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Abstract. In this paper, a general fixed point theorem for two pairs of absorbing
mappings in weak partial metric space, using implicit relations, has been proved.
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1. Introduction

In 1994, Matthews [13] introduced the concept of partial metric space as a part
of the study of denotational semantics of dataflow networks and proved the Banach
contraction principle in such spaces. The notion of partial metric spaces plays an
important role in the constructing models in theory of computation.

Many authors studied the fixed points for mappings satisfying some contractive
conditions in [1], [3], [11] and in other papers. In [11], some fixed point theorems
for particular pairs of mappings are proved, generalizing some results from [1] and
[3].

In 1999, Heckmann [10] introduced the notion of weak partial metric spaces,
which is a generalization of partial metric spaces. Some results for mappings in
weak partial metric spaces have been recently obtained by[2] and [4].

The notion of absorbing mappings have been introduced and studied in [5] - [7]
as well as in other papers. Some fixed point theorems for two pairs of absorbing
mappings in metric spaces have been proved in [12], [14], [15].

Several classical fixed point theorems and common fixed point theorems have
been unified considering a general condition by an implicit relation in [16] - [18] and
in other papers. Recently, the method has been used in the studies of fixed points
in metric spaces, symmetric spaces, quasi - metric spaces, b - metric spaces, Hilbert
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spaces, ultra - metric spaces, convex metric spaces, compact metric spaces, in two
and three metric spaces, for single valued mappings, hybrid pairs of mappings and
set-valued mappings.

Some fixed point theorems for pairs of mappings satisfying implicit relations in
partial metric spaces have been proved in [8], [9], [19] - [21].

Some results for pointwise absorbing mappings satisfying implicit relations have
been obtained in [15].

The purpose of this paper is to prove a general fixed point theorem for two pairs
of pointwise absorbing mappings in weak partial metric spaces using an implicit
relation.

2. Preliminaries

Definition 2.1. ([13]) A partial metric on a nonempty set X is a function p :
X ×X → R+ such that for all x, y, z ∈ X :

(P1) : x = y if and only if p(x, x) = p(y, y) = p(x, y),

(P2) : p(x, x) ≤ p(x, y),

(P3) : p(x, y) = p(y, x),

(P4) : p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

The pair (X, p) is called a partial metric space.

If p(x, y) = 0, then x = y, but the converse does not always hold true.

Each partial metric p on X generates a T0 - topology τp on X which has as base
the family of open p - balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X :
p(x, y) ≤ p(x, x) + ε} for all x ∈ X and ε > 0.

If p is a partial metric on X , then

dw(x, y) = p(x, y)−min{p(x, x), p(y, y)}

is a ordinary metric on X .

A sequence {xn} in a partial metric space (X, p) converges with respect to τp to
a point x ∈ X , denoted xn → x, if and only if

p(x, x) = lim
n→∞

p(xn, x).

Remark 2.1. Let {xn} be a sequence in a partial metric (X, p) and x ∈ X. Then
limn→∞ dw (xn, x) = 0 if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).(2.1)
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Definition 2.2. ([13])

a) A sequence {xn} in a partial metric space (X, p) is called a Cauchy sequence if
limn,m→∞ p(xn, xm) exists and is finite.

b) A partial metric space (X, p) is said to be complete if every Cauchy sequence
{xn} in X converges with respect to τp to a point x ∈ X such that

p(x, x) = lim
n,m→∞

p(xn, xm).

Definition 2.3. ([10]) A weak partial metric on a nonempty set X is a function
p : X ×X → R+ such that for all x, y, z ∈ X :

(wP1) : x = y if and only if p(x, x) = p(y, y) = p(x, y),

(wP2) : p(x, y) = p(y, x),

(wP3) : p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

The pair (X, p) is called a weak partial metric space.

Obviously, every partial metric space is a weak partial metric space, but the
converse is not true.

For example, let X = [0,∞) and p (x, y) = x+y

2
, then (X, p) is a weak partial

metric space and is not a partial metric space.

