It was proved [5] that the tensor T of the affine deformation from the Levi-Civita
connection V of g to the Levi-Civita connection V of § has the form T'(X,Y) :=
VxY —VxY = ¢(X)Y +4(Y)X, X, Y € x(M), for ¢ an exact 1-form on M
called the 1-form of geodesic distortion. In this case, the Levi-Civita connections
associated to g and § satisfy (Vx@)Y = (Vx@)Y + (oY) X — ¢(Y)eX, for any
X,Y € x(M).
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Proposition 3.1. The virtual and the structure tensor fields of the transformed
structure have the following properties:

1. BE(X,Y) = BE(X,Y) + 9(0°Y )9 X — d(pY)pX;
2. CE(X,Y) = CE(X,Y),
for any X, Y € x(M).

Proof.

BL(X,Y) = Jo((Voxp)e¥ + (T pox )oY ) =

1
= 52((Vex@)pY + V(Y )X — (Y )p* X+

+o((Verx )oY + 0(@°Y)@* X — (Y )0’ X)) =
= BE(X,Y) + S[0(eY )X — h(pY )" X + p(gY )p'X — w(pY )" K]

Because ¢? = ¢, ¢* = p? and ©° = @, we get the first relation. The second one
can be similarly obtained. [

We can therefore state the theorem:

Theorem 3.1. The structure tensor field of an almost paracontact metric struc-
ture is invariant under paracontactly geodesic transformations.

Concerning the virtual tensor, we give necessary and sufficient conditions for it
to be invariant.

Theorem 3.2. The virtual tensor field of the almost paracontact metric structure
(p,&,1m,9) is invariant under paracontactly geodesic transformations g — § (i-e.
Bg = BY%) if and only if (p*Y)eX — (oY) X € M, for any X, Y € x(M).

Proof. From Proposition 3.1, the condition Bg = BY is equivalent to
0=v(*Y)P*X—(pY )X = p[Y(¢*Y )X —1)(pY)X], forany X, Y € x(M). O

4. Conformal transformations

By a conformal transformation of the almost paracontact metric structure
(¢,€,m,9) we understand the passage to the almost paracontact metric structure
(0, €,1,3), where € :=ef¢, fj:=e 1, §:=e2/g, for f a smooth function on the
manifold M. In the part to follow, we shall study the invariance of the virtual and
the structure tensor fields under conformal transformations.

Because the Levi-Civita connection V of § and V of g satisfy VxY =VyxY —
(XY +Y ()X —g(X,Y)grady(f)] it follows (Vx @)Y = (Vxp)Y —df (oY) X +
df (V)X + g(X, Y )grady(f) — 9(X,Y)p(grady(f)), for any X, Y € x(M).
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Proposition 4.1. The virtual and the structure tensor fields of the transformed
structure have the following properties:

1. BZ(X,Y) = B&(X,Y)=df (9*Y)* X +df (9Y ) X —g(p X, 9Y )¢? (grady(f))+
9(eX,Y)p(grady(f));

2. CE(X,Y) = CE(X,Y),
forany X, Y € x(M).

Proof.

BL(X,Y) = Jo((Voxp)e¥ + (T pox )oY ) =

= %w((%w)wY — df (@*Y)pX + df (0Y)* X + g(¢X, Y )grady(f)—
—g(0X, oY )o(grady(f)) + o(Verx)pY — df (9*Y)@? X + df (¢Y ) > X+
+9(0° X, *Y)grady(f) — g(* X, oY )p(grady(f)))) :=
= B&(X,Y) + %[—df(WQY)sOQX +df (©Y )’ X + g(9X, *Y )o(grady(f))—
—9(0X, oY) (grady(f)) — df (*Y )" X + df (0Y )" X+
+9(* X, 0°Y)* (grady(f)) — 9(£* X, oY )" (grady(f))).
Because 9 = ¢, p* = p® and ¢° = ¢, g(pX,Y) = —g(X, pY) and g(p* X, ¢*Y) =

—g(pX,Y), for any X, Y € x(M), we get the first relation. The second one can
be similarly obtained. [

We can therefore state the theorem:

Theorem 4.1. The structure tensor field of an almost paracontact metric struc-
ture is invariant under conformal transformations.

