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Abstract. Let p(n) and g(n) be nondecreasing sequences of positive integers such that
p(n) < g(n) and limp—oo g(n) = oo hold. Firstly, in this paper DI(A™")-statistical
convergence of © = (z,,) where A™" is r-th difference of the sequence z = () for any
r € Z' has been defined whereas the results are given under some restrictions on the
sequence p(n) and g(n). Secondly, it has been determined that the sets of sequences
A and B of the form [DZ]% satisfy A C [DZ]o(A™") C B and the sets C' and D of the
form [Dg]. satisfy C' < [Di]oo(AT") < D.

Keywords: D} (A™T)-statistical convergence; summability methods; Deferred Cesaro
mean; sequence space.

1. Introduction and main definitions

One of the main problems of the analysis is to determine the set of convergent
sequences of the space with considered method. Over the years, this problem has
been examined by taking into consideration different summability methods. In
recent years, this kind of works have been gained further momentum especially by
using the concept of natural density in positive integers.

The concept of statistical convergence was introduced by [16] and [9] indepen-
dently in the same year. The notion was associated with summability theory by [2]
,[10], [12, 13] and many others.

In this study, the results from [3] were extended and some new results were
obtained using Deferred Cesaro mean defined by [1] in as follows:

1 q(n)
(L1) (Dla)yi= ——— 3y,

o) — o) 2=
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where (p(n)) and (g(n)) are sequences of nondecreasing integers satisfying

(1.2) p(n) < g(n) and lim,_ e g(n) =00 .
The set of all real valued sequences will be denoted by s and U™ is denoted by

Ut :={(u,) € s: u, >0, for all n € N}.

For any a = () € Ut a new set of sequences can be defined as follows:

(n)
1 K Tk
a®F =<¢xrxes: | ——— Z — | €F
a) —pn) 2=

where F is any sequence space. So, we get

[Dg]g Zf E= Co,
_ ) [Die if E=c
a® = [Dg]a if E=l,
[DYL if E =l
where
[D;g]g - Tres lim 28—
n—oo q(n) —p( ) k:p(n)+1 (a2
[DZ]a: T € s:sup Z<ooy,
na(n) = p(n) k=p(n)+1 @
nmt |4) = p() k=p(my+1 OF
and
[D]¢ := <z € s: 3L € R such that lim ; ‘I(ZT% ﬁ—L
pla = . n—oo q(n) —p(n) k:p(n)+1 o =

The idea of difference sequence space was defined by [11] and it was generalized
by [6]. Later on, [7] improved this idea by considering any sequence space X as
follows

AT(X) = {x = (zx) : (AT"21) € X}
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where r € N, A%z := (z1,), AT 2y := 2 — 2341 and A"y, = Z;:O(—l)j (;)xkﬂ-.
If z € AT"(X) then there exists one and only one sequence y = (yx) € X such
that y, = ATz and

k—r k

B Sfk—7—1 B SE+r—j—1
o= (T = e (T
Jj=1 Jj=1
where y1_, = Yo = ... = yo = 0 for sufficiently large k, for instance k > 2m (see

more info in [4], [8]).
We can define following sets of sequences for any r > 1 as:

(n)
1 q
[DI]p(AT"):={z€s: lim ———— At 2| =0 5,
' =, =
1 q(n)
[DY] (AT ;= o € 5: sup ———— AT 2| < 00 p
P =, 2
0o 1 q(n) t
[Dg]t(AJrT):: xeszz _ Z [A*Tzi|| <00 p,1<t< o0
24— o) 2=
and
1 q(n)
[Dg]C(A”):: z€s: LR such that lim Z | Atz —L|=0p.

noveo q(n)=p(n) , £~

In the case when ¢, = n and p, = 0, we will denote the previous sets by
[S]o(AT™), [S]ac (ATT) , [S]:(AT") and [S].(AT"), respectively.

Now, let us define [Dd],(A™") -statistical convergence of sequence for any r > 1:
Definition 1.1. A sequence x = (z,,) is said [Df](AT")- statistical convergent
to zero if, for every € > 0,

-3
holds. It is denoted by z) — 0([DZS].(AT")).
The set of [Df] (A™")-statistical convergent sequence is also denoted by [DgS]a(AT").
Remark 1. It is clear that for any positive integer r, if

(1:3) W% o) — p()

{p<n> <k<an)

. ‘ A+T.”L'k

ag

(i) g(n) =mn and p(n) = 0, then (1.3) coincides with convergence of A*" .
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(i) g(n) =n and p(n) =n — 1, then (1.3) coincides with s,(A*"), where

ATT
xk| < 00}
ay

Sa(AT) :={z € s :sup|
k

(iii) ¢(n) = A, and p(n) = 0 where A, is a strictly increasing sequence of natural
numbers such that lim,_,. A, = 0o, then (1.3) coincides with A-statistical
convergence of sequences which is given by [15].

