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Abstract. A group H is said to be capable, if there exists another group G such
that G

Z(G)
∼= H , where Z(G) denotes the center of G. In a recent paper [5], the

authors considered the problem of capability of five non-abelian p−groups of order p4

into account. In this paper, we try to solve the problem of capability by considering
three other groups of order p4. It is proved that the group

H6 = 〈x, y, z | xp2 = y
p = z

p = 1, yx = x
p+1

y, zx = xyz, yz = zy〉

is not capable. Moreover, if p > 3 is a prime number and d 6≡ 0, 1 (mod p) then the
following groups are not capable:

H
1
7 = 〈x, y, z | x9 = y

3 = 1, z3 = x
3
, yx = x

4
y, zx = xyz, zy = yz〉,

H
2
7 = 〈x, y, z | xp2 = y

p = z
p = 1, yx = x

p+1
y, zx = x

p+1
yz, zy = x

p
yz〉,

H
1
8 = 〈x, y, z | x9 = y

3 = 1, z3 = x
−3

, yx = x
4
y, zx = xyz, zy = yz〉,

H
2
8 = 〈x, y, z | xp2 = y

p = z
p = 1, yx = x

p+1
y, zx = x

dp+1
yz, zy = x

dp
yz〉.
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1. Introduction

A group H is said to be capable if there exists another group G such that
G

Z(G)
∼= H , or equivalently H can be represented as the inner automorphism group

of a given group G. The capability of groups was first studied by Baer [1] who was
asked the question “which conditions a group H must fulfill in order to be the group
of inner automorphisms of a group G?”. In the mentioned paper, he determined
all capable groups which are direct products of cyclic groups. Since the time that
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Hall and Senior published their inovating work [3], such groups are called capable.
It is well-known that the classification of capable groups is the first step towards
the classification of prime power order groups [4]. The following theorem of Baer is
well-known in the context of capable groups.

Theorem 1.1. Let A be a finite abelian group written as A = Zn1⊕Zn2⊕· · ·⊕Znk

such that each integer ni+1 is divisible by ni. Then A is capable if and only if k ≥ 2
and nk−1 = nk.

Burnside [2] was classified all p−groups of order p4 which p is an odd prime
number. This classification is expressed in the following theorem:

Theorem 1.2. Suppose p is an odd prime number and d 6≡ 0, 1 (mod p). Then
there are fifteen different groups of order p4 up to isomorphisms. Five of those are
abelian and the non-abelian groups are in the list below.

H1 = 〈x, y | xp3 = yp = 1, yxy−1 = xp2+1〉,

H2 = 〈x, y, z | xp2 = yp = zp = 1, xy = yx, xz = zx, zyz−1 = xpy〉,

H3 = 〈x, y | xp2 = yp
2
= 1, yxy−1 = xp+1〉,

H4 = 〈x, y, z | xp2 = yp = zp = 1, xy = yx, yz = zy, zxz−1 = xp+1〉,

H5 = 〈x, y, z | xp2 = yp = zp = 1, xy = yx, yz = zy, zxz−1 = xy〉,

H6 = 〈x, y, z | xp2 = yp = zp = 1, yxy−1 = xp+1, zxz−1 = xy, yz = zy〉,

H1
7 = 〈x, y, z | x9 = y3 = 1, [y, z] = 1, z3 = x3, y−1xy = x4, z−1xz = xy−1〉,

H2
7 = 〈x, y, z | xp2 = yp = zp = 1, yxy−1 = xp+1, zxz−1 = xp+1y, zyz−1 = xpy〉 p > 3,

H1
8 = 〈x, y, z | x9 = y3 = 1, [y, z] = 1, z3 = x−3, y−1xy = x4, z−1xz = xy−1〉,

H2
8 = 〈x, y, z | xp2 = yp = zp = 1, yxy−1 = xp+1, zxz−1 = xdp+1y, zyz−1 = xdpy〉 p > 3,

H9 = 〈x, y, z, t | xp = yp = zp = tp = [x, y] = [x, z] = [x, t] = [y, z] = [y, t] = 1, tzt−1 = xz〉,

H1
10 = 〈x, y, z | x9 = y3 = z3 = 1, xy = yx, z−1xz = xy, z−1yz = x−3y〉,

H2
10 = 〈x, y, z, t | xp=yp=zp= tp=[x, y]=[x, z]=[x, t]=[y, z]=[t, y]x−1=[t, z]y−1= 1〉 p > 3.

