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Abstract. Let G = (V,E) be a simple graph of order n. The total dominating set of
G is a subset D of V that every vertex of V is adjacent to some vertices of D. The
total domination number of G is equal to minimum cardinality of total dominating set
in G and is denoted by γt(G). The total domination polynomial of G is the polynomial
Dt(G, x) =

∑n

i=γt(G) dt(G, i)xi, where dt(G, i) is the number of total dominating sets

of G of size i. A root of Dt(G, x) is called a total domination root of G. The set of total
domination roots of graph G is denoted by Z(Dt(G, x)). In this paper, we show that
Dt(G, x) has δ−2 non-real roots and if all roots of Dt(G, x) are real, then δ ≤ 2, where
δ is the minimum degree of vertices of G. Also we show that if δ ≥ 3 and Dt(G, x)

has exactly three distinct roots, then Z(Dt(G, x)) ⊆ {0,−2±
√
2i, −3±

√
3i

2
}. Finally we

study the location roots of total domination polynomial of some families of graphs.
Keywords. graph; total domination number; total domination polynomial; root.

1. Introduction

Let G = (V,E) be a simple graph. The order of G is the number of vertices of G.
For any vertex v ∈ V , the open neighborhood of v is the setN(v) = {u ∈ V |uv ∈ E}
and the closed neighborhood is the set N [v] = N(v) ∪ {v}. For a set S ⊂ V , the
open neighborhood of S is the set N(S) =

⋃

v∈S N(v) and the closed neighborhood
of S is the set N [S] = N(S) ∪ S. A leaf (end-vertex) of a graph is a vertex of
degree one, while a support vertex is a vertex adjacent to a leaf. The set D ⊂ V
is a total dominating set if every vertex of V is adjacent to some vertices of D,
or equivalently, N(D) = V . The total domination number γt(G) is the minimum
cardinality of a total dominating set in G. A total dominating set with cardinality
γt(G) is called a γt-set. An i-subset of V is a subset of V of cardinality i. Let
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Dt(G, i) be the family of total dominating sets of G which are i-subsets and let
dt(G, i) = |Dt(G, i)|. The polynomial Dt(G;x) =

∑n

i=1 dt(G, i)xi is defined as total
domination polynomial of G. As an example, Dt(Kn, x) = (x + 1)n − nx − 1 and
Dt(K1,n, x) = x((x+ 1)n − 1). A root of Dt(G, x) is called a total domination root
of G. The set of total domination roots of graph G is denoted by Z(Dt(G, x)).
For many graph polynomials, their roots have attracted considerable attention. For
example in [5] Brown, Hickman, and Nowakowski proved that the real roots of the
independence polynomials are dense in the interval (−∞, 0], while the complex roots
are dense in the complex plane. For matching polynomial, in [14] was proved that
all roots of the matching polynomials are real. Also it was shown that if a graph
has a Hamiltonian path, then all roots of its matching polynomial are simple (see
Theorem 4.5 of [15]). For domination polynomial, Brown and Tufts in [4] studied
the location of domination roots and they proved that the set of all domination
roots is dense in the complex plane. For graphs with few domination roots see [1].
Related to the roots of total domination polynomials there are a few papers. See
[2, 16] for more details. Recently authors in [16] shown that all roots of Dt(G, x)
lie in the circle with center (−1, 0) and radius δ

√
2n − 1, where δ is the minimum

degree of G and n is the order of G. As a consequence, they proved that if δ ≥ 2n
3 ,

then every integer root of Dt(G, x) lies in the set {−3,−2,−1, 0}.

In this paper we show that Dt(G, x) has δ − 2 non-real roots and if all roots of
Dt(G, x) are real, then δ ≤ 2. Also we show that if δ ≥ 3 and Dt(G, x) has exactly

three distinct roots, then Z(Dt(G, x)) ⊆ {0,−2±
√
2i, −3±

√
3i

2 }. Finally we study
the location roots of total domination polynomial of some families of graphs.

2. Main results

In this section we obtain some results on total domination roots. Oboudi in
[20] has studied graphs whose domination polynomials have only real roots. More
precisely he obtained the number of non-real roots of domination polynomial of
graphs. Similarly, we do it for total domination roots, in the next theorem.

Theorem 2.1. Let G be a connected graph of order n ≥ 2.

i) If all roots of G are real, then δ = 1 or 2.

ii) The polynomial Dt(G, x) has at least δ − 2 non-real roots.