(iv) g(n) = n and p(n) = n — A, where (\,) is a nondecrasing sequence of natural
numbers such that A\; =1 and A,,+1 < A, + 1 holds then (1.3) coincides with
the A1"(u)-statistical convergence defined by [3] and with the definition of
A™-statistcal convergence defined by [5].

(v) q(n) = ky and p(n) = kp_1, where (k) is a lacunary sequence of nonneg-
ative integers with k, — k1 — oo as n — oo then [Df],(A™")- statistical

convergence coincides with A”- lacunary statistical convergence defined by
[17].

2. Main results

2.1 Comparasion of [D]%(A*") and [DZS],(AT") when r > 1.
Theorem 2.1. Letr > 1 be an integer. Then,
(a) [DYS,(ATT) C [DLS]o(AT") holds and this inclusion is proper,

(b) if x €13 (AT") then [DES]o(ATT) C [DI(ATT), where 1% (AT") :={z €

Aok < o),

s :supy | o

Proof. (a) Let us assume that = € [Dg]9,(A*"). So, for any e > 0, the following
inequality
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1 At x|
q(n) = p(n) k=py+1 YF
(n) q(n)
1 E ’A+T$k
q(n) - p(n) k=p(n)+1 k=p(n)+1 A
'A“’”k >e ‘A“zk <e
on |Z ag
1 q(n) A+T=’Ek
. =2 Lk
q(n) —p(n) k=p(n)+1 O
|2 |
> € 1
q(n) —p(n) k=p(n)+1
A+7"”k'>e
Otk -
1 o))
> e——— n) <k <q(n): >ep1 20
> () < ka5 )

holds. Since = € [Dg5](A™"), then desired result is obtained.
The following example shows that this inclusion is proper. To see this, let a sequence
x = (x,) as follows:

Ay {m q(n) — [[Vam)] +1 < k < q(n),

ag - 0, otherwise.
If we consider the method [Dg]%,(A*") for the sequence p(n) satisfying
0 <p(n) <q(n) = [IvVa)|]+1,
then, for an arbitrary e > 0 we have

AJrTxk

Qg

{«m—n««mu+1<kg«m:

q(n) —p(n)

when n — co. This calculation shows that = € [D5](AT").
But, it is clear that the sequence

1 q(n)
q(n) — p(n)

AJrTxk

g

k=p(n)+1



410 N. Boztag and M. Kiigiikaslan

is not convergent to zero. That is, z ¢ [D],(A*"). (b) Let 2 € 12 (A'"). Then,
there exists M > 0 such that ‘%T:" < M holds for all k. Then, for any € > 0, the

following inequality

1 Q(") A+T«rk B
qg(n) — p(n) k=p(n)+1 k
(n) Q(n)
1 E 'AJrTxk ‘
q(’n) - p(n) k=p(n)+1 k=p(n)+1 A
AZ’”zk >e At:kmk <e
. a(n) a(n)
< —— _|Mm. 1+e. 1
q(n) — p(n) k—z _Z
=p(n)+1 k=p(n)+1
’M—w" >e SN
L o - XK
M ATy, }
< p(n) <k <q(n):|———|>¢
q(n) —p(n) { () " ok
. ATy,
o pn<k§qn:—<€}
q(n) —p(n) { ( ) " Ok
Y Aty
< p(n) <k<gqn): Z E} Te
T [ <k <t |20

holds. By taking limit when n — oo in above inequality we obtain z € [D4S],(A*")
because of z € [Dg]%,(AT"). So, proof is complated. [

2.2. Comparasion of S,(A*") and [D{S],(AT") when r > 1.
Let us denote the set of sequences & = (z,,) by So(A™T") for any fixed o € U™

such that
ATT
( x’“) cs.
Qg

In this section, the set of sequences S, (A™") and [DZS],(A*") will be compared
under some restriction on p(n) and g(n).

