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Abstract. In this paper, we have introduced three new generalized metric spaces called
partial bv (s), partial v-generalized and bv (θ) metric spaces which extend bv (s) metric
space, b-metric space, rectangular metric space, v-generalized metric space, partial
metric space, partial b-metric space, partial rectangular b-metric space and so on. We
have proved some famous theorems such as Banach, Kannan and Reich fixed point
theorems in these spaces. Also, we have given some numerical examples to support our
definitions. Our results generalize several corresponding results in literature.
Keywords: partial bv(s) metric space; bv(θ) metric space; generalized metric spaces;
fixed point theorems; weakly contractive mappings.

1. Introduction and Preliminaries

Metric space was introduced by Maurice Fréchet [1] in 1906. Since a metric
induces topological properties, it has very large application area in mathematics,
especially in fixed point theory. Generalizing of notions is in the nature of mathe-
matics. So, after the notion of metric space, many different type generalized metric
spaces were introduced by many researchers. In 1989, Bakhtin introduced the notion
of b-metric spaces by adding a multiplier to triangle ineuality. In 1994, Matthews [2]
introduced the notion of partial metric spaces. In this kind of spaces, self-distance
of any point needs not to be zero. This space is used in the study of denotational
semantics of dataflow network. In 2000, Branciari [9] introduced rectangular metric
space by adding four points instead of three points in triangle inequality. These
three spaces are the basis of other generalized metric spaces. After all these spaces,
v-generalized metric space [9], rectangular b-metric spaces [3], bv (s) metric space
[10], partial b-metric space [4] and partial rectangular b-metric space [5] were in-
troduced in recent years. Below, we shall give the definitions of some generalized
metric spaces.
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Definition 1.1. [8] Let E be a nonempty set and ρ : E × E → [0,∞) a function.
(E, ρ) is called b-metric space if there exists a real number s ≥ 1 such that following
conditions hold for all u,w, v ∈ E:

1. ρ(u,w) = 0 iff u = w;

2. ρ(u,w) = ρ(w, u);

3. ρ(u,w) ≤ s[ρ(u, v) + ρ(v, w)].

Clearly a b-metric space with s = 1 is exactly a usual metric space.

Definition 1.2. [2] Let E be a nonempty set and ρ : E ×E → [0,∞) a mapping.
(E, ρ) is called partial metric space if following conditions hold for all u,w, v ∈ E:

1. u = w iff ρ(u, u) = ρ(u,w) = ρ(w,w);

2. ρ(u, u) ≤ ρ(u,w);

3. ρ(u,w) = ρ(w, u);

4. ρ(u,w) ≤ ρ(u, v) + ρ(v, w)− ρ(v, v).

It is clear that every metric space is also a partial metric spaces.

Definition 1.3. [9] Let E be a nonempty set and let ρ : E × E → [0,∞) be a
mapping. (E, ρ) is called a rectangular metric space if following conditions hold for
all u,w ∈ E and for all distinct points c, d ∈ E \ {u,w}:

1. ρ(u,w) = 0 iff u = w;

2. ρ(u,w) = ρ(w, u);

3. ρ(u,w) ≤ ρ(u, c) + ρ(c, d) + ρ(d,w).

Definition 1.4. [4] Let E be a nonempty set and mapping ρ : E × E → [0,∞) a
mapping. (E, ρ) is called partial b-metric space if there exists a real number s ≥ 1
such that following conditions hold for all u,w, v ∈ E:

1. u = w iff ρ(u, u) = ρ(u,w) = ρ(w,w);

2. ρ(u, u) ≤ ρ(u,w);

3. ρ(u,w) = ρ(w, u);

4. ρ(u,w) ≤ s[ρ(u, v) + ρ(v, w)]− ρ(v, v).

Remark 1.1. [4] It is clear that every partial metric space is a partial b-metric space
with coefficient s = 1 and every b-metric space is a partial b-metric space with the same
coefficient and zero self-distance. However, the converse of this fact does not hold.
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In 2017, Mitrovic and Radenovic introduced following generalized metric space
which is referred to as bv(s) metric space. Under the suitable assumptions, this
kind of spaces can be reduced to the other spaces.

Definition 1.5. [10] Let E be a nonempty set, ρ : E×E → [0,∞) a mapping and
v ∈ N. Then (E, ρ) is said to be a bv(s) metric space if there exists a real number
s ≥ 1 such that following conditions hold for all u,w ∈ E and for all distinct points
z1, z2, . . . , zv ∈ E \ {u,w}:

1. ρ(u,w) = 0 iff u = w;

2. ρ(u,w) = ρ(w, u);

3. ρ(u,w) ≤ s[ρ(u, z1) + ρ(z1, z2) + · · ·+ ρ (zv, w)].

This metric space can be reduced to v-generalized metric space by taking s = 1,
rectangular metric space by taking v = 2 and s = 1, rectangular b-metric space
by taking v = 2, b-metric space by taking v = 1 and usual metric space by taking
v = s = 1.

