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Abstract. In this paper, we have explained how to define the basic concepts of differ-
ential geometry on Dual space. To support this, dual tangent vectors that have p as
dual point of application have been defined. Then, the dual analytic functions defined
by Dimentberg have been examined in detail, and by using the derivative of the these
functions, dual directional derivatives and dual tangent maps have been introduced.
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1. Introduction and Basic Concepts

Sir Isaac Newton invented calculus in about 1665. The solution to the problem
which he was interested in was too difficult for mathematics used in that time. For
this reason, he found a new approach to mathematics. Also, he tried to compute
the velocity of n object at any instant. Nowadays, many scientists tend to calculate
the rate at which satellite’s position changes according to time. A comparison of the
change in one quantity to the simultaneous change in a second quantity is known as
a rate of change. If both changes emerge in the course of an infinitely short period
of time, the rate is called instantaneous. Then, the derivatives are important to the
solution of the problems in calculus. Calculus has application fields in physics and
engineering [1].

Dual numbers were defined by W. K. Clifford [3] (1845-1879) as a tool of his
geometrical studies. Their first applications were given by Kotelnikov [9] and Study
[13]. Dual variable functions were introduced by Dimentberg [4]. He investigated the
analytic conditions of these functions, and by means of conditions, he described the
derivative concept of these functions. In 1999, by using these dual analytic functions,
Brodsky et al. [2] showed that the derivatives of products of two dual analytic
functions with respect to dual variables are equal to moment-product derivative.
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In recent years, dual numbers have been widely used in kinematics, dynamics,
mechanism design, and field and group theories ([5], [6], [7], [8] and [12]). For
example in kinematics, constraint manifolds of spatial mechanisms are explained
using dual numbers system [10]. The aim of this study is to calculate the derivative
of dual analytic functions with respect to dual vectors, by expanding the definition
of the derivative in dual analytic function. After then, by using this derivative
concept and dual analytic functions, the authors showed how to define vector fields
and tangent maps on Dual space. These concepts will give us a new perspective in
Dual space.

This paper is organized in the following way: In section II, the dual analytic
functions defined by Dimentberg are introduced, and by using these functions, the
partial derivatives of the functions f: D™ — D are calculated.

In section I1I, dual tangent vectors are introduced, and the derivative of f with
respect to dual tangent vectors is computed. For 1 < i < n, it is shown that partial
derivatives calculated in the second part is the derivative of f with respect to vectors
ei, where e; = (d;1, ..., 9in). Here, §;; is the Kronecker delta (0 if ¢ # j, 1 if i = j).

In section IV, dual vector fields are introduced, and in the last section, the dual
tangent map that sends the dual tangent vectors at dual point p to the dual tangent
vectors at dual point f () is defined.

Now, we recall a brief summary of the theory of dual numbers and the funda-
mental concepts of Differential Geometry.

Let the set R x R be shown as D. On the set D = {Z = (x,2*) | z,2* € R}, two
operators and equality are defined as follows.

&l

© D

8l < <
|

= (z+y,2"+y"),
(zy, x"y + zy™),

* *

= Y<—zr=Y,Tr =Y.

gl

The set D is called the dual numbers system and (x,2*) € D is called a dual
number. The dual numbers (1,0) = 1 and (0,1) = ¢ are called the unit element
of multiplication operation in D, and dual unit which satisfies the condition that
£2 = 0, respectively. Also, the dual number T = (x, z*) can be written as T = x+cz*,
and the set of all dual numbers is shown by

D:{f=x+£x*|x,x*€R, 5220}.
The set of
D? = {0 = (01,02,73) | T €D, 1<i <3}

gives all triples of dual numbers. The element of D3 is called as dual vectors and a
dual vector can be written in the following form

T=T4+cT",
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where ¥ and 7" are the vectors of R%. The addition and multiplication operations
on D? are as below:

vH+w = VA+W+e(TV+W),
Ao = AT +e(A\T*+ 7)),

where 7= 7 + e, W =W +ew* € D3 and X\ = A+ e)\* € D. The set D? is a
module over the ring D, and is called D-module or dual space.