Theorem 2.2. S,(A*") C [DiS]o(A") if and only if

(2.1) Jim ing 200 —P(1)

> 0.
n—o00 q(n)
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Proof. Let © € So(A™") be an arbitrary sequence such that

{kgn: ZE}‘—O,

holds for every € > 0. Since the sequence ¢(n) satisfies lim,,_,o ¢(n) = 0o, then

a0 P52 )

ag
is also convergent to zero because of (see in [12], Theorem 2.2.1). Hence, by a simple
calculation we have the following inequality

1
lim —
n—oo N

A+T:Ek

Ak

e B s o <k <aw |22 2 )
> O o < <o |22 o

Taking in to consider (2.1), if we take limit when n — oo in the above inequality
then,
z € [DIS]o (ATT).

Conversely, assume that
lim inf M =0

holds. Now, let us choose a subsequence (n(j));>1 such that %f)()"uﬂ < %

holds for all ¢ € N. Let a sequence x = (x,,) such that

AtTxy o { 1, p(n(j)) +1<k< q(n(j)),

Qg 0 otherwise,

holds. Then, z € [S]o(A™") and hence by Theorem 1 (a), we have z € S, (A™"). But
z ¢ [D4]9,(A"), and therefore by Theorem 1 (b), we have z ¢ ([DgS]o(AT")). O

Corollary 2.1. Let{q(n)}nen be an arbitrary sequence with q(n) < n for alln € N

and {+} be a bounded sequence. Then, So(AT") C [D4S]o (AT for all
T [ pen b

r>1.

Theorem 2.3. Let g(n) =n for alln € N. Then, [DyS]o (A1) C So(A*") holds
for allr > 1.

Proof. Let us assume that « € [D}}S]o(A*"). We shall apply the technique which
was suggested by [1] and was also used in [10].

Let

3)

p(n) =n > p(nM) =n® > p(n®) =n® >
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b
—+r
Ze}U{n(1)<k§n:‘A Lk
Qg

} { O < gl [ S0

Ak

A+Txk
(&5

and we may write the set {k <n: ’

i<, \_

Qg

&
)
.l

If we continue this operation consecutively, after the final step we have

{k§7#h—n:'éi3& 26}

ag
+r +r
—{kSMWWA Tk z%u{mm<kgﬂhﬂwé_ﬂ
Qe Qay,

and the set {1 <k<n®: ‘

+7r
:{k<n(2).‘A Tk

and the set {k <n® . ’%

(&5

+r
_{kﬁn@):‘A T

Qg

26} as

—+r
Z%U{Mm<kgﬂmw&_ﬁ

Qg

-]

for a certain positive integer h > 0 depending on n such that n(® > 1 and n("*+1 =
0.
By combining all the equalities obtained above we have

—+r
n (677
m) -n (m+1) 1 Aty
E (m+1) (m) . k
o n(m)—n(erl)‘{n <ksm ‘ ap ZE}‘

As a result of this equality it can be said that statistical convergence of the sequence

(A
>off}

(m) (m+1)

n —n
a . { T, m=0,1,2,..h
n,m -—

k) is a linear combination of the following sequence

—+r

n(m) — p(m+1) oy

Now, let us consider a matrix A = (anm,) as

0, otherwise,

It is clear that, where n(®) = n.



DY (A*")-statistical Convergence 413

The matrix A = (ap,m,) satisfied the Silverman Toeplitz Theorem (see in [14]).
So, we have

ATT
lim—{kﬁn: Tk Ze}‘—()
n—oo M fo7%
because of
1 ATy
- - (m+1) (m) . |2 Yk
n(m) — p(m+1) {n <ks=n ) ’ oy ZE}‘%O’

when n — oo. This completes the proof. O

2.3. Comparasion of [DiS],(A™") and [D;S].(A*") for all > 1.

In this section, the sequence spaces [DgS](A™") and [D;.S]o(A™") will be com-
pared under which for all n € N in addition to (1.2),

(2.2) p(n) < r(n) < s(n) <q(n)
holds.

Theorem 2.4. Let r(n) and s(n) be sequences of positive natural numbers satis-
fying (2.2) in addition to (1.2) such that the sets

{k:p(n) <k<r(n)} and {k:s(n)<k<gqn)}

are finite for all n € N. Then, [D;S]a(AT") C [DS]a(AT") holds.