Proof. Let g(x) = Dt(G, x) and g(m)(x) be the m-th derivative of g(x) with respect
to x. It is easy to see that if i ≥ n − δ + 1, then dt(G, i) =

(

n
i

)

and if i ≤ n − δ,

then dt(G, i) <
(

n
i

)

, where dt(G, i) is the number of total dominating sets of G with
cardinality i, for every natural number i. Thus there exists a polynomial f(x) with
positive coefficients and with degree n − δ such that Dt(G, x) = (x + 1)n − f(x).
Since all roots of g(x) are real, by Rolle’s theorem we conclude that all roots of
g(n−δ)(x) are real as well. On the other hand g(n−δ)(x) = n!

δ! (x + 1)δ − a(n − δ)!,
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where a is the coefficient of xn−δ in f(x). Since all roots of g(n−δ)(x) are real, this
shows that δ ≤ 2. Since G is connected, so δ = 1 or 2.

Now suppose that g(x) has exactly r real roots. Using Rolle’s theorem one
can see that g(n−δ)(x) has at least r − (n − δ) real roots. On the other hand
g(n−δ)(x) = n!

δ! (x + 1)δ − a(n − δ)!. Thus r − (n − δ) ≤ 2. Therefore g(x) has at
least δ − 2 non-real roots.

Theorem 2.2. [2] If G = (V,E) is a graph of order n with r support vertices, then
dt(G,n− 1) = n− r.

Theorem 2.3. [15] If G is a graph of order n with δ(G) ≥ 3, then γt(G) ≤ n
2 .

The study of graphs which their polynomials have few roots can give sometimes
a surprising information about the structure of the graph. If A is the adjacency
matrix of G, then the eigenvalues of A, λ1 ≥ λ2 ≥ . . . ≥ λn are said to be the
eigenvalues of the graph G. These are the roots of the characteristic polynomial
φ(G, λ) =

∏n

i=1(λ − λi). For more details on the characteristic polynomials. The
characterization of graphs with few distinct roots of characteristic polynomials (i.e.
graphs with few distinct eigenvalues) have been the subject of many researches.
Graphs with three adjacency eigenvalues have been studied by Bridges and Mena
[3] and Klin and Muzychuk [17]. Also van Dam studied graphs with three and four
distinct eigenvalues [6, 7, 8, 9]. Graphs with three distinct eigenvalues and index less
than 8 were studied by Chuang and Omidi in [18]. Graphs with few domination
roots were studied by Akbari, Alikhani and Peng in [1]. In [2], authors studied
graphs with exactly two total domination roots {−3, 0}, {−2, 0} and {−1, 0}. Here
we study graphs with three distinct total domination roots.

Theorem 2.4. Let G be a graph with δ ≥ 3. If Dt(G, x) has exactly three distinct
roots, then

Z(Dt(G, x)) ⊆ {0,−2±
√
2i,

−3±
√
3i

2
}.

Proof. Let G be a connected graph of order n and Z(Dt(G, x)) = {0, a, b} that
a 6= b. Therefore Dt(G, x) = xi(x− a)j(x− b)k, for some i, j, k. So by Theorem 2.2,
we have

(2.1) −(ja+ kb) = n.

Also because dt(G, i) =
(

n
i

)

for i ≥ n− δ + 1, we have

(2.2)

(

j

2

)

a2 +

(

k

2

)

b2 + jkab = dt(G,n− 2) =

(

n

2

)

.

Let P (x) be the minimal polynomial of a over Q. Clearly, all roots of P (x) are
simple. This implies that deg(P (x)) = 1 or 2. We consider two cases.

Case 1. deg(P (x)) = 1. So Dt(G, x) = xi(x − a)j(x − b)k, where −a,−b ∈ N. By
Theorem 2.1, we have δ = 1 or 2, a contradiction.
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Case 2. deg(P (x)) = 2. In this case since Dt(G, x) has three distinct roots, the
minimal polynomial of b over Q is also P (x), Thus we have Dt(G, x) =
xi(x2 + rx + s)j , where P (x) = x2 + rx + s. We have i + 2j = n, and
also by (2.1), −(a+ b)j = n. By Theorem 2.3, i ≤ n

2 . Therefore j ≥ n
4 . Since

−(a + b)j = n and a + b is an integer, we have −(a + b) ∈ {1, 2, 3, 4}. We
consider four cases:

Subcase 2.1. If a+ b = −1, then j = n, a contradiction.

Subcase 2.2. If a+ b = −2, then j = n
2 , a contradiction.

Subcase 2.3. If a+ b = −3, then i = j = n
3 , so we have Dt(G, x) = x

n

3 (x2 + rx+ s)
n

3 . Now,
by (2.2) we have

(

n
3

2

)

(a2 + b2) +
n2ab

9
=

(

n

2

)

.