Zainal et al. [5] examined the capability of five groups out of ten non-abelian
groups of order p4 and proved that among first five groups the previous theorem,
only the group number 3 is capable. We record this result in the following theorem:

Theorem 1.3. (See [5]) The groups Hi, 1 ≤ i ≤ 5, is capable if and only if i = 3.

2. Main Results

Our aim in this section is to prove the groups numbers 6, 7 and 8 in Theorem 1.2
are not capable.

Theorem 2.1. The group H6 is not capable.
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Proof. By definition of H6 and some calculations we have the following equations,

yjxi = xijp+iyj(2.1)

zkxi = x
i(i−1)

2 kp+iyikzk(2.2)

We put i = p and j = k = 1 in Equations 2.1 and 2.2. Since p is odd and
xp2

= yp = 1, yxp = xpy and zxp = xpz. Thus 〈xp〉 ≤ Z(H6) and |Z(H6)| = p or
p2. Suppose |Z(H6)| = p2. Then for every h ∈ H6 \ Z(H6), Z(H6)〈CH6(h)〉 ≤ H6

and so |CH6(h)| = p3. This proves that the conjugacy class hH6 has size p. Choose
j, k with this condition that 0 ≤ j, k ≤ p−1. Since x is not central and by Equations
2.1 and 2.2, yjxy−j = xjp+1 and zkxz−k = xyk, we find that |xH6 | > p which is
not possible. Therefore |Z(H6)| = p and Z(H6) = 〈xp〉.

If H6 is capable then there exists a non-abelian group G with center Z such that
H6

∼= G
Z
. Since G is not centerless, there are elements a, b, c ∈ G \ Z such that

G

Z
=

〈

aZ, bZ, cZ | (aZ)p
2

= (bZ)p = (cZ)p = 1, (bZ)(aZ) = (aZ)p+1(bZ),
(cZ)(aZ) = (aZ)(bZ)(cZ), (bZ)(cZ) = (cZ)(bZ)

〉

.

By definition, ap
2

, bp, cp ∈ Z and by Equation 2.1 one can see the following
equation:

(2.3) bap = apb.

By Equation 2.2 and some calculations, we have:

(2.4) (aZcZ)n = (aZ)tnp(aZ)n(bZ)
n(n−1)

2 (cZ)n

in which tn = n(n−1)(n−2)
6 . By substituting n = p in Equation 2.4, we obtain the

following equality:

(2.5) (aZcZ)p = (aZ)tpp(aZ)p.

We now consider two cases that p = 3 or p > 3.

1. p > 3. Then p | tp and so by Equation 2.5 and this fact that ap
2

∈ Z,

(ac)pZ = (acZ)p

= (aZcZ)p

= (aZ)tpp(aZ)p

= (aZ)p

= apZ.

Hence there exists z ∈ Z such that (ac)p = apz and so cap = apc. Finally, we
apply Equation 2.3 to conclude that ap ∈ Z which is a contradiction.
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2. p = 3. Then tp = 1 and by Equation 2.5, (ac)3Z = (aZcZ)3 = (aZ)3(aZ)3

= (aZ)6 = a6Z. Hence there exists z ∈ Z such that (ac)3 = a6z and so
ca6 = a6c. By these equations and and Equation 2.3, we conclude that a6 ∈ Z

which is our final contradiction.

Therefore, the group H6 is not capable.

Theorem 2.2. The group H1
7 is not capable.

Proof. By definition of H1
7 and some tedious calculations, one can see that

yjxi = x3ij+iyj(2.6)

zkxi = x3k i(i−1)
2 +iyikzk(2.7)

We put i = 3 and j = k = 1 in Equations 2.6 and 2.7. Since x9 = y3 = 1,
yx3 = x3y and zx3 = x3z and so 〈x3〉 ≤ Z(H1

7 ). On the other hand, |H1
7 | = 34 and

hence |Z(H1
7 )| = 3 or 9. Suppose |Z(H1

7 )| = 9. Then for every h ∈ H1
7 \ Z(H1

7 ),

Z(H1
7 )〈CH1

7
(h)〉 ≤ H1

7 which implies that |CH1
7
(h)| = 33 or equivalently |hH1

7 | = 3.