Proof. Let us consider a sequence x = (z,,) such that z € [D:S],(AT"). For an
arbitrary € > 0 the equality

(ot < i<+ |22 = fom <o vt o 222 2 o)
o{rtm <k st |22 s o futm < k<[22 o
holds. So, the following inequality
s () <k o |5
< m {p(n)<k§7‘(n)' A;‘T’“ 26}
st <k | 22 2
ool SRR e KO
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holds. By taking limit of each side in the above inequality when n — oo, we obtain

1 AT
lim Lk > e}

- =0.
n=o0 q(n) — p(n) ay
This implies that = € [DZS]o(A™"). So, the proof is completed. [

CORTEON

Theorem 2.5. Let p = p(n), ¢ = q(n) and r = r(n), s = s(n) be sequences of
positive natural numbers satisfying (1.2) and (2.2) such that

. s(n) —r(n)
liminf ————+
n—os q(n) —p(n)
holds. Then, [DgS]o(AY") C [D5S]o(AT") holds.

>0

Proof. Tt is easy to see from (2.2) and (1.2) that the following inclusion

+7r
{T(n) <k<s(n): ‘A Tk > e}
ay
AT
C{MM<k§mm:‘ kae}
Ak
and the following inequality
—+r
Hr(n) <k <s(n): ‘A Tk > e}
ay
+r
< Hp(n) <k <gq(n): ‘A k> e}‘
ag

hold. So, the last inequality gives that
s(n) —r(n) 1
q(n) —p(n) s(n) = r(n)

AJFT:Z?k

g

{mm<kgqm;

-
o

Therefore, by taking the limit of each side in above inequality when n — oo, a
desired result is obtained. [

A+T.”L'k

af

{pm < < |

q(n) —p(n)

2.4. Some properties of the set D) . Now, define the set D}, of sequence
a € U™ satisfying the condition

1 q(n)

SUPy, ap | < oo.

“q(n) k=p(n)+1

Let A be the well known operator defined by Az, = =, — z,—1 for all n, with
ro = 0.
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Lemma 2.1. Let o € UT. The following statements are equivalent:
(i) a € Dy, and (pn)—1/p(n)) € loos
(ii) the operator A is bijective from [Di]s to itself,

(i1i) the operator A is bijective from [DI]9,  to itself.

Proof. Firstly, let us show that (i) implies (ii). Let z = (z,,) and y = (y») € [Dfl]a
be arbitrary sequences and assume that Ax = Ay. It means that

(T1,T2 = T1, 00, T — Tn1, ) = (Y1,Y2 = Y1y s Yn — Yn—1, )

holds. From this assumption we have, z,, — -1 = yp — Yn—1 for all n > 1. This
calculation gives that z,, = y, holds for alln € N . Hence, A is an injective function
from [Df], to itself.

Now, let y € [Di], be an arbitrary sequence. We must find a sequence z € [Dy],
such that Az, = y, holds. That is,

(Y1, Y2, ey Yny oo-) = (X1, T2 — T1yeeey Ty — Tp—1, ---)

holds. Therefore, the sequence z = (x,,) must be as x, := > ,_, yi, for alln € N
Now, let us check that = € [Df],. By using the method in [1], we have

1 alm) Tk p(n) 1 1 Ty
=200 2= o = Tam—pm) Lo \ar| *laa]
k=p(n)+1
[ ] 1 To(n
N q(n) ( Ly a(n) )}
La(n) —p(n) ] La(n) \|oa a2 Qg(n)
[ 17 1 + + Yo+t Ypn
_ [ p() [ (£+y1 vl |yt yﬂ)ﬂ
L a(n) —p(n) | [p(n) \|a g p(n)
[ 17 1 + Yo+ ot Yo(n
n q(n) (£+ Y1+ Y2 N yq()ﬂ
La(n) —p(n) ] La(n) \|oa g Qg (n)
_ 1 ( Yp(n)+1 + Yp(n)+1 +yp(n)+2 N Yp(n)+1 + .. —I—yq(n) )
q(n) = p(n) \|ap(m)+1 Op(n)+2 Cg(n)
Also, with a simple calculation, the following inequality
Yp)+1 F Yp+2| | Yp(+L | Opm)+t | Yp(n)+2
Qp(n)+2 %) +1] Qpmy+2 [ Ap(n)+2
and
Yp(n)+1 + -+ Yg(n) < (Y1) | Yetz) | Yaln)
Qg(n) Qq(n) Qg(n) Qq(n)

Lp(n)

Qp(n)