Theorem 2.1. ([2]) Let (X, p) be a weak partial metric space. Then dw(x, y) :
X ×X → R+ is a metric on X.

Remark 2.2. In a weak partial metric space, the convergence of sequences, Cauchy
sequences and completeness are defined as in partial metric space.

Theorem 2.2. ([2]) Let (X, p) be a weak partial metric space.

a) {xn} is a Cauchy sequence in (X, p) if and only if {xn} is a Cauchy sequence
in metric space (X, dw).

b) (X, p) is complete if and only if (X, dw) is complete.

Lemma 2.1. Let (X, p) be a weak partial metric space and {xn} is a sequence in
X. If limn→∞ xn = x and p (x, x) = 0 then

lim
n→∞

p (xn, y) = p (x, y) , ∀y ∈ X.

Proof. By (wP3),

p (x, y) ≤ p (x, xn) + p (xn, y) ,

hence

p (x, y)− p (x, xn) ≤ p (xn, y) ≤ p (xn, x) + p (x, y) .

Letting n tend to infinity we obtain

lim
n→∞

p (xn, y) = p (x, y) .
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Remark 2.3. Remark 2.1 is still true for weak partial metric spaces.

Definition 2.4. ([6]) Let (X, d) be a metric space and f, g be self mappings on
X .

1) f is called g - absorbing if there exists R > 0 such that d (gx, gfx) ≤ Rd (fx, gx)
for all x ∈ X .

Similarly, g is f - absorbing.

2) f is called pointwise g - absorbing if for given x ∈ X there exists R > 0 such
that d (gx, gfx) ≤ Rd (fx, gx).

Similarly, g is pointwise f - absorbing.

Remark 2.4. 1) If (X, p) is a weak partial metric space we have a similar definition to
Definition 2.4 with p instead d.

2) If g is the identity mapping on X, then f is trivially absorbing.

3. Implicit relations

Definition 3.1. Let FW be the set of all lower semi - continuous functions F :
R

5
+ → R satisfying the following conditions:

(F1) : F is nonincreasing in variable t5,

(F2) : For all u, v ≥ 0, there exists h ∈ [0, 1) such that

(F2a) : F (u, v, v, u, u+ v) ≤ 0 and

(F2b) : F (u, v, u, v, u+ v) ≤ 0,

implies u ≤ hv.

(F3) : F (t, t, 0, 0, 2t) > 0, ∀t > 0.

Example 3.1. F (t1, ..., t5) = t1 − kmax
{

t2, t3, t4,
t5
2

}

, where k ∈ [0, 1) .

(F1) : Obviously.

(F2) : Let u, v ≥ 0 be and F (u, v, v, u, u + v) = max
{

u, v, u+v
2

}

≤ 0. If u > v then
u (1− k) ≤ 0, a contradiction. Hence u ≤ v which implies u ≤ hv, where 0 ≤ h = k < 1.

Similarly, F (u, v, u, v, u+ v) ≤ 0 implies u ≤ hv.

(F3) : F (t, t, 0, 0, 2t) = t (1− k) > 0, ∀t > 0.

The proofs for the following examples are similar to the proof of Example 3.1.

Example 3.2. F (t1, ..., t5) = t1 − kmax{t2, t3, t4, t5}, where k ∈
[

0, 1
2

)

.

Example 3.3. F (t1, ..., t5) = t1 − kmax
{

t2+t3+t4
3

, t5
2

}

, where k ∈ [0, 1) .

Example 3.4. F (t1, ..., t5) = t21 − kmax
{

t2,
t3+t4

2
, t5

2

}

, where k ∈ [0, 1) .
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Example 3.5. F (t1, ..., t5) = t21 − amax
{

t22, t
2
3, t

2
4

}

− bt25, where a, b ≥ 0 and a+ 4b < 1.

Example 3.6. F (t1, ..., t5) = t21−at2t3− bt3t4− ct25, where a, b, c ≥ 0 and a+ b+4c < 1.

Example 3.7. F (t1, ..., t5) = t21+
t1

1+t5
−
(

at22 + bt23 + ct24
)

, where a, b, c ≥ 0 and a+b+c <

1.