In the other hand, since a + b = −3, we conclude that a2 + b2 = 9 − 2ab.
Thus by simple calculation we obtain nab = 3n. Therefore ab = 3. By using
a+ b = −3, we have

a ∈ {−3±
√
3i

2
}

Subcase 2.4. Now, suppose that a + b = −4. Then i = n
2 and j = n

4 . With the same
calculations, we have ab = 6. Using the fact that a + b = −4, we have
a ∈ {−2±

√
2i}.

As noted before, in [2], authors studied graphs with exactly two total domination
roots {−3, 0}, {−2, 0} and {−1, 0}. Here we present a family of graphs whose total
domination roots are −1 and 0.

v v

Fig. 2.1: Helm graph H8 and generalized helm graph H8,5, respectively.

The helm graphHn is obtained from the wheel graphWn by attaching a pendent
edge at each vertex of the n-cycle of the wheel. We define generalized helm graph
Hn,m, the graph is obtained from the wheel graph Wn by attaching m pendent
edges at each vertex of the n-cycle of the wheel (Figure 2.1). We recall that corona
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product of two graphs G and H is denoted by G ◦H and was introduced by Harary
[12, 13]. This graph formed from one copy of G and |V (G)| copies of H , where the
i-th vertex of G is adjacent to every vertex in the i-th copy of H . We need the
following theorems:

Theorem 2.5. [10] Let G = (V,E) be a graph and u, v ∈ V two non-adjacent vertices
of the graph with N(u) ⊆ N(v). Then

Dt(G, x) = Dt(G \ v, x) + xDt(G/v, x) + x2
∑

w∈N(v)∩N(u)

Dt(G \N [{v, w}], x).

Theorem 2.6. [16] For any graph G of order n ≥ 2, Dt(G ◦Km, x) = xn(1 + x)mn.

Theorem 2.7. For every natural number n,m, we have

i) Dt(Hn, x) = xn(x+ 1)n+1,

ii) Dt(Hn,m, x) = xn(1 + x)mn+1.

Proof. Let v be the center vertex of wheel in helm graph Hn and Hn,m. By Theo-
rems 2.5 and 2.6 we have

i) Dt(Hn, x) = Dt(Cn ◦K1, x) + xDt(Kn ◦K1, x) = (1 + x)(x(1 + x))n,

ii) Dt(Hn,m, x) = Dt(Cn ◦Km, x) + xDt(Kn ◦Km, x) = (1 + x)(x(1 + x)m)n.

So we have the result.

The lexicographic product is also known as graph substitution, a name that
bears witness to the fact that G[H ] can be obtained from G by substituting a copy
Hu of H for every vertex u of G and then joining all vertices of Hu with all vertices
of Hv if {u, v} ∈ E(G).

Theorem 2.8. Let Km, Kn be complete graphs of order m and n. The total domi-
nation polynomial of lexicographic product of Km and Kn is

Dt(Km[Kn], x) = Dt(Km, D(Kn, x)) +mDt(Kn, x).

Proof. Note that Km[Kn] ∼= Kmn, So the result is obtained.

The generalized friendship graph Fn,q is a collection of n cycles (all of order q),
meeting at a common vertex (see Figure 2.4). The generalized friendship graph may
also be referred to as a flower [19]. For q = 3 the graph Fn,q is denoted simply by
Fn and is friendship graph. The total domination polynomial of Fn and its roots
studied in [16]. Here, we compute the total domination number of Fn,4. To study
the total domination roots of Fn,4 we first obtain a formula for the total domination
polynomial of graph Gn depicted in Figure 2.2. We need the following theorem:

Theorem 2.9. [10]
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K2n

Fig. 2.2: Graphs G4 and Gn in proof of Theorem 2.9, respectively.

(i) For any vertex u in the graph G we have

Dt(G, x) = Dt(G \ u, x) + xDt(G/u, x) + x2
∑

v∈N(u)

Dt(G \N [{u, v}], x)

−(1 + x)pu(G),

where pu(G, x) is the polynomial counting the total dominating sets of G \ u
which do not contain any vertex of N(u) in G.

(ii) Let u, v ∈ V (G) be two non-adjacent vertices of G with N(v) ⊆ N(u). Then
Dt(G, x)

= Dt(G \ u, x) + xDt(G/u, x) + x2
∑

w∈N(u)∩N(v)Dt(G \N [{u,w}], x).

Theorem 2.10. For any n ∈ N, Dt(Gn, x) = (x(x + 1)(x+ 2))n.

Proof. Consider the graph Gn shown in Figure 2.2 and v be a vertex of degree two
of this graph. By Theorem 2.9(i) and the fact that pv(Gn, x) = Dt(Gn−1, x) and
Gn − v ∼= Gn/v, we have

Dt(Gn, x) = (x+ 1)Dt(Gn − v, x)− (x+ 1)Dt(Gn−1, x).