)
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Yq(n)

Qg(n)

Qg(n)

Qg(n)

Qp(n)+2

Qg(n)

Yp(n)+2

Qp(n)+2

Yp(n)+1

Qp(n)+1

Qp(n)+1 +
a

< + ..+

a(n)

<K. (%<n>+1 MR GO R %(n))

a Qq(n)
holds for a positive K. Consequently, we conclude that x € [D{], for a € Dy,
and (0p(n)—1/Qp(n)) € loo- Similarly, it can be proved that A : [D2]) — [D]9 is a
bijective function. O

It can easily be deduced that if « € D7, then for any given integer r > 1 the

operator A" is a bijective function from [Df], to itself. So, [Df]o(A") = [Df]a-
It is the same for the operator A considered as an operator from [D{], to itself.

Lemma 2.2. Let r > 1 be an integer and (qpn)y—1/0pn)) € loo- The following
statements are equivalent:

(i) € Dy, ,
(i1) [Dg]a(A) = [Dg]a s
(iir) [Df]a(A") = [Df]a -

Proof. First show that (i) implies (ii). Let x € [Df], be an arbitrary sequence.
Then, the following inequality

1 (in) Ty —Tpa| 1 q(zrg (ﬁ N Tho1 )
a(n) =p(n), 4= | e |7 aln)—p(n), 4= \|a ay,
1 q(n) - 1 q(n) P
= ) —p() k_%:m ol alm) — p(n) k_%ﬂ k1| | o
holds. It gives that
1 q(n) Th — Th_1
q(n) —p(n) k_};n)ﬂ Qg =

So, x € [Dd]a(A). Conversely, let » € [Df]o(A). This implies that b := (Az) €
[Df]a for every n. So, we have

n
xn:u—FZbk
k=1
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for u € C (see in [3] Lemma 2.2). Then, b = (b,) € [Dfl]a-
So, if we take u = 0, then we obtain

1 | a p(n) I Tp(n)
q(n) —p(n) Z an| _q(n) —p(n)| [ p(n) ay sy Tt o
k=p(n)+1 k 1 2 p(n)
L ] 1(ﬂ+ﬁ+..+m>}
La(n) —p(n) ] Lg(n) \|ea| |2 Qg(n)
[ p(n) ] [ 1 ( b1 b1 + b by + b2 + ... + bp(n) )]
= |- L +o
L a(n) —p(n) | [p(n) \|a1 g p(n)
[ [ 1 b by +0b b1+ b2+ ... +byn
i q(n) ] (_1 1102 S sl a(n) )]
La(n) —p(n) ] La(n) \|oa a2 Qg (n)
_ 1 ( bpemy+1 | | Botmer +bpmz| | be 1+ o F by )
Q(n) - p(n) Ap(n)+1 Ap(n)+2 Qqg(n)
So, from Lemma 1, we have [Dg],(A) = [Df]a-

Now, let us show that (ii) implies (iii). Hence, A is bijective function and so
does the composition A”. In that case [D],(A") = [D{],. We obtain that

[Dfla = [Df]a(A) = ... = [Df]a(A7) = [Df]a(A™1).

On the contrary, let [Df],(A") = [Df]a. Therefore, (iii) must imply (i) to achieve
this equality. O

Lemma 2.3. Let a,3 € Ut. Then, DY

a0 = [Dg1G if and only if there exists
My, M5 > 0 such that for alln € N,

(2.3) My < 2% < M,

holds.

Proof. Tt is easy to see from (2.3) that

X X X
MR < ZE <2t
ar ~ B o

holds. Also, this inequality implies that

1 q(n) - q(n) 1 q(n) -
My — — < - TN — () .
q(n) —p(n) k_;;n)ﬂ ar ~ q(n) ) e %H ~a(n) = p(n) k—I;n)Jrl Ak

holds. Then, if we take limit in the above inequality when n — oo, a desired
implication will be obtained. O

Theorem 2.6. Let o € Ut and r > 1 be arbitrary integer. Then, the following
statements are true:

)
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(i) (Qp(ny—1/p(n)) € loo if and only if [Dg]Y, ) C [DES(AT).
(ii) the following statements are equivalent:

(a) a € Dy, and (apmy—1/pm)) € loo

(b) [DFIa(AY) = [DiR,, )