Note that x ∈ H1
7 \ Z(H1

7 ). Choose j, k such that 0 ≤ j, k ≤ 2. By Equations

2.6 and 2.7, yjxy−j = x3j+1 and zkxz−k = xyk which shows that |xH1
7 | > 3. This

contradiction implies that |Z(H1
7 )| = 3 and Z(H1

7 ) = 〈x3〉. If H1
7 is capable, there is

a non-abelian group G with center Z such that H1
7
∼= G

Z
. Since G is not centerless,

there are elements a, b, c ∈ G \ Z such that

G

Z
=

〈

aZ, bZ, cZ | (aZ)9 = (bZ)3 = 1, (cZ)3 = (aZ)3, (bZ)(aZ) = (aZ)4(bZ),
(cZ)(aZ) = (aZ)(bZ)(cZ), (cZ)(bZ) = (bZ)(cZ)

〉

.

Obviously a9, b3, c9 ∈ Z and by Equation 2.6,

(aZbZ)n = (aZ)3
n(n−1)

2 (aZ)n(bZ)n.

In above equation, we put n = 3. Since a9, b3 ∈ Z, (ab)3Z = (abZ)3 = (aZbZ)3 =
(aZ)9(aZ)3(bZ)3 = (aZ)3 = a3Z and so there exists z ∈ Z such that (ab)3 = a3z.
Therefore,

ba3 = a3b(2.8)

On the other hand, a3Z = c3Z and so there exists z1 ∈ Z such that

(2.9) a3 = c3z1

Put k = 1 and i = 3 in Equation 2.7. Since o(aZ) = 9 and o(bZ) = 3,

ca3Z = (cZ)(aZ)3

= (aZ)9(aZ)3(bZ)3(cZ)

= (aZ)3(cZ)

= a3cZ.
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Thus there exists z2 ∈ Z such that

(2.10) ca3 = a3cz2.

Now by inserting the Equation 2.9 in 2.10, cc3z1 = c3z1cz2 which shows that z2 = 1.
Apply again Equation 2.10 to conclude that ca3 = a3c. Now by Equation 2.8 a3 ∈ Z

and hence (aZ)3 = Z which is our final contradiction.

Theorem 2.3. The group H2
7 is not capable.

Proof. By presentation of H2
7 and some tedious calculations one can see that

yjxi = xijp+iyj,(2.11)

zkxi = x
i(i+1)

2 kp+ k(k−1)
2 ip+iyikzk,(2.12)

zkyj = xjkpyjzk.

By substituting i = p and j = k = 1 in Equations 2.11 and 2.12 we have yxp = xpy

and zxp = xpz. Hence 〈xp〉 ≤ Z(H2
7 ) and arguments similar to the proof of Theorem

2.1 show that Z(H2
7 ) = 〈xp〉. If H2

7 is capable, there is a non-abelian group G with
center Z such that and H2

7
∼= G

Z
. Since G is not centerless, there are elements

a, b, c ∈ G \ Z such that

G

Z
=

〈

aZ, bZ, cZ | (aZ)p
2

= (bZ)p = (cZ)p = 1, (bZ)(aZ) = (aZ)p+1(bZ),
(cZ)(aZ) = (aZ)p+1(bZ)(cZ), (cZ)(bZ) = (aZ)p(bZ)(cZ)

〉

.

Thus ap
2

, bp, cp ∈ Z. Now by Equation 2.11 and a similar argument as Theorem
2.1,

(2.13) bap = apb.

Apply Equation 2.12 to conclude that

(aZcZ)n = (aZ)knp(aZ)n(bZ)
n(n−1)

2 (cZ)n

in which kn = n(n−1)(2n−1)
6 . Next we assume that n = p. Since bp, cp are central,

(ac)pZ = (acZ)p = (aZcZ)p

= (aZ)kpp(aZ)p(bZ)
p(p−1)

2 (cZ)p

= (aZ)(kp+1)p = a(kp+1)pZ.

Hence there exists z ∈ Z such that

(2.14) (ac)p = a(kp+1)pz.

It is clear that p | 6kp. Since p > 3, p | kp and so p ∤ kp + 1. Since (ac)p(ac) =
(ac)(ac)p, Equation 2.14 implies that ca(kp+1)p = a(kp+1)pc and by Equation 2.13,
a(kp+1)p ∈ Z. So, (aZ)(kp+1)p = Z. But o(aZ) = p2 and hence p2 | (kp + 1)p which
implies that p | kp + 1. This contradiction completes the proof.



638 M. A. Salahhsour and A. R. Ashrafi

Theorem 2.4. The group H1
8 is not capable.