Example 3.8. F (t1, ..., t5) = t1 − at2 − bt3 − cmax {2t4, t5}, where a, b, c, d ≥ 0 and
a+ b+ 2c < 1.

Example 3.9. F (t1, ..., t5) = t1 −
at3t4
1+t2

− bt2 − c (t3 + t4)− dt5, where a, b, c, d ≥ 0 and
a+ b+ 2c+ 2d < 1.

Example 3.10. F (t1, ..., t5) = t21 − t1(at2 + bt3 + ct4) − dt25, where a, b, c, d ≥ 0 and
a+ b+ c+ 4d < 1.

4. Main results

Theorem 4.1. Let (X, p) be a weak partial metric space and A,B, S and T be self
mappings on X such that

1) T (X) ⊂ A (X) and S (X) ⊂ B (X),

2) for all x, y ∈ X

F

(

p (Sx, T y) , p (Ax,By) , p (Sx,Ax) ,
p (Ty,By) , p (Sx,By) + p (Ax, Ty)

)

≤ 0.(4.1)

If one of A (X) , B (X) , S (X) , T (X) is a closed subset of X, then

3) C (A,S) 6= Ø,

4) C (B, T ) 6= Ø.

Moreover, if S is pointwise A - absorbing and T is pointwise B - absorbing, then
A,B, S and T have a unique common fixed point z with p (z, z) = 0.

Proof. Let x0 be an arbitrary point of X . Since S (X) ⊂ B (X), there exists x1 ∈ X

such that y0 = Sx0 = Bx1. Since T (X) ⊂ A (X), there exists x2 ∈ X such that
y1 = Tx1 = Ax2. Continuing this process we construct two sequences {xn} and
{yn} in X by

y2n = Sx2n = Bx2n+1, y2n+1 = Tx2n+1 = Ax2n+2, n ∈ N.(4.2)

First we prove that {yn} is a Cauchy sequence in (X, p).

By (4.1) for x = x2n and y = x2n+1 we have

F

(

p (Sx2n, T x2n+1) , p (Ax2n, Bx2n+1) , p (Sx2n, Ax2n) ,
p (Tx2n+1, Bx2n+1) , p (Sx2n, Bx2n+1) + p (Ax2n, T x2n+1)

)

≤ 0.
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By (4.2) we obtain

F

(

p (y2n, y2n+1) , p (y2n−1, y2n) , p (y2n−1, y2n) ,
p (y2n, y2n+1) , p (y2n, y2n) + p (y2n−1, y2n+1)

)

≤ 0.(4.3)

By (wP3) we have

p (y2n−1, y2n+1) ≤ p (y2n−1, y2n) + p (y2n, y2n+1)− p (y2n, y2n) .

By (4.3) and (F1) we obtain

F

(

p (y2n, y2n+1) , p (y2n−1, y2n) , p (y2n−1, y2n) ,
p (y2n, y2n+1) , p (y2n−1, y2n) + p (y2n, y2n+1)

)

≤ 0.

By (F2a) we obtain

p (y2n+1, y2n) ≤ hp (y2n, y2n−1) .

By (4.1) for x = x2n and y = x2n−1 we obtain

F

(

p (Sx2n, T x2n−1) , p (Ax2n, Bx2n−1) , p (Sx2n, Ax2n) ,
p (Tx2n−1, Bx2n−1) , p (Sx2n, Bx2n−1) + p (Ax2n, T x2n−1)

)

≤ 0.

By (4.1) we obtain

F

(

p (y2n, y2n−1) , p (y2n−1, y2n−2) , p (y2n, y2n−1) ,
p (y2n−1, y2n−2) , p (y2n, y2n−2) + p (y2n−1, y2n−1)

)

≤ 0.(4.4)

By (wP3),

p (y2n−2, y2n) ≤ p (y2n−2, y2n−1) + p (y2n−1, y2n)− p (y2n−1, y2n−1) .