(c) [DYL(A®) C (DI, -

(iii) (a) (Qp(n)/pmn)—1) € loo if and only if, for any given integer r > 1,
0 0 0 (A+TY.
[Dfla € [DFla(AT) C ... C [DF]a(AT);

(b) If « € Dy, and (op(n)/Qpny—1) € loo, then [DE]9 = [DI]%(AT).

p,q

Proof. (i) Assume that (a,(m)—1/pn)) € loo and let x € [Dg]?an,l) be an arbitrary
sequence. Then,

1 lin) T — Tk+1
T R~ I R
< 1 lf;‘) < Tk | |Og—1 Tht1 )
— q(n) —p(n) hp(my1 N e Qg
1 q(n) r o
< Z | |Gkt
a) o) 2= | o
1 q(n) Thr1
+ :
TR S

under assumptions, the above inequality implies that € [Dg]9,(A™) when n — oo,
This gives [Df]9, ) C [DF]a(AT).

Conversely, assume that [DF]p, | C [Df]o(AT). Therefore, it is clear that
a € Dy, and (apn)—1/p(n)) € loo-
(ii) Let us show that (a) implies (b). Now a € D, implies that (a,m)—1/apm)) €
loo and by (i), [Df]f,, ) C [DF]a(A).

Conversely, = € [D2] (A%) implies that b = ATz € [DZ]5. So, for every n, we
have 2, = — S0} by, for 21 = 0 (see in [3], Lemma 2.2).
Then, b = (by) € [DE]7. Since b = Atz then (b1, by, ..., by...) = (21 — T2, 22 —
X3y eeey Tp—1 — L, ---), for all n € N. Therefore,

q(n) n
: o [‘qu(—;(n)] [p<1n> (

q(n) —p(n)

Tk Lp(n)

Qp(n)—1

)

o—
k=p(n)+1 ol
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i [qm)q (—HLM L(ln) ( ﬂ

Lq(n)
Qg(n)-1

aq

- o) Lo e+ o2+ +’_(bl+b2a:<;;f )]
e o (7 *'_(sza;;;f )]

_ 1 < bpyer | [Bpetr Fbpena| | Bpmy 1 e F By 1 )
q(n) —p(n) \|apn)+1 Qp(n)+2 Qg(n)—1
holds. From here, the following inequalities
Op) 1+ bpmyv2 | | o1 | @pemy1 | o) +2
Qp(n)+2 @y G2 ()42
and
b1 Opimyv2 F e by | | B | | B2 | | e
Ag(n)—1 Ag(n)—1 Qg(n)—1 Ag(n)—1
Opy1 | Qo1 | Bptyt2 | Opeyv2 | o) —1 | Qg(n)1
1)1 | Yg(n)—1 [ Ap(n)+2 | Ag(n)—1 Qg(n)—1 | Qg(n)—1
<K. (%<n>+1 T Apn)2 F o aq(n)l)
- ®g(n)—1
hold for any K > 0. Then, = € [D{]{, ) and we conclude that [Df]g(A™) C
[Dg]?anfl).
So, [Df]a(AT) = [Df]{,, ) and we have shown that (a) implies (b). Consequantly,

conclude that (b) implies (c).
(i) (a) Let (apn)/apmy—1) € loo- Since [DI]S, C [DE]S(AT), then for all

x € [DI]9 we have

1 lin) T — Tk+1
T RN T
1 ) T Thi1| |Qy1
q(n) —p(n) kmp(my41 N O Qg Q+1
q(n) q(n)
< 1 Z Tk 1 Tpy1| |Qrat
~ a(n) —p(n) k(1| YK q(n) —p(n) hmp(my g1 | R Qg

under assumption, this inequality implies that [D2]) C [Dg]9,(AT) when n — oo.

Now, from the mathematical induction method for any given integer » > 1 and
x € [DI]Y(ATT); then A* "z € [D]S, and with [DI]) C [D4]9,(AT) holds because of
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ATz € [DI9(AT) and @ € [DI]S (AT,
So, we have [D4]%,(A+") C [Dg]o,(AT( D),
S)))g]lgocw,[l)o%]g(ffi implies that (ap(n)/apm)—1) € leo and by (iii) (a), we have
Conversely, let x € [DZ]% (A1) implies that b = Atz € [Dg]% and for every n,
we have x,, = — 7] by, for ; = 0 Theorem 6 (ii). Then b € [(Da]?.
x € [DI]) (AT) for z € [DF]9, when shown similarly with (ii). Therefore, the con-
ditions a € Dy, and (a(n)/pn)—1) € loo are equivalent to [DE]), = [DF]%,(AT). O

Corollary 2.2. Let r > 1 be an integer and assume that (0p(n)/0pm)—1) € loo-
Then, [DZ]9,(AT") C [D4]9, implies that [DZ]9,(AT") = [Dg]9,.