The set of dual vectors on D™ is represented by
D" ={v=(v1,..,0,) |T; € D, 1 <i<n}.
These vectors can be given in the form
1= +eT",

where 7 and T™* are the vectors of R™. On this set, the addition and multiplication
are given as follows
T+ W T +W+e (VT + W),
Ao = AT +e(AT*+\7).

The set D™ is a module over the ring D. On the other hand, since @ and @™ are
the vectors of R™, we can write the equalities below

T = v1€] + ... + Up€y,
and

T =vie; + ... +vien,
where e; = (0;1, ..., 0in) for 1 < i < n. Thus, we have

T = T4ev*
= wvier + ... +vpe, +e(vier + ...+ vien)
= (nn+evy)er+ ...+ (vp +ev))en
vier + ... +v,e,.
For 1 < i < n, let x; : R — R be the function that sends each point

p = (p1,.--,Pn) to its ith coordinate p;. Then x1, ..., x, are the natural coordinate
functions of R™. On the set

LR ={p} xR" ={(p,7) | T €R"},

addition and scalar product operators are defined as follows, respectively.
+: T,R" x T,R" — T,R", for (p, V), (p, W) defined as

(p, 7))+ (p, W) = (p, T + ).
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R x T,R™ — T,R", for A € R and (p, V') defined as
Ap,T) = (p,\7).

In this case, the set (T,R",+, (R, +,),-) is a vector space otherwise known as a
tangent space. The element 7, = (p, ¥') is called a tangent vector to R™ at p.

A real-valued function of f on R™ is differentiable proved all mixed partial
derivatives of f exist and are continuous.

For 1 < j < n, if the functions f; : R” — R are differentiable, then the function
f:R™ — R™ is differentiable.

Let f be a differentiable real-valued function on R™. Gradient of the function f
is defined as
of of
Vfi=(z7,...,—— |.

Definition 1.1. Let f be a differentiable real-valued function on R" and ¥, be
a tangent vector to R™. Then, the number

Tylf) = 57 o+ 17) lizo

is called the derivative of f with respect to 7.

A vector field is a function that assigns to each point p of R” a tangent vector
T, to R™ at p.

Definition 1.2. Let f: R"™ — R™ be a differentiable function. For every p € R",
the function fip, : TpR"™ — Tp,)R™ is defined as follows:

f*p (7;0) = (7;0 [fl] ) ---v?p [fm]) |f(p) :

This function is called tangent map of f.

For the vectors ¥ = (vy,...,v,) and W = (w1, ..., w,), the inner product on R™
is given by

v W= V1W1 + ... + VpWhp .

For more details, we refer the readers to [11].
2. Derivative of Dual Analytic Functions

Let T = 2 + ex* be a dual number. A dual variable function f : D — D is
defined as follows:

f(f) = f(‘rvx*) +ef? (CL‘,CL'*),
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where f and f¢ are real functions with two real variables z and x*. Dimentberg
comprehensively investigated the properties of dual functions. He showed that the
analytic conditions of dual functions are

of o of

or* dx* Oz’

From the above first condition, the function f is a function which has only variable
x, i.e.,

(2.1) 0 and

fla, ") = f (z)
and the second implies that the function f° is as below expression

*6 ra

1oty =2t Sl ),

where f(x) is a certain function of z. General notation of dual analytic function is
given by following equality

(22) 7@ =T+ er) = o) ve (oL + @)

For z* = 0, the function must be written in the form

J@ =TF(@+ex") = f(2) +cf (2).
The derivative of the dual analytic function f is defined by

df q d q =

(2.3) é = %—l—a@ <x*£+f(a:))
_ A (e A
T o ( @*@)

It is seen that the derivative of the function f with respect to dual variable 7 is
equal to the derivative with respect to real variable z [4]. Now, we shall study dual
analytic functions f: D™ — D, i.e.,

T(E) = f(x—"_ax*) = f('r:l? "'7'rn7'r>{7 "'7'r:7.) +Ef0 ('rl’ ...,In,IT, "'7'r:7.)’

where = (z1,...,z,) and 2* = (7, ...,x%). Using the above equalities (2.1), the

ey

analytic conditions of this function can be given

of afe  of
or* 0 and dr*  Ox;

3 3

(1<i<n).