By (4.4) and (F1) we obtain

F

(

p (y2n, y2n−1) , p (y2n−1, y2n−2) , p (y2n, y2n−1) ,
p (y2n−1, y2n−2) , p (y2n−2, y2n−1) + p (y2n−1, y2n)

)

≤ 0.

By (F2b),

p (y2n, y2n−1) ≤ hp (y2n−1, y2n−2) .

Hence,

p (yn, yn+1) ≤ hp (yn−1, yn−2) ≤ ... ≤ hnp (y0, y1) .

For n,m ∈ N, m > n, repeating (wP3) we obtain

p (yn, ym) ≤ p (yn, yn+1) + p (yn+1, yn+2) + ...+ p (ym−1, ym)

≤ hn
(

1 + h+ ...+ hm−1
)

p (y0, y1)

≤
hn

1− h
p (y0, y1) .
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Then,

p (yn, ym) ≤
hn

1− h
p (y0, y1) → 0 as n,m → ∞.(4.5)

This shows that {yn} is a Cauchy sequence in (X, p). By Theorem 2.2 (a), {yn}
is a Cauchy sequence in (X, dw). Since (X, p) is complete, by Theorem 2.2 (b),
(X, dw) is a complete metric space. Since {yn} is Cauchy in (X, dw), it follows that
{yn} converges to a point z in (X, dw). Hence,

lim
n→∞

dw (yn, z) = 0.

By Remark 2.3, (2.1) and (4.5) we obtain

p (z, z) = lim
n→∞

p (yn, z) = lim
n,m→∞

p (yn, ym) = 0(4.6)

Also, by Theorem 2.2, Sx2n → z, Tx2n+1 → z, Bx2n+1 → z, Ax2n+2 → z.
Suppose that T (X) is a closed subset in (X, p). Then

lim
n→∞

Tx2n+1 = z ∈ T (X) .

Since T (X) ⊂ A (X), there exists u ∈ X such that z = Au.

By (4.1) for x = u and y = x2n+1 we obtain

F

(

p (Su, Tx2n+1) , p (Au,Bx2n+1) , p (Su,Au) ,
p (Tx2n+1, Bx2n+1) , p (Su,Bx2n+1) + p (Au, Tx2n+1)

)

≤ 0,

F

(

p (Su, y2n+1) , p (Au, y2n−1) , p (Su,Au) ,
p (y2n+1, y2n) , p (Su, y2n) + p (Au, y2n+1)

)

≤ 0.

Letting n tend to infinity, by Lemma 2.1, and (4.6) we have

F (p (Su, z) , 0, p (Su, z) , 0, p (Su, z)) ≤ 0,

which implies by (F2b) that p (Su, z) = 0, i.e. z = Su. Hence, z = Au = Su and
C (A,S) 6= Ø.

Since z ∈ S (X) ⊂ B (X), then, there exists v ∈ X such that z = Bv. We prove
that Bv = Tv.

By (4.1), for x = u and y = v we obtain

F

(

p (Su, T v) , p (Au,Bv) , p (Su,Au) ,
p (Tv,Bv) , p (Su,Bv) + p (Au, Tv)

)

≤ 0,

F (p (z, T v) , 0, 0, p (z, T v) , 0 + p (z, T v)) ≤ 0.



290 V. Popa and A.-M. Patriciu

By (F2a) we have p (z, T v) = 0, which implies z = Tv = Bv. Hence, z = Au =
Su = Bv = Tv with p (z, z) = 0.

Moreover, if S is pointwise A - absorbing, there exists R1 > 0 such that

p (Au,ASu) ≤ R1p (Au, Su) = R1p (z, z) = 0.

Hence, z = Au = ASu = Az and z is a fixed point of A.

By (4.1) we have

F

(

p (Sz, T v) , p (Az,Bv) , p (Sz,Az) ,
p (Tv,Bv) , p (Sz,Bv) + p (Az, T v)

)

≤ 0,

F (p (Sz, z) , 0, p (Sz, z) , 0, p (Sz, z) + p (Sz, z)) ≤ 0,

which implies by (F2b) that p (z, Sz) = 0. Hence, z = Sz and z is a common fixed
point of A and S.