Proof. By presentation of H1
8 we have:

yjxi = x3ij+iyj,(2.15)

zkxi = x3k i(i−1)
2 +iyikzk.(2.16)

Again substitute i = 3 and j = k = 1 in Equations 2.15 and 2.16. Since x9 = y3 = 1,
yx3 = x3y and zx3 = x3z. Thus 〈x3〉 ≤ Z(H1

8 ). Similar to the proof of Theorem
2.2, Z(H1

8 ) = 〈x3〉. If H1
8 is capable, there is a non-abelian group G with center Z

such that H1
8
∼= G

Z
. Since G is not centerless, there are elements a, b, c ∈ G \Z such

that

G

Z
=

〈

aZ, bZ, cZ | (aZ)9 = (bZ)3 = 1, (cZ)3 = (aZ)−3, (bZ)(aZ) = (aZ)4(bZ),
(cZ)(aZ) = (aZ)(bZ)(cZ), (cZ)(bZ) = (bZ)(cZ)

〉

.

Obviously, a9, b3, c9 ∈ Z and by Equation 2.15,

(aZbZ)n = (aZ)3
n(n−1)

2 (aZ)n(bZ)n.

Put n = 3. Since a9, b3 ∈ Z,

(ab)3Z = (abZ)3 = (aZbZ)3 = (aZ)9(aZ)3(bZ)3 = (aZ)3 = a3Z.

Hence there exists z ∈ Z such that (ab)3 = a3z and so

ba3 = a3b.(2.17)

On the other hand, c3Z = a−3Z and so there exists z1 ∈ Z such that

a3 = c−3z1.(2.18)

Since o(aZ) = 9 and o(bZ) = 3, by Equation 2.16 and substituting k = 1 and i = 3,
we can see that

ca3Z = (cZ)(aZ)3

= (aZ)9(aZ)3(bZ)3(cZ)

= (aZ)3(cZ) = a3cZ

and so there exists z2 ∈ Z such that

(2.19) ca3 = a3cz2.

We now insert Equation 2.18 in our last equation to deduce that cc−3z1 =
c−3z1cz2. Thus z2 = 1 and by Equation 2.19, ca3 = a3c. Therefore, a3 ∈ Z and
hence 9 = o(aZ) | 3, which is impossible. This completes the proof.

Theorem 2.5. The group H2
8 is not capable.
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Proof. By presentation of H2
8 and some tedious calculations, we have

yjxi = xijp+iyj ,(2.20)

zkxi = x
i(i−1)

2 kp+
k(k+1)

2 idp+iyikzk,(2.21)

zkyj = xjkdpyjzk.

In Equations 2.20 and 2.21, we insert i = p and j = k = 1. It is clear that
yxp = xpy and zxp = xpz and so 〈xp〉 ≤ Z(H2

8 ). Similar to Theorem 2.1, we can
see that Z(H2

8 ) = 〈xp〉. If H2
8 is capable, there is a non-abelian group G with center

Z such that H2
8
∼= G

Z
. Since G is not centerless, there are elements a, b, c ∈ G \ Z

such that

G

Z
=

〈

aZ, bZ, cZ | (aZ)p
2

= (bZ)p = (cZ)p = 1, (bZ)(aZ) = (aZ)p+1(bZ),
(cZ)(aZ) = (aZ)dp+1(bZ)(cZ), (cZ)(bZ) = (aZ)dp(bZ)(cZ)

〉

,

where d 6≡ 0, 1(mod p). It is obvious that ap
2

, bp, cp ∈ Z and by Equations 2.20 and
a similar argument used in the proof of the Theorem 2.1,

(2.22) bap = apb.

Moreover, by Equation 2.21,

(2.23) (aZcZ)n = (aZ)sndp(aZ)tnp(aZ)n(bZ)
n(n−1)

2 (cZ)n

in which sn = n(n−1)(n+1)
6 and tn = n(n−1)(n−2)

6 . It is easy to see that p | sp and
p | tp. Also by inserting n = 1 in Equation 2.23,

(ac)pZ = (acZ)p = (aZcZ)p

= (aZ)spdp(aZ)tpp(aZ)p(bZ)
p(p−1)

2 (cZ)p

= (aZ)p = apZ.

Hence there exists z ∈ Z such that (ac)p = apz and so cap = apc. This implies that
ap ∈ Z and therefore p2 = o(aZ) | p, which is our final contradiction.

3. Concluding Remarks

In this paper the authors continued a recently published paper of Zainal et al. [5]
in investigating finite p−groups of order p4. It is proved that three non-abelian
groups of this order are not capable. By results of [5] and our results to complete
the classification of capable group of order p4 it is enough to investigate the groups
H9 and H10 in Theorem 1.2. Our calculations with computer algebra software GAP
in working with small groups of order p4 suggests the following conjecture:

Conjecture 3.1. The groups H9 and H10 are not capable.
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