In that case, general expression of the dual analytic functions is defined as follows:

_ n 9 -~
F@) = f(x1, ) +¢ <Zx; &f + f (a1, :cn)> :
i=1 ¢
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If the equality (2.2) is used, then the partial derivatives of these dual analytic
functions are given by

af _ of L *Fof
@_@+E<inaxiaxj+a—% ,

i=1

where 1 < j < n. Similarly, the partial derivatives of the function f according to
dual variables T; are reduced to the partial derivatives according to real variables
x;. For the general dual functions f : D™ — D™, if the functions

fr:D"—= D, (1<k<m)

are dual analytic functions, then the dual function f is a dual analytic function,
and the set of the dual analytic functions is shown by

C(D™",D™)={f|f:D"— D™ is a dual analytic function} .

For the dual-valued analytic functions on D", the following equalities can be defined

(f+9)@ = F@+3@)
(2.4 - f<x>+g<x>+e<_2x;-* (§i+§ji>+f<x>+a<x>>,

()@ = M@
(2.5) = A (x)+e ()\ <Z x; gﬂi) + N f (@) + Af(:v))

i=1

- * 0 fg ~ rs
(26) - <x>g<w>+s(2xi( ;x_>)+f<x>g<x>+g<x>f<x>),
i=1 ‘
where T = z +ex* = (21, ..., 2pn) + € (25, ...,2%). Tt is clear that the above equations
are the dual analytic functions.

Let = p + ep* be a dual point of D", and T = ¥ + 7" be a dual vector to
D™. The equation of dual straight line is given by

af) = p+tT+e(t*T +p" +1T7)
(2.7) = a(t)+e(td (t)+a(?).

It is seen that the equality (2.7) is a dual analytic function.
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Definition 2.1. Let z1,...,2,,},...,x} be coordinate functions of R?". For 1 <
i < n, these functions from R?” to R are given as follows:

zi (p) = pi, i (P) =i,

where p = (p1,..., Pn, P}, .-, pl) is a point of R?™. In this case, dual coordinate
functions x; : D™ — D are defined by

Ti(p) = i (p)+exi(p)
= pitep;
ﬁiv

where D = (p1 +ep}, ..., pn +€p) = (1, -, pn) +€(PF, ..., p5) = p + ep* is a point
of D™,

The above definition shows how to implement the dual point in the dual analytic
functions. For example, for the dual-valued analytic functions on D™, the following
equalities can be written

7o) = f<m+s<2pr%@+f@>
F6)+ <1 5),

and

n 2 rs
Lo - L+ (Z laagxﬁg—;)@
n 2 rs
- L ff>+s<zplaaf (3+%(@>

- §—f<@+aafj<m.

Definition 2.2. Let fandg be dual-valued analytic functions on D. Composition
of the dual analytic functions f and g is determined by
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I (f 0 9) () = h(2) and § () (0 9) () + (F o 9) (&) = o (x) are taken,
(Fo) @) =h (@) +e ("N (2) + 7 (2))
can be written. This formula demonstrates that the dual function fog is a dual an-
alytic function. The explanation on how to calculate the derivative of this function

is given in the following theorem.

Theorem 2.1. Let f and g be dual-valued analytic functions on D. The derivative
of the dual analytic composite function is given by

L Fon@=-LoY @)

Proof. Since f and g are the dual analytic functions,
F@=f@+e(af @)+ @)
and

g(T) =g(z) +e(@"g (v) +9(x))

can be written. We know that the derivative of the dual analytic functions are
attained by the following equalities:

=@ +e (e @+ T @)

Sik

and

=g (x) +e(@g" (z) +9 (2)).