Concerning the virtual tensor, we shall find a necessary and sufficient condition
for it to be also invariant. Note that in the particular case when § = Ag, for A a
constant positive function, Bg = B&.

Theorem 4.2. The virtual tensor field of the almost paracontact metric structure
(©,€,m,9) is invariant under conformal transformations g — § := e~ ¥ g (i.e. Bé =

BZ) if and only if grady(f) € M.

Proof. We follow the steps used in proving an analogue result for the almost contact
metric case [4]. Therefore, B = Bg if and only if for any X, Y € x(M)

df (*Y)* X — df (0Y )pX = —g(pX, oY )@*(grady(f)) + g(0X,Y )p(grady(f)).
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Changing the role of X and Y in the previous relation, we obtain:
df (P*X)@?Y — df (0 X)pY = —g(¢Y,0X)¢*(grady(f)) + 9(Y, X)p(grady(f)) =
= —g(pY, pX)p*(grady(f)) — g(Y. pX)p(grady(f))
and adding the two relations we get:
df (*Y )* X —df (pY )X +df (9* X) Y —df (0 X )Y = —2g(¢X, 0Y )" (grady(f)).
Then for Y := X we obtain:
df (P*X) "X — df (pX)pX = —g(0X, 9 X)¢" (grady(f)).

If we assume that g(X, X) = 1 it follows that g(oX, pX) = —1 + [n(X)]? and if
X € £weget n(X) =0and p?X = X. Therefore, for X € £ such that g(X, X) =1
we obtain g(¢X,pX) = —1 and p?X = X. Then the equality becomes

df (X)X — df (p X)X = @*(grady(f)),

which means that ¢?(grad,(f)) is a linear combination of the vector fields X and
@X. Writing this for X :=Y we get:

df (Y)Y — df (¢Y)pY = ¢*(grady(f))
and substracting the two relations

df (X)X — df (pX)pX — df (Y)Y + df (¢Y )Y = 0.

Since the four vector fields {X, ¢ X,Y, ¢Y} are linearly independent, we deduce
that df(X) = 0 equivalent to g(grady(f),X) = 0, for X € £, which means that
grad,(f) € &+ =M.

Conversely, if grady(f) € M = ker ¢ we get p?(grady(f)) = ¢(grady(f)) = 0.
Then

df (@*Y)p* X — df (Y )X = g(grady(f), o*Y)> X — g(grady(f), Y )X =

= g(¢*(grady(f)),Y)9* X + g(e(grady(f)),Y)pX =0
and so Bg = B@. 0

5. Applications

We shall consider the particular case of a para-Kenmotsu manifold. Let a be a
smooth real function on the smooth manifold M.

Definition 5.1. [6] We say that the almost paracontact metric structure (p, £, 7, g)
is a-para-Kenmotsu if the Levi-Civita connection V of ¢ satisfies
(Vx@)Y = alg(eX,Y)§ —n(Y)pX], for any X, Y € x(M).
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For o =1, we call (p,&,1n,g9) para-Kenmotsu structure.

Theorem 5.1. A conformal transformation with defining function f maps a para-
Kenmotsu structure to an el -para-Kenmotsu structure if and only if f is locally
constant.

Proof. Let (©,&,m,9) be a para-Kenmotsu structure on M and (¢, €,7,3) be a
conformal transform of (p,&,n,g) with € = ef¢, fj = e I, g =e"2fy.

We know that:

(Vx)Y = (Vx@)Y —df (Y ) X+df (V)X +9(X, oY )grady(f)—g(X, Y )p(grady(f)),
for any X, Y € x(M).