[0}

Proof. By Theorem 3 (iii) (a), the condition (ay(n)/0pm)—1) € loo implies that
(D)5, € [DI]S.(ATT). Since [DE]9,(AT") C [DF]9, then,

[DI]o(ATT) = [DE2,
holds. O

Remark 2. In Theorem 3, the conditions a € Dy, and (ap(n)/@pn)—1)n € loo are
equivalent to [DI]9 (AT) = [Dg]{ = [Da]2.

(O‘nfl)

Proof. If a € Dy, and (ap(n)/ap(n)—1) € loo, then there are Ky, K3 > 0 such that

Kl < al’(") < K2

Qp(n)—-1

holds for all n € N. Then by Lemma 3, we have [D{]?, ) = [D]3. By Theorem 6

(ii), we conclude that the condition a € D}, implies that [DJ]3,(A*) = [Df]P, ) =
[Dgle. O

Corollary 2.3. Leta € UT andr > 1 be an integer. Then, the condition o € Dy,
implies [D3]9,(A1") = [Dg]?

(anfw“) :

Proof. The condition o € Dy, implies by Theorem 6 (ii) [DZ]), (A1) = [Dg](()anil).
Now let 7 > 1 be an integer and assume that

[DE]a(ATT) = [DF]G

(anfT) :

Then, x € [DI]5,(A+"+D) if and only if (AT 1))z € [D4]9, which in turn is

Atx € [DfJo(A™) = [Df]}

(anfw“) :

So, [Dg]g(AJF(TH)) = [Da]? (AT) since a € DY

(m ) g then (o, ) € Dy and

[Df]0a, ) (AT) = [DFo(ATCHD) = [Df]R

(O"n*’l‘) (0‘717(7“4»1)).

This shows (i). O
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’I}‘Lheorem 2.7. Leta€ Dy, andr > 1 be an integer. Then, (ap(ny) € loo implies
that

[Dfle C [Dgo(A*T) and  [Df]a C [Df]oo(A*")
holds.

Proof. Let (ap(n)) € loo and x € [D{],. Then, the following inequality

- - |xk - $k+l| < ——— |xk|
aw)—p(n) &= a(m) =p(n) 55
+ | Tkt
q(n) p(n) k=p(n)+1
1 Iin) Tk (in) LTh+1
< - — .o + Ok+1
q(n) = p(n) k=p(n)+1 k k=p(n)+1 Akt

holds. Hence, z € [D¥]o(AT), because of [Df]o C [DI]oo(AT"). Similarly [DI]5, C
[Dd]o(A*") is satisfied. O

Theorem 2.8. Let oo € Ut and r > 1 be an integer. Assume that (1/0pm)) € loo.
Then, we have

[DElo(A*T) C[Df]a and  [Df]oc(A™) C [Dla.

Proof. Assume that a € Dy, and let (1/a,m)) € loo. Let © € [Di]o(A™) implies
that b = A%z € [D]o and for every n, we have from Theorem 6 that x, =

~ i b
(n)
S fm [ L (| e e )
q(n) = p(n) 2=, 1o q(n) —p(n)] [p(n) \Jar| |az Up(n)
pla) L <2 I o NI el () )]
Lg(n) —p(n) ] Lg(n) \|oa a2 Qq(n)
_ |:_ p(n) :| |: 1 (—_bl " ‘—(bl -‘rbg) I ‘—(b1+b2++bp(n))‘>:|
a(n) —=p(n) ] [p(n) \| o2 ag Ap(n)
+' gn) 1T 1 (—_bl +’—(b1+b2) N +’—(b1+b2+...+bq<n>))]
La(n) —p(n)] La(n) \| o2 a3 Qg(n)
_ 1 < bpmy1 | Bt Hbpeea| L Opmyes + o+ Dy )
q(n) = p(n) \| ap(n)+2 p(n)+3 Qg(n)
M

~ q(n) —pn) [0pty+1] + [bp)+1 + bpgny42] + -+ [Bpay41 + -+ bgny—1]]

the inequality is provided. So, z € [D4]]. O
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