&l &

Moreover, since the dual function fog is the dual analytic function, by using defined
derivative of the dual analytic functions, the below equality is obtained

LFon@ = 2(o)w
el (2 (7o) @ +5 () 00) @)+ (Fou) @)

= (g (@) +e @'y (@) +7 (@)
(1 @) +e @y @) +3@)) " (9 @) + F (9 @)
dg
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3. Directional Derivatives on Dual Space

Let p = p + ep* be a dual point of D" and ¥ = ¥ + e¥* be dual vector to
D™ A dual tangent vector that has p as point of application is given as following
equality

Tp=Tp+eT5,
where p is the point of R??. The set of all the dual tangent vectors is shown by
TpD" = {v5 | U5 = Vs + T, pER™; Uy, Th e T;R"}.

Since the tangent vectors of T;R™ are written in the form 5 = (p, ¥'), the dual
tangent vectors can be determined by

Tp= (37 =G 7))+ 7).
On the set T5D", we can define the following operations:
+ : I5D™ x T5D™ — T5D™, for (p,v), (P, w) defined as
(@,0)+ ®.w) = @,v+w) =P,V +W)+e@ vV +W).
-1 D x TD™ — TD™, for A, (p,v) defined as
X-(B.0) = (B, A0) = (5, AT) + e (p, NV + AT™).

Taken into account the above operations, the set {ID",+,(D,®,®),-} is a D-
module and is called a dual tangent space. Besides, since ¥ and ¥* are the vectors
of R™, Uz = (P,¥) can be written in the form

7o) = B.7)+e(@ T
= (p,vier + ... +vpen) +e(P,vier + ... +vhen)
= vi(p,e1) + ... +vn (Den) +€ (0] (re1) + .. + vy, (P en))
= (v1+ev))ep+ ... + (vn +€vp) enp

(3.1) = Tieip+ ... + Tpenp,
where e;p = e;5 + €05 = €55, for 1 <4 < n. On the other hand, let us assume that
(3.2) inei;ﬁ = 0Op,

i=1

where \; = \; + eAf is a dual number, for 1 < i < n. Expanding the equality (3.2),
we obtain the following equalities:

)\161;‘54- e+ )\nen;‘g—i- € ()\Telﬁ—i— . + )\Zenﬁ) = 0;‘5-}- 80;‘5
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and
(P, Aier + ...+ Anen) +e (D, Aer + ...+ Alen) = (9,0) + ¢ (p,0).
If the equality property of dual numbers is used, the second formula implies that
Aer+ ...+ e, =0
and
Ater + ...+ Ae, =0.
Since the set {eq, ..., e, } is linear independent, we have
AM=..=X =0

and

If we consider the equations (3.1) and (3.2), it is seen that
T;ED” = Sp {615, ceey enﬁ} .

Consequently, each element of T5D" can be written as a linear combination of
element of the set {eip, ..., enp}, and this set is known as a standard base of T5D".

Definition 3.1. Let f be a dual-valued analytic function on D" and 75 be a dual
tangent vector to D™. The dual number

(3.3) - F(@+) =

is called a derivative of f with respect to vy and is denoted by
_ d—, -
v [f] = Ef (P+10) | -

For example, we calculate vy [ﬂ for the dual analytic function f = 22 + zow3 +
e (2z17% + 2333 + 570) With p = (1,0,—-1) + e(=1,2,1) and ¥ = ¥ + 0" =
(1,5,3) +e(—1,0 —1). Then
p+itv=(1+1t>5t—-1+3t)+e(—t+t*—1,5t"+2,—t+3t"+1)
is computed. Because of

F_ .2
f=a] +zows + e (2r12] + xhx3 + xize),

we have

~

(P+10) =16t> —3t+1+¢e((32t —3)t* — 7> + Tt — 4).



New Approaches on Dual Space 447
Now, the derivative of the function f according to 7 is calculated as below:
d— -
= (P+10) =320 —3+¢2 (32" — 14t 47).

Then, we obtain Uy [f] = =3+ 7e at £ =t + et* = 0 + <0.

