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Abstract. Let G be a finite group. The set D C G with |D| = k is called a (n, k, A\, u)-
partial difference set (PDS) in G if the differences didy',d2,d2 € D,d1 # do, rep-
resent each non-identity element in D exactly A times and each non-identity element
in G — {D} exactly p times. In the present paper, we determine for which group
G € {D2n,Tan,Usn, Van} the derangement set is a PDS. We also prove that the de-
rangement set of a Frobenius group is a PDS.
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1. Introduction

Let G be a finite group. A symmetric subset of group G is a subset S C G, where
1¢ S and S =51 The Cayley graph I' = Cay(G, S) with respect to S is a graph
whose vertex set is V(I') = G and two vertices z,y € V(I') are adjacent if and only
if yr=! € S. It is a well-known fact that a Cayley graph is connected if and only
if G = (S). Also a Cayley graph is a regular graph (every vertex has the same
degree).

A derangement is a permutation with no fixed points. The set D of permu-
tation group is derangement if all elements of D are derangements. Suppose G is
a permutation group and D C G is a derangement set. The derangement graph
I'c = Cay(G, D) has the elements of G as its vertices and two vertices are adjacent
if and only if they do not intersect.

Suppose G is a permutation group of degree n. A subset S of G is said to be
intersecting if for any pair of permutations o,7 € S there exists i € {1,2,...,n}
such that o771(i) = i. A group G has the Erdés-Ko-Rado (ekr) property, if for
any intersecting subset S C G, |S| is bounded above by the size of the largest point
stabilizer in G. The maximal intersecting set is one with maximum size. A group
can have the property under one action while it fails to have this property under
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another action. We refer to [1,2,8,9,13,17] for background information about the
history of this intresting problem.

Section 2 includes the ekr properties of well-known groups. In section 3, the
derangement set of well-known groups are studied.

2. Erdos-Ko-Rado property

For the subgroup H of group G and the element g € G, the conjugate of subgroup H
in G is denoted by H? = g~'Hg. Suppose G < Sym(n) is a transitive permutation
group, then G is called a Frobenius group if it has a non-trivial subgroup H, where
HNHY9={1}, for all g € G\ H. The kernel of Frobenius group G is defined as

K = (G\UgecH?)U{1}.

It is not difficult to see that all non-identity elements of K are all derangement
elements of G. In other words, let G be a non-trivial permutation group and
G* = G — {1}. If G is a Frobenius group then for all g € G*, |fiz(g)] < 1 and at
least there exist an element go € G* such that |fiz(go)| = 1.

Theorem 2.1.  [16] (Frobenius Theorem) Suppose H is a proper non-identity
subgroup of G such that for all g € G\ H, we have H N g~ 'Hg = {1}. Let
K =G\ Ugegg '(H\ {1})g, then K <G, G=KH and HNK = {1}.

Proposition 2.1.  [2] Every Frobenius group has the ekr property.

Theorem 2.2. Let G < Sym(n) and the derangement graph Cay(G,D) be the
disjoint union of n-cliques. Then G has the ekr property.

Proof. Let {k1,ka,...,kn_1} be the set of derangements of G and {g;, gik1,...,9:
kn—1} be the vertices of the i-th clique in derangemen graph Cay(G,D), where
g; € G. Since each clique has size n and G acts on n elements, every elemen of each
clique has exactly one fixed point and every pair of elements in a clique has no same
fixed point. Let H be the set of all vertices in Cay(G, D) that fixes point z. Suppose
1 # g.ky € H and (g,k¢)? € H, where g € G — H. So g 'g,kg(x) = z and thus
grkig(x) = g(x). This means that g.k; fixes g(z) while g(x) # z, a contradiction.
The proof is completed. [

A group G acting on a set X is transitive if for every pair of points (a,b) € X
there exist x € G such that z.a = b. The permutation group G is regular if G acts
transitively on X and for all z € X, G, = 1. A group G is 2-transitive if for any
two ordered pairs (a,r),(b,s) € X, with a # r and b # s there exists © € G such
that z.a = b and x.r = s . We say that G is sharply 2-transitive if G is 2-transitive
and for any two points z,y € X, G, = 1. In this paper by, (G|X) we mean that
the group G acts on the set X.
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Theorem 2.3. [5] Let (G| X) be transitive and x € X. Then (G|X) is 2-transitive
if and only if G, acts transitvely on the set X — {z}.

Theorem 2.4. [5] (The orbit-stabilizer property) Let (G|X) and x € X. If G is
finite, then |2%||G.| = |G].