If T is pointwise B - absorbing, then there exists R2 > 0 such that

p (Bv,BTv) ≤ R2p (Bv, T v) = R2p (z, z) = 0.

Hence, z = Bv = BTv = Bz and z is a fixed point of B.

By (4.1) we have

F

(

p (Su, T z) , p (Au,Bz) , p (Su,Au) ,
p (Tz,Bz) , p (Su,Bz) + p (Au, T z)

)

≤ 0,

F (p (z, T z) , 0, 0, p (z, T z) , 0 + p (z, T z)) ≤ 0,

which implies by (F2a) that p (z, T z) = 0. Hence, z = Tz and z is a common fixed
point of B and T .

Therefore, z is a common fixed point of S, T,A and B with p (z, z) = 0.

Suppose that A,B, S and T have two common fixed points zi, i = 1, 2 with
p (zi, zi) = 0.

By (4.1) we obtain

F

(

p (Sz1, T z2) , p (Az1, Bz2) , p (Sz1, Az1) ,
p (Tz2, Bz2) , p (Sz1, Bz2) + p (Az1, T z2)

)

≤ 0,

F (p (z1, z2) , p (z1, z2) , 0, 0, 2p (z1, z2)) ≤ 0,

a contradiction of (F3) if p (z1, z2) > 0. Hence, p (z1, z2) = 0 which implies z1 =
z2 .
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Example 4.1. Let X = [0, 1] be and p (x, y) = x+y

2
, which implies dw (x, y) = 1

2
|x− y|.

Hence, (X, p) is a complete weak partial metric space. Let the mappings Sx = 0, Ax =
x

x+2
, Bx = x, Tx = x

3
. Since A (X) =

[

0, 1
3

]

, B (X) = [0, 1] , S (X) = {0} , T (X) =
[

0, 1
3

]

,
then T (X) ⊂ A (X), S (X) ⊂ B (X) and A (X) , B (X) and T (X) are closed subsets of
X.

p (Ax,ASx) = p

(

x

x+ 2
, 0

)

=
x

2 (x+ 2)
,

p (Ax,Sx) = p

(

x

x+ 2
, 0

)

=
x

2 (x+ 2)
.

Hence, p (Ax,ASx) ≤ R1p (Sx,Ax) with R1 ≥ 1 and S is pointwise A - absorbing.

Similarly,

p (Bx,BTx) = p
(

x,
x

3

)

=
x
3
+ x

2
=

2x

3
, p (Bx, Tx) = p

(

x,
x

3

)

=
2x

3
.

Hence, p (Bx,BTx) ≤ R2p (Bx,Tx) with R2 ≥ 1 and T is pointwise B - absorbing.

On the other hand,

p (Sx, Ty) =
Sx+ Ty

2
=

0 + y

3

2
=

y

6
, p (Ty,By) =

y

3
+ y

2
=

2y

3
.

Hence,

p (Sx, Ty) ≤ kp (Ty,By) ,

where k ∈
[

1
4
, 1
]

. Therefore,

p (Sx, Ty) ≤ kmax {p (Ax,By) , p (Sx,Ax) , p (Ty,By) , p (Sx,By) + p (Ax,Ty)}

with k ∈
[

1
4
, 1
]

.

By Theorem 4.1 and Example 3.1, A,B, S and T have a unique common fixed point
z = 0 and p (z, z) = 0.

If A = B = Id, by Theorem 4.1 and Remark 2.4 (2), we obtain

Theorem 4.2. Let (X, p) be a weak partial metric space and S and T be self
mappings on X such that for all x, y ∈ X

F

(

p (Sx, T y) , p (x, y) , p (x, Sx) ,
p (y, T y) , p (x,By) + p (Ty, x)

)

≤ 0.(4.7)

for some F ∈ F .

If S (X) or T (X) is a closed subset of X, then S and T have a unique common
fixed point.
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8. S. Gülyaz and E. Karapinar: A coupled fixed point result in partially ordered partial

metric spaces through implicit function. Hacet. J. Math. Stat. 42 (4) (2013), 347–357.
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