This definition appears to be the same as the directional derivatives defined in
FEuclidean space. However, both definition are different. The following theorem
shows how to calculate 73 [ﬂ , by using the partial derivatives of the dual analytic

function f at point p on dual space D™.

Theorem 3.1. Let f = f + ef° be a dual-valued analytic function on D™ and
Up = 75—1—57% be a dual tangent vector to D™. Then, the dual directional derivatives
are

Up [7] - (vf)(ﬁ) T te ((Vfo)(ﬁ) LT+ (Vf>(f7) ) 7*) ,

where

i = (e ) - )

and

) = (S e )

P OF S 0 oF

Proof. As it is has already been known, the directional derivatives are defined by

_ d—, -

T [f] = Ef (P+10) | -
Since Ty, ..., T, are the dual coordinate functions of D™, we can write

P+ = (P, +101,.... P, + 10n)
= (T (p+®),...7 (P+ 1)),
where the expressions T; (ﬁ + ﬁ) can be written in the form
T (P+0) = pi + tv; + & (t"v; + p} + tv))

for 1 <4 < n. Since these functions are the dual analytic functions, the derivative
of these functions is as in the following equality

dz; (p + tv) d d . . .
— 7 - E(Pi-ﬁ-tw)—i—sa((t v +p; + 1))

(3.4) = v; +ev).
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Due to
f@+@) =7(T(P+1),...T. (D +10)),
the derivative of dual analytic composite functions is
d—, of dz, of dz,,
—_ t = — |57 —— |7 — |5 = ¥ -
dtf (P+ U) T |p+t'u di [ + oz, |p+t'u pr [

In this case, for ¢ = 0, we find

| dxl
Podr

d—, - dz,
(3.5) il (P+ 1) J_o= li—o +-- + |p = li=o -
Since 7 is the dual-valued analytic function on D", the partial derivatives of this
function are

OF _0f (N~ 0 af ,
* < <7< .
8$J 8$J <Z i 8$18$J + 8Ij (1 =J= n)

For p € D", we can express

of B -
oz, P = (NH <Z g axj axj>
- ms(szaaf 7+ g‘—f@)
(3.6) - §—f<@+aafj<m.

By substituting (3.6) and

3.4) into (3.5), we have

%7(%@5) | 0= (]5')v1+...+§—f(~)un
afe 0 9
(3.7) +a( @on+ -+ f - (P va + i(@vf+...+%(@vi).

Thus, the dual directional derivatives are obtained from (3.7) as
U [f] = (V)@ T +e ((Vfo)(m T+ (Vi) 7*> :
O
Using this theorem, we recalculate v [ﬂ for the example above. Due to

f=f+efo= :vf + xox3 + € (2r12] + 2523 + T520)
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we get
f =2 + 2ox3 and f° = 2z12} + vhas + vhws.
At the point p, since
21 (p) =1, 22(p) =0, z3(p) = -1, 21 () = -1, 23 (p) = 2, z3(P) = 1,
the following equalities are obtained
(Vf)(m-ﬁz— (Vfe )(157 =9, and (Vf)(m-ﬁ*:—z
By the theorem
V5 [f]=-34+e(9-2)=-3+T7¢

as before.

Throughout this paper, we will use the following notations:
(Vf)(m T = 7ﬂf]a (Vfo)(m T = 75[f0]7 (Vf)(m T = 7%[f]-
In this case, dual directional derivatives are shown by
5 [f] = Tslf1+e (T £+ T5If]) -
Thus, the following theorem can be given.

Theorem 3.2. Let f = f+cf° and g = g+eg° be dual-valued analytic functions
on D" and vy = U5+ 57% be dual tangent vector to D™. Then

(1) % [J+9] =7 [J] + 75 (4]
(2) 75 (9] = o5 [/]5 () + ] () V5 [3].
Proof. (1) From the above theorem, we know that

o [f] = Vsl +e (T + T5(S) -

In that case, we have

U [f+7] = Tslf+9l+e(Tplfo+ 91+ V51 +9))
= T5lfl+e (Tl + V5 + Tslgl + e (Vple®l + Txlg))
= T [f] +plg].