Theorem 2.5. [5] (Galois Theorem). Let (G|X) be a transitive permutation
group of degree a prime number. Then the group G is solvable if and only if for all
xz,y € X,z #y, we have G5, = 1.

Theorem 2.6. Let (G|X) be a 2-transitive permutation group of degree n and
(1,22) € X2. Then |G| = n(n — 1)|Gz, o]

Proof. Suppose the group G acts on X, transitively. So the action of G on X has
one orbit. Then by Theorem 2.4, |G| = n|G,,|. On the other hand, by Theorem 2.3
group G, acts transitively on the set X —{x1}, and by the orbit-stabilizer property
|Gz, | = (n — 1)|Gyy 25]- This completes the proof. O

Theorem 2.7. Let (G|X) be a transitive non-regular group of degree a prime num-
ber. If G is solvable then G has the ekr property.

Proof. Since G is non-regular, there exist x € X such that G, # 1. By Theorem
2.5, for z,y € X we have G, , = 1 and this means that every non-identity element
of G fixes at most one element. If every non-identity element of G fixes no element
of X, then |G| = |X| and it is contradict with the non-regularity of G. So there
exist at least one 1 # z € X such that |G| = 1. Hence, G is Frobenius group and
by Proposition 2.1, it has the ekr property. O

Theorem 2.8. Let (G|X) be a transitive permutation group such that the action
G is non-regular and for all x,y € X,z # y, we have G5, = 1. Then G has the
ekr property.

Proof. Similar to the proof of theorm 2.7, we can conclude that G is Frobenius
group and the result follows. O

Theorem 2.9. [5] Let (G|X) and the act of G be 2-transitive. Then the action
of G on X is sharply 2-transitive if and only if |G| =n(n — 1).

Theorem 2.10. Let (G|X) be 2-transitive non-regular permutation group of degree
n such that |G| = n(n —1). Then G has the ekr property.

Proof. By Theorem 2.9, G is a sharply 2-transitive group and so for z,y € X (z # y),
we have G, = 1. Now, similar to the proof of Theorem 2.7, GG is a Frobenius group
and thus it has the ekr property. O
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Let p : G — GL(n,F) be a representation with p(g) = [¢g]g. The character
Xp : G — C of p is defined as x,(g9) = tr([g|g) for some basis 5. The character x
of an irreducible representation is called the irreducible character and x is linear, if
x(1) = 1. The set of all irreducible characters of group G is denoted by Irr(G).

Let (G|X) and fiz(g) = {x € X|g(x) = x}. The character = such that m(g) =
|fiz(g)| is called permutation character and the character y = |fiz(g)| — 1 is called
standard character.

Theorem 2.11. [12] Let G be 2-transitive group, then the standard character of
G is irreducible character.

Theorem 2.12. [6] Let G be a finite group with a normal symmetric subset S.
Let A be the adjacency matriz of graph Cay(G,S). Then the eigenvalues of A are
given by

A, x € Irr(G)

where Ay, = ﬁ Y ecs X(8)

Theorem 2.13. The derangement graph of any 2-transitive group is not a bipar-
tite graph.

Proof. Let G acts 2-transitive on n elementsa and complete bipartite graph K, ; be
the derangement graph of G. Since the derangement graph is a regular graph, we
have r = s. The eigenvalues of K, , are {[—r]',[0]*"=2,[r]'}. On the other hand by
Theorem 2.11, the standard character 7 of a 2-transitive group is irreducible. So by
Theorem 2.12, we have A, = % = ——5. Since the rational eigenvalues of a graph
are integers, we have n = 2 and then G 2 Zy or G = {1}. O

3. Partial difference set

Let G be a finite group and D C G. Then D is a (n, k, A\, p)-partial difference set
(PDS) in G if and only if DD™! = y1g+AD+u(G — D), where y = k—pif 1 € D
and vy =k — X if 1g € D. We will usually assume that 1¢ € D and D-1) = D, in
which case, we have

D? = (k—p)lg+ (A =)D + uG.

Partial difference sets were named by I. M. Chakravarti, 1969 [4], but introduced
by Bose and Cameron, 1965 [3] in their studies of calibration designs and the bridge
tournament problem. D is called abelian if G is abelian. It is well known that a
PDS D with 1 ¢ D and {d=! :d € D} = D is equivalent to a strongly regular
Cayley graph, such a PDS is called regular. The study of partial difference sets is
closely related to partial geometries, Schur rings, strongly regular Cayley graphs
and two-weight codes. Asurvey of Ma [15] contains very detailed descriptions of
these connections.
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Theorem 3.1. Let G = HK < Sym(n) be a Frobenius group with kernel K. The
derangement set of G is a (n|H|,n —1,n —2,0)-PDS.