Now by Theorem 2.9(ii) for graph Gn − v and the vertex u of this graph (see figure
2.3):

Dt(Gn, x) = (x + 1)2Dt(Gn − v/u, x)− (x+ 1)Dt(Gn−1, x).

Again by Theorem 2.9(ii) for the vertex w of the graph Gn − v/u shown in figure



On the Roots of Total Domination Polynomial of Graphs, II 665

K2n

Gn − v

K2n−1

Gn − v/u

w
u

Fig. 2.3: Graphs in proof of Theorem 2..

2.3, we have the following equations.

Dt(Gn, x) = (x+ 1)2Dt(Gn − v/u, x)− (x+ 1)Dt(Gn−1, x)

= (x+ 1)3Dt(Gn−1, x)− (x+ 1)Dt(Gn−1, x)

= x(x + 1)(x+ 2)Dt(Gn−1, x)

= (x(x + 1)(x+ 2))n

So we have result.

v

Fig. 2.4: Friendship graphs F2,4, F3,4, F4,4 and Fn,4, respectively.

Theorem 2.11. For every natural number n, total domination polynomial of gener-
alize friendship graph Fn,4 is

Dt(Fn,4, x) = xn+1(x+ 2)n((x + 1)n + xn−1).

Proof. Let v be center vertex of Fn,4. By theorem 2.5 we have

Dt(Fn,4, x) = (Dt(P3, x))
n + xDt(Gn, x)

where Gn is graph in Figure 2.2 and so by Theorem 2.10 we have the result.
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We need the following lemma to obtain more results:

Lemma 2.12.[4] limn→∞ln(n)
(

ln(n)−1
ln(n)

)n

= 0.

The basic idea of the following result follows from the proof of Theorem 8 in [4].

Theorem 2.13. For natural number n ≥ 2,

i) The total domination polynomial of the generalized friendship graph, Dt(Fn,4, x),
has a real root in the interval (−1, 0)

ii) The total domination polynomial of the generalized friendship graph, Dt(Fn,4, x),
has a real root in the interval (−n,−ln(n)), for n sufficiently large.

Proof. i) Let f(x) = (x+ 1)n + xn−1. So f(0) = 1 and f(−1) = (−1)n−1 = −1.
By the intermediate value theorem, we have result.

ii) Suppose that

f2n(x) = xn+1((x + 1)n + xn−1).

Observe that

f2n(x) = x2n+1+(n+1)x2n+

(

n

n− 2

)

x2n−1+

(

n

n− 3

)

x2n−2+...+nxn+2+xn+1.

Consider

f2n(−n) = (−1)2n+1n2n+1
(

1− n+ 1

n
+

(

n
2

)

(n)2
− ...+

(−1)n

(n)n

)

.

So f2n(−n) < 0 for n sufficiently large, because the following inequality is
true for n sufficiently large,

n+ 1

n
−

(

n
2

)

(n)2
+ ...− (−1)n

(n)n
< 1.

Now consider

f2n(−ln(n)) = (−ln(n))n+1(1 − ln(n))n + (−ln(n))2n

= (ln(n))2n
(

1− ln(n)
( ln(n)− 1

ln(n)

)n)

.

From Lemma 2.12, we have ln(n)
(

ln(n)−1
ln(n)

)n

→ 0, as n → ∞ which implies

that f2n(−ln(n)) > 0. By the Intermediate Value Theorem, for sufficiently
large n, f2n(x) = Dt(Fn, x) has a real root in the interval (−n,−ln(n)).
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Fig. 2.5: Total domination roots of Fn,4, for 2 ≤ n ≤ 30.

Fig. 2.6: Total domination roots of K1,n[K2] and K1,n[K7], for 2 ≤ n ≤ 30, respec-
tively.

Figure 2.5 shows the total domination roots of Fn,4 for 2 ≤ n ≤ 30.

Theorem 2.14. Let G and H be two graphs of order m and n, respectively. The
total domination polynomial of join of these two graphs is

Dt(G ∨H) = ((1 + x)m − 1)((1 + x)n − 1) +Dt(G, x) +Dt(H,x).

Theorem 2.15. For every natural numbers m,n,

Dt(K1,n[Km], x) = (1 + x)mn((1 + x)m − 1) + ((1 + x)m −mx− 1)n −mx.

Proof. For two natural numbers m,n, K1,n[Km] ∼= km∨nKm. So by Theorem 2.14,
it is easy to see the equation is true.

Using Maple we think that for two natural numbers m,n, if m and n are even
or n is odd, then the total domination polynomial of K1,n[Km] has no real roots.



668 S. Alikhani and N. Jafari

However, until now all attempts to prove this failed. See the total domination roots
of K1,n[K2] and K1,n[K7] for 2 ≤ n ≤ 30 in Figure 2.6.
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