(2) From (2.6), the function
D@ = 7@ 7@
f
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is a dual analytic function. If this dual analytic function is shown as below
)@ - T@3@
= fo+e(f9°+9f%),

the following equality is obtained

v [ /7] plfgl+e(Tplfe’ +9f1+V51f9])
= Tsflg®@) + f (D) 75l
+( 5[f19° @)+ f () T5le°] + 5[f°]g(i)’))
+f°(15')7 l9] +9(®) T[]+ () T59]
= T5lflg®) +e (P59’ @)+ V59 (D) + T51f19 (D))
+1 () Tilgl+ ¢ (f°@) Urlgl + f () T5le) + F (D) T5lg])
= (Uplfl+e(? [f°]+7*[ 1)) (g () +e9° (D))
+(f @) +ef° @) (Tplgl +e (Vsle’) + 7519]))
= 7 [flad) + (p)ﬁp[‘]

The equalities (1) and (2) show that the dual directional derivatives satisfy linear
and Leibniz rules. O

Definition 3.2. Let f = f + £f° be dual-valued analytic function on D" and
Uy = Vp+ 67% be dual tangent vector to D™. The expression

vy :C(D",D) = D
% (7) =T [7] = 5l + < (B30 + P311)
can be defined as an operator.
In section II, we showed that each element of TFD™ can be written as a linear

combination of element of the set {eip,...,enp}. In this case, for 1 < ¢ < n, the
below equality

€ip E} = €ip [f] + gelp [fo]
(3.8) = 6—f () +e Z + o (137)
- ;I 8:6]8961 8w1>
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can be written. For every p € D", since the above equality is correct, we get the
following equality:

_af [ of _of
- ox; +66xi - 651"

(3.9) ei [f] = eilf] +eei[f]

The equality (3.9) is shown that the partial derivatives of the dual analytic function
f according to dual variables T; are equal to the derivative of f with respect to
vectors e;.

Definition 3.3. Let 7_: f +¢ef° be dual-valued analytic function on D". Differ-
ential of f is shown as df and is defined as the following equality

df (5) =75 [f] = T5f] +e (T 1+ T51S]) -

If the above definition is considered, since the dual identity function is defined
as

I(@)=T=v+ex* =z +e(@z*+0(2)),
1 (%) is the dual analytic function and, for 1 <i < n,

dz; (Uﬁ) = Uy [Tz] = 7;5 [CCl] +e€ (75 [:cf] + 7% [:Cz])

= v +ev
is calculated. In this case, it is seen that
dz; (vp) = ;.

On the other hand, assuming that 7, ...,x) are not dependent on z1,...,x,, the
following equality can be written

Az, = du; +eda

dx?
dx; (1 L
X ( +€dazi)

In this case, dZ; (T) can be rewritten as follows
= v; +ev;.

Thus, dZ; is the ith coordinate functions of the dual vector v + ev* while T; is the
ith coordinate functions of the dual point p = p + ep*.

Let us consider that g;; = e; - ej, where 1 <4, j < n. In this case, the dual inner
product on D™ is shown by

G = gijdfidfj.
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For the dual vectors o = 7 + 0™, W = W +ew” € D?, the dual inner product is

G(@w) = gi;dz; (v)dz; (V)
dz (5) dz (E) + dxo (_) dZo (_) + dx3 (_) dTs (E)
= (dvy (V) +edzy (T)) (dzy (W) + edxy (WF))
+ (dzo (V) + edxo ( *)) (dwo (W) + edzs (W"))
= 7.w+g(v.w*+7* w).

This inner product shows how to define inner product studied on D? in many
articles.