Proof. We know that |K| = n. Every non-identity element of kernel G is a derange-
ment of G and DU {1} is a subgroup. This implies that the derangement set of G
isa (n|H|,n—1,n—2,0)-PDS. O

Theorem 3.2. Consider the dihedral group Ds, with derangement set D. If n is
odd, then D is a PDS and if n is even, then D is not a PDS.

Proof. Consider the dihedral group Da, = (a,bla® = b?> = 1,aba™! = a~1).
If n is odd, then Ds, is a Frobenius group and by Theorem 3.1 the derange-
ment set is a PDS. Now, let n be even. Suppose that a = (1,2,3,...,n) and
b= (1,2)(3,n)...(5 + 1,5 +2) is permutation presentation of generators of Dsyy,.
The derangement set of Da,, is

D ={a,a?,...,a" 1, b,a?b,a’,... a" " %b}.

If a’'a™7 = a?, then i — j = 2(mod n) and {(3,1),(4,2),...,(n—1,n—3)} arte n — 3
solutions for (i,7). On the other hand, if (a’b)(a’b)~! = a?(i,j are even), then
a‘a™ = a? and so i — j = 2(mod n). Thus {(4,2),(6,4),...,(n —2,n — 4)} are
n/2 — 2 solutions for (i,7). One can see that a(a" !)~! = a2, b(a" 2b)~! = a?
and (a?b)b~! = a?. Let (a’b)a™@ = a2, by using the relation of group, we have
a’~7b = a? and this is impossible. The equation a’(a’b)~! = a? is impossible, too.
So if d;,d; € D, then d;d;" = a® has (3n/2) — 2 solutions. If a’a™/ = a, then
i—j = 1(mod n) and {(2,1),(3,2),...,(n — 1,n — 2)} are the solutions for (4, 7).
By the relation of Ds,, there is no other solutions for did;1 = a. So in this case
there are n — 2 solutions. Then we conclude that the derangement set of dihedral
group in this case is not a PDS. O

Consider the dicyclic group Ty, Us, and Vg, by the following presentations:

3

Tin = (0, bla®" = e,a" = 2, b-1ab = o)
U6n = <a7b|a2n = b3 = e,an = bz,a_lba = b_l>,

Van = {a,bla®” = b* = e,aba = b= ab~ta = b~ 1).

Theorem 3.3. The derangement set of dicyclic group Tyy, is a (4n,4n — 1,4n —
2,0)-PDS.

Proof. In [7] Darafsheh proved that two elements a = (1,2,3,...,2n)(2n + 1,2n +
2,2n+3,...,4n) and b = (1,2n + 1,n 4+ 1,3n + 1)(2,4n,n + 2,3n)(3,4n — In +
3,3n—1),...,(n—1,3n+3,2n—1,2n+ 3)(n, 3n+ 2, 2n, 2n+ 2) are the generators
of Ty,. All elements of Ty, have no fixed point. Then D = Ty, — {e} which is a
(4n,4n —1,4n — 2,0)-PDS. O
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Theorem 3.4. The derangement set of Usy(n > 4) is not a PDS set.

Proof. Let a = (1,2,3,...,2n)(2n+1,2n+2) and b = (2n+1,2n+2,2n+ 3) be the
permutation peresentations of generators of Ugy, [7]. One can see that the derange-
ment set of Us, is D = {a’b,a’h?|2 <i < 2n — 2 and i is even}. Let a'b?,a"b* € D
and (a’b?)(a"b*)~! = b. Then we have a’b’"*a™" = b and so a~'ba” = b'~%. Thus
a"“'a""ba” = b ~* and by using the relation of Us,, we have a"~*b(~1" = pi—s,
This yields that

r =1 (mod 2n)
j—s=1

Hence the relation (a’?)(a"b*)~* = b has n — 1 solutions. On the other hand
(a'b?)(a"b*)~! = a has no solution and thus D is not a PDS set. O

Theorem 3.5. The derangement set of Vs, (n > 3) is not a PDS set.