If (p,&,m, g) is para-Kenmotsu structure, we have:

(Vx)Y = g(eX,Y){ —n(Y)pX,
for any X, Y € x(M). It follows:
(Vx)Y = g(pX, V)¢ = n(Y)X — df (pY)X + df (Y)pX+
+g(Xa (pY)g’/’CLdg(f) - g(X7 Y)‘)D(gradg(f))v
for any X, Y € x(M). Replacing £ = e 1€, n=elh, g =€, we obtain:
(Vx@)Y = el [g(pX,Y)§ = (Y )pX] = df (pY) X + df (V) X+
+e¥[9(X, oY) grady(f) — §(X, Y)p(grady(f))],

for any X, Y € x(M).

Then (¢, E,f;,g) is ef-para-Kenmotsu structure, i.e.

(Vx)Y = el [3(pX,Y)E — i(Y)pX],
for any X, Y € x(M) if and only if
df (Y )X = df (V)X = ¥ [§(X, oY )grady(f) — §(X,Y)p(grady(f))],

for any X, Y € x(M). For X := £ and Y := &, because ¢ = 0, we get
o(grady(f)) = 0, ie. grady(f) € kero = M. Replacing this in the previous
relation, we have:

df (V)X — df (V)X = e §(X, oY )grady(f),

for any X, Y € x(M). For Y := &, because ¢¢ = 0, we get df(§) = 0 which is
equivalent with g(grady(f),§) = 0 and with grady(f) L &, i.e. grady(f) € kern =
L.

Therefore, grad,(f) € M N £ = {0}, which means that f is locally constant.
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Conversely, if f is locally constant, then df =0, grad,(f) = 0 and
(Vx@)Y = el [§(pX,Y)E = (Y )oX] = df (Y )X +df (V) p X+
+e2 [9(X, Y )grady(f) — §(X,Y)p(grady(f))] =
= /[g(pX, Y)§ = 7(Y)pX],
for any X, Y € x(M), i.e. (p,&,17,§) is ef-para-Kenmotsu structure. [J
Corollary 5.1. If a conformal transformation with defining function f maps a

para-Kenmotsu structure to an e -para-Kenmotsu one, then the virtual tensor field
1S 1nvariant.

Proof. From Theorem 5.1 we have that f is locally constant and from Proposition
4.1 we obtain Bg =B O

Theorem 5.2. A para-Kenmotsu manifold admits no nontrivial paracontactly geo-
desic transformation of the metric.

Proof. Let (¢,&,1m,9) be a para-Kenmotsu structure on M and g +— g be a para-
contactly geodesic transformation with VxY = VxY + ¢(X)Y + ¢(Y)X, for X,
Y € x(M).

We know that:

(V)Y = (Vx@)Y +(pY)X = (Y)pX,

for any X, Y € x(M).

If (p,&,m, g) is para-Kenmotsu structure, we have:

(Vxp)Y = g(¢X,Y)§ —n(Y)eX,
for any X, Y € x(M). It follows:
(V)Y = g(pX, Y)E = n(Y)pX +P(pY)X —(Y)pX,

for any X, Y € x(M).

If the transformed structure (p, &, n, §) would be para-Kenmotsu, too, then:

(Vxe)Y = (X, Y)E - n(Y)eX,
for any X, Y € x(M) and replacing this in the previous relation, we obtain:
[3(X,Y) = g(eX,Y)]§ = (oY) X — (Y )pX,
for any X, Y € x(M). For X := ¢, because ¢& = 0, we get (pY) = 0, for any
Y € x(M). Tt follows:
[3(pX,Y) — g(X, V)] = = (Y)pX,
for any X, Y € x(M) and applying ¢, we get:
P(Y)pX =0,

for any X, Y € x(M), which implies ¢ = 0 or ¢ = 0, that is impossible. Therefore,
the paracontactly geodesic transformation g — ¢ can not map the para-Kenmotsu
structure (¢, &,7,9) to a para-Kenmotsu one. []
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