4. Vector Fields on Dual Space

A dual vector field is a dual function that assigns to each dual point p = p+ep* €
D" a dual tangent vector X5 = 7(} + 6)4()5 to D", i.e., for every p = p + ep* € D™,
the dual vector field is defined as below expression

X : D"—=TD"
X(p) = Xp=Xp+eXs,

where X = X +eX*. For 1 <i<mn,let @ =a; + eaf be dual analytic function. In
this case, o
(4.1) X =(a1,...,an) +e(ay,...,ay)

is a dual vector field on D™. For each point P of D™, the equality (4.1) is given in
the form

X (p) = (a1 (D) an (B)) + (af (P) s a}, (D)) -

Here, since @; = a; + €a? is the dual-valued analytic function on D", it can be
written as follows

n
I Rl 0 2 SR o
= ai—l—sai
and, for every p = p 4+ ep* € D™, we have

a@; (p) = a; (p) + €af (p) .

The set of dual vector fields is given as follows:

X (D™) = {Y|Y:D”—>TD”, Y(ﬁ)zfﬁzyfrayg}-
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On this set, we are able to define the following operators which make x (D™) a
module called D-module. Axioms are as follows:

(X+Y) () =X (p) =X;+7; +5(Y +?)
and

(A-X) () = X5 = AXj+e (VX5 +2X;)

where X = Y + 52* and Y = ? + 5?* are the dual vector fields and X = A +e\*
is the dual number.

Let f = f +cf° be a dual-valued analytic function on D”. The function
(4.2) X[fl=X[fl+e X1+ X"[f])

is called the derivative of f with respect to the dual vector field X.
Expanding the equality (4.2), we have

n n of da; 8%f
(4.3) Y[T]:Z gjai_i_g 21 J(axlaz + Gigy; 61)

=1 +8 CL1+CLZ [‘)f

It is clear that the equality (4.3) is a dual analytic function on D™. In this case, the
dual vector field X : C (D™, D) — C (D", D) is able to be defined as follows:

(4.4) X(f)=X[f].

For every p € D", if the equalities (4.2) and (4.3) are used, the following expressions
are obtained, respectively,

X [7) 0 =Xz [F] = Xplfl += (X511 + X5141)

and

i (e[ T (FE OO @ 7 ()
= L @3 @)+ 0 5) 2L ()

Corollary 4.1. [fX = Y—i—sy* is a dual vector field on D" and f = f+¢ef° and
g =g+¢eg° are dual-valued analytic functions on D™, then

(1) X [f+3] =X [f] +X[g].
(2) X [Af] =AX [f], for all dual numbers X = X + X*.
(3) X[fg] =X [/]g+/X[g
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Proof. For p = p + ep* € D", in the section III, the equalities (1) and (3) were
calculated in detail. Now, we know that

(X [2]) () = X5 [Af] .

In this case, we have

(X [7]) @

[ 7] = X5 M] +5(X>~[A*f+)\f° +Yi[/\f])
= fl+e (W R+ 2Z5 (79 + AZ 5 1)
(4.5) = (A+exh) (Y,, ( 5[] +?5[f]))
= X3 [f]
= (AX[f]) @)
For every p = p + ep* € D", since the equality (4.5) is correct,
X [M] =X [f]
is obtained. []

5. Tangent Maps on Dual Space

Let f € C (D", D™) be a dual analytic function. For every p = p + ep* € D",
the dual function

Fop: TyD™ — T3 D™

is called as dual tangent map of f at dual point p, and is defined by

o @) = ((wplfils o vp[fm]) + € (v T+ 05 Ll s vp ] 4+ 05 [fim])) lateqs
(51) = fup(vp) +e (5 p) + fup (v5))
= wg+ewg,

where g +eq* = f(p) +¢f°(p) is the dual point of D™. It is seen from the above
formula that f,; sends dual tangent vectors at p = p +ep* to dual tangent vectors

at f (p) = f () +&f°(p). On the other hand, the function f, : x (D") = x (D™)
is named as dual tangent map of f and is given as

LX) = (X)X [F)
£ (X) e (7 (%) +2.(X7))

Theorem 5.1. If the function f:D™ = D™ is a dual analytic function, then the
dual tangent map f .5 : TpD" — Ty(ﬁ)Dm 18 a linear transformation.