Proof. For group Vg, we can consider two following cases:

e Case 1. Suppose n is an odd number. Let a = (1,2,3,...,2n)(2n + 1,2n +
2,...,4n) and b = (1,2,2n + 1,2n + 2)(3,2n,2n + 3,4n)(4,4n — 1,2n + 4,2n —
1)...(n+1,3n4+2,3n+ 1,n + 2) be the permutation peresentations of generators
of Vg, [7]. One can see that the derangement set of Vg, is

D= {a,d?,...,a®" 1 b,b% b3 a'b,a'V?,a'b?, a"b*},

where 2 <¢<2n—2 (iiseven) and 1 <r < 2n —1 (r is odd).

We are going to show that the number of elements of A = {d;,d; € D|did;1 a}
and B = {d;,d; € ’D|di,d;1 = a?} are not equal. By considering i — j =
1 (mod 2n), the equation a’(a’?)™! = a has 2n — 2 solutions. Similarly, the
equation (a‘b?)(a’b?)~! = a has 2n — 2 solutions. On the other hand, we have
b2(a®~16?)71 = a and (ab?)(b?)~! = a. So the set A has 4n — 2 elements. Now,
we compute the elements of the set B. By considering i — j = 2 (mod 2n), the
equation a’(a’)~! = a? has 2n — 3 solutions. Also, (a’b?)(a’b?)~! = a? has 2n — 3
solutions. Suppose that 4 < ¢ < 2n — 2 (i is even) and j = i — 2 (mod 2n), then
we have (a'b)(a’b)™t = a? and (a’b®)(a’b®)~! = a?. This means that each of this
equations has n — 2 solutions. On can see that b*(a?"~2b")~1 = a2 for i = 1,2,3.
On the other hand, we have (a?b%)(b™%) = a?(i = 1,2,3), (ab®)(a®*"~1b%) = a? and
a(a®®~1)~! = a2. Then the set B has 6n — 2 elements and the derangement set of
Van(n is odd) is not a PDS set.

e Case 2. Suppose n is even number. Let a = (1,2,3,...,2n)(2n + 1,2n +
2,...,4n) and b = (1,2,2n + 1,2n + 2)(3,2n,2n + 3,4n)(4,4n — 1,2n + 4,2n —
1)...(n,3n+3,3n,n+3)(n+1,n+2,3n+1, 3n+2) be the permutation peresentations
of generators of Vg, [7]. One can see that the derangement set of Vs, is

D ={a,d?, ...,a®" 1 b,b% b a'b,a'b?,a'b®, a"b, a"b?, a’b?, a*b%},
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where2 <¢ < 2n—2 (iiseven),r € {1,5,9,...,2n—3}and s € {3,7,11,...,2n—1}.

Now, we show that the number of elements of E = {d;,d; € D|d1-dj_1 = a} and
F = {d;,d; € D|did;1 = a*} are not equal. By regarding i — j = 1 (mod 2n),
the equation a*(a’)~!' = a has 2n — 2 solutions. If j =i — 1 (mod n) and i €
{2,5,6,9,10,...,2n — 2}, then the equation (a’b*)(a’b*)~! = a, where s € {1,2}
has n — 1 solutions. If j =i —1 (mod n) and i € {3,4,7,8,11,...,2n — 1}, then the
equation (a’b%)(a’b®)~! = a, where s € {2,3} has n — 1 solutions. One can see that
(ab®)(b")~! = a, where t € {1,2} and b'(a®~1b")~1 = a, where t € {2,3}. Then
the set F has 6n — 2 elements. Now, we compute the elements of the set F. By
considering i — j = 4 (mod 2n) the equation a‘(a’)~! = a* has 2n — 5 solutions.
It is clear that a'(a?"3)"1 = a?(a®"2)7! = a3(a?" 1)~ = a*. One can see that
if t € {1,2,3} then (a*b!)(b')~! = a*, and b'(a®"~4b!)~1 = a*. Let i, be even,
i—j =4 (mod 2n) and r € {1,2,3}. Then (a’b")(a’b")~! = a* yields 3(n — 1)
solutions. Let ¢ be odd, i — j =4 (mod 2n) and r € {5,9,13,...,2n — 3}. Then by
using (a’b")(a’b") "1 = a* we get n — 2 solutions for this equation. Let i be odd,
i—j =4 (mod 2n) and r € {7,11,15,...,2n—1}. Again by (a’d")(a’b")~! = a* we
acheive n — 2 solutions. If i € {1,2} then (ab®)(a?"—3b")~! = a*. If i € {2,3} then
(a®b%)(a® 1)t = a* and if i € {1,2,3} then (a?b%)(a®"~2b")~! = a*. So the set
F has Tn — 2 elements. Then the derangement set of Vs, (n is odd) is not a PDS
set. [
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