2. Main Results

In this part, motivated and inspired by mentioned studies, we introduce bv (θ) (or
extended bv(s)) metric space and partial bv(s) metric space. Also we give some
fixed point theorems in these spaces.

First we introduce partial bv (s) metric space and give some properties of it.

2.1. Partial bv (s) Metric Spaces

Definition 2.1. Let E be a nonempty set and ρ : E × E → [0,∞) be a mapping
and v ∈ N. Then (E, ρ) is said to be a partial bv(s) metric space if there exists a
real number s ≥ 1 such that following conditions hold for all u,w, z1, z2, . . . , zv ∈ E:

1. u = w ⇔ ρ(u, u) = ρ(u,w) = ρ(w,w);

2. ρ(u, u) ≤ ρ(u,w);

3. ρ(u,w) = ρ(w, u);

4. ρ(u,w) ≤ s[ρ(u, z1) + ρ(z1, z2) + . . .+ ρ(zv−1, zv) + ρ(zv, w)]−
∑v
i=1 ρ(zi, zi).

It is easy to see that every bv(s) metric space is a partial bv(s) metric space.
However, the converse is not true in general.

Remark 2.1. In Definition 2.1;
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1. if we take v = 2, then we derive partial rectangular b-metric space.

2. if we take v = 1, then we derive partial b-metric space.

3. if we take v = s = 1, then we derive partial metric space.

Remark 2.2. Let (E, ρ) be a partial bv(s) metric space, if ρ(u,w) = 0, for u,w ∈ E,
then u = w.

Proof. Let ρ(u,w) = 0 for u,w ∈ E. From the second condition of partial bv(s)
metric space, since ρ(u, u) ≤ ρ(u,w) = 0, we have ρ(u, u) = 0. Similarly, we have
ρ(w,w) = 0. So, we get ρ(u,w) = ρ(u, u) = ρ(w,w) = 0. It follows from the first
condition that u = w.

Proposition 2.1. Let E be a nonempty set such that d1 is a partial metric and d2

is a bv(s) metric on E. Then (E, ρ) is a partial bv(s) metric space where ρ : E×E →
[0,∞) is a mapping defined by ρ(u,w) = d1(u,w) + d2(u,w) for all u,w ∈ E.

Proof. Let (E, d1) be a partial metric space and (E, d2) be a bv(s) metric space.Then
it is clear that first three conditions of the partial bv(s) metric space are satisfied
for the function ρ. Let u,w, z1, z2, . . . , zv ∈ E be arbitrary points. Then, we have

ρ(u,w) = d1(u,w) + d2(u,w)

≤ d1(u, z1) + d1(z1, z2) + . . .+ d1(zv, w)−
v∑
i=1

d1(zi, zi)

+s [d2(u, z1) + d2(z1, z2) + . . .+ d2(zv, w)]

≤ s

[
d1(u, z1) + d1(z1, z2) + . . .+ d1(zv, w)−

v∑
i=1

d1(zi, zi)

+d2(u, z1) + d2(z1, z2) + . . .+ d2(zv, w)]

= s

[
ρ(u, z1) + ρ(z1, z2) + . . .+ ρ(zv, w)−

v∑
i=1

ρ(zi, zi)

]

≤ s [ρ(u, z1) + ρ(z1, z2) + . . .+ ρ(zv, w)]−
v∑
i=1

ρ(zi, zi).

So, (E, ρ) is a partial bv(s) metric space.

Example 2.1. Let E = R+. Define mapping d1 : E × E → [0,∞) by

d1(u,w) =


0, if u = w
2, if u or w /∈ {1, 2} and u 6= w
25, if u,w ∈ {1, 2} and u 6= w

for all u,w ∈ R+. Then, it is obvious that (E, d1) is a bv(s) metric space with v = 9
and s ≥ 5

4
. On the other hand, let p > 1, d2 : E × E → R+ be a mapping defined by

d2(u,w) = [max{u,w}]p for all u,w ∈ E. Then, it is easy to see that (E, d2) is a partial
metric space. So, we have from Proposition 2.1 that (E, ρ) is a partial bv (s) metric space
where ρ(u,w) = d1(u,w) + d2(u,w) for all u,w ∈ E.
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Now, we give definitions of convergent sequence, Cauchy sequence and complete
partial bv(s) metric space in following way.

Definition 2.2. Let (E, ρ) be a partial bv(s) metric space and let {un} be any
sequence in E and u ∈ E. Then:

1. The sequence {un} is said to be convergent and converges to u, if
limn→∞ ρ(un, u) = ρ(u, u).

2. The sequence {un} is said to be Cauchy sequence in (E, ρ) if limn,m→∞ ρ(un, um)
exists and is finite.

3. (E, ρ) is said to be a complete partial bv(s) metric space if for every Cauchy
sequence {un} in E there exists u ∈ E such that

lim
n,m→∞

ρ(un, um) = lim
n→∞

ρ(un, u) = ρ(u, u).