New Approaches on Dual Space 455

Proof. Let Dy and Wy be dual tangent vectors and A = A+e\* be dual number. We
must show that

(1) T*ﬁ (5;77 + Eﬁ) = T*ﬁ (E;T?) + T*ﬁ (mﬁ)

(2) f*ﬁ ()‘5177) = )‘f*ﬁ (5177) .

Since the dual tangent vectors are shown as U5 = Up+e 05 and Wy = Ws+ewWs,
the addition of these vectors is

Tp+Wp=Tp+ Wy+e(TVi+ 5.
Considering the equality (5.1), we get
T @p+wp) = fuip (T +Wp) +e (f5 (T + Tp) + L5 (T5+ 7))
= f*p( 5) Te(f5(Tp) + L5 (T5))
w5 (W5) + € (f5 (Tp) + f.5 (T5))
= f 5 (Tp) + F 5 (Tp) .-
On the other hand, the multiplication of dual tangent vector with dual number
is
Xﬁﬁ = )\75 +e ()\*75 + )\7%) .
In this case, we have

o (O05) = (ATF) [A]sos AT5) [fim])
+e (VTR A1) ATE) [A] +, coor (N T5) [fn]) (ATE) [fim]) -

When the above mentioned equality is taken into consideration, it is easily seen
that

Fa(Wop) = (A+eX) (fi5(Tp) +e (f5(Tp) + fi5 (T5)))
= V*;ﬁ (Eﬁ) .

The equalities (1) and (2) show that the map f*— is a linear transformation. [

According to given bases, each linear transformation corresponds to a matrix.
Now, let’s find the matrix which is called dual Jacobian corresponding to this linear
transformation. Let us consider that the bases of T3 D" and TzD"™ are defined as
follows:

{e1p, ..., enp} and {eig, ..., emz},

respectively, where g = f (p)+f° (p). Thus, for 1 < j < n, the following expression
can be written:

f*ﬁ(ejﬁ) = ((ejﬁ[fl]w'-vejﬁ[fm])+5(6j17[f10] eap[f D) lgteq
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(af (P ews + . +%(ﬁ)emq+8<a]w (P)erg+ ..+ afo @emq»

(&G ) (. 2)

oz; ) B
o ofe
£® S ()
= +e ,
Ofm afe
ar. (P) 22 (D)

where § = (qu,

s Gny 41y - q:) is the point of R?". Thus, the dual Jacobian matrix
is shown by J ( f ) (p) and is defined as follow equality

shp) .. 2 Lw . - EH
7(F) @) ' el o
Uop) . . . Yu(p) W) ... L@
= J()® +eJ(f) (D),
where
2L Z D+ 2 )

f_or 1 <k <mand1l < j < n. In this case, the dual analytic tangent map
fup 1 TpD™ — T D™ can be rewritten as follows

F: @) = (f5(Tp) +e(f% (V5 + fu5 (T5))

(5.2) TN B Ts+e (T ()P Ts+J(f)B) T5).

Example 5.1. Let

7 . D*-> D®
f@ =

(cosx1,sinx1, x2) + € (—x] sinz1 + cos x1, x] cos w1 + sin 1, x3)
be a dual analytic function with p = (5

470) +E(17

7) and Ty = (2, -3); +¢(1,2)
dual tangent map of f is obtained from (5.1) as

5 The
_— (s L], vs Lfo] 03 L)
Ty (7) ( e (v U§)+ w3 L) v LFS] + o2 Lfal» v LAS] + w3 Lfs]) )

lg+eq
(-v2va-3) +e (-2 25) |

272
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where ¢+¢eq¢" = f(p) +ef°(p) = <§7 470) +e (07 V2, g) is a dual point of D3. On the

other hand, if we use the dual Jacobian matrix of f at dual point 7, we have

TN @) = J)®) +eI (F°)®)

-2 —V2 0
= 2o | +e 0 0
0 1 0 o0

Considering the equality (5.2), we get the following equality

Fo@p) = JEO@®Ts+e(J() @) Ts+J(f)(B)T5)

~v2 -2
— V2 + e g

-3 2
)

q
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