Note that the limit of a convergent sequence may not be unique in a partial
bv(s) metric space.

Now we give an analogue of Banach contraction principle. Our proof is very
different from the original proof of Banach contraction principle in usual metric
space.

Theorem 2.1. Let (E, ρ) be a complete partial bv (s) metric space and S : E → E
be a contraction mapping, i.e., S satisfies

ρ(Su, Sw) ≤ λρ(u,w)(2.1)

for all u,w ∈ E, where λ ∈ [0, 1). Then S has a unique fixed point b ∈ S and
ρ(b, b) = 0.

Proof. Let G = Sn0 and define a sequence {un} by Gun = un+1 for all n ∈ N and
arbitrary point u0 ∈ E. Since λ ∈ [0, 1) and limn→∞ λn = 0, there exists a natural
number n0 such that λn0 < ε

4s for given 0 < ε < 1. Then, for all u,w ∈ E we get

ρ(Gu,Gw) = ρ(Sn0u, Sn0w) ≤ λn0ρ(u,w).(2.2)

So, we have

ρ(uk+1, uk) = ρ(Guk, Guk−1) ≤ λn0ρ(uk, uk−1) ≤ λkn0ρ(u1, u0)→ 0,

as k →∞. Hence, there exists a l ∈ N such that

ρ(ul+1, ul) <
ε

4s
.

Now, let

Bρ[ul, ε/2] :=
{
w ∈ E : ρ(ul, w) ≤ ε

2
+ ρ(ul, ul)

}
.
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We need to prove that G maps the set Bρ[ul, ε/2] into itself. Since ul ∈ Bρ[ul, ε/2],
it is a nonempty set. Let z be an arbitrary point in Bρ[ul, ε/2]. Then, using (2.2)
we get

ρ(Gz, ul) ≤ s [ρ(Gz,Gul) + ρ(Gul +Gul+1) + . . .+ ρ(Gul+v−2, Gul+v−1)

+ρ(Gul+v−1, ul)]−
v−1∑
i=0

ρ(Gul+i, Gul+i)

≤ s [ρ(Gz,Gul) + ρ(Gul +Gul+1) + . . .+

+ρ(Gul+v−2, Gul+v−1) + ρ(Gul+v−1, ul)]

≤ s[λn0(
ε

2
+ ρ(ul, ul)) + ρ(ul+1, ul+2) + . . .+

+ρ(ul+v−1, ul+v) + ρ(ul+v, ul)

≤ s
{
λn0(

ε

2
+ ρ(ul, ul)) + ρ(ul+1, ul+2) + . . .+

+ρ(ul+v−1, ul+v) + s[ρ(ul, ul+1) + ρ(ul+1, ul+2) + . . .

+ρ(ul+v−1, ul+v) + ρ(ul+v, ul+v)]−
v∑
i=1

ρ(ul+i, ul+i)

}
≤ s

{
λn0(

ε

2
+ ρ(ul, ul)) + (s+ 1) ρ(ul, ul+1) + (s+ 1)ρ(ul+1, ul+2)+

(s+ 1)ρ(ul+2, ul+3) + . . .+ (s+ 1)ρ(ul+v−1, ul+v) + sρ(ul+v, ul+v)}

≤ s
{
λn0(

ε

2
+ ρ(ul, ul)) + (s+ 1)ρ(ul, ul+1) + (s+ 1)ρ(ul+1, ul+2)+

(s+ 1)ρ(ul+2, ul+3) + . . .+ (s+ 1)ρ(ul+v−1, ul+v) + sλvn0ρ(ul, ul)}

= ρ(ul, ul)
[
sλn0 + s2λvn0

]
+ sλn0

ε

2
+ s2ρ(ul, ul+1) +

s(s+ 1) [ρ(ul+1, ul+2) + . . .+ ρ(ul+v−1, ul+v)] .

Since λn0 < ε
4s and ρ(ul, ul+1) ≤ ε

4v(s2+s) , we have

ρ(Gz, ul) ≤ ρ(ul, ul)

[
s
ε

4s
+ s2 εv

(4s)v

]
+ s

ε

4s

ε

2
+

(s2 + s) [ρ(ul, ul+1) + ρ(ul+1, ul+2) + . . .+ ρ(ul+v−1, ul+v)]

≤ ρ(ul, ul) +
ε

4
+ (s2 + s)v

ε

4v(s2 + s)

=
ε

2
+ ρ(ul, ul).

So, Gz ∈ Bρ[ul, ε/2]. Therefore, GmapsBρ[ul, ε/2] into itself. Since ul ∈ Bρ[ul, ε/2]
and Gul ∈ Bρ[ul, ε/2], we obtain that Gnul ∈ Bρ[ul, ε/2] for all n ∈ N, that is,
um ∈ Bρ[ul, ε/2] for all m ≥ l. On the other hand, from definition of partial bv (s)
metric space, since ρ(ul, ul) ≤ ρ(ul, ul+1) < ε

4v(s2+s) <
ε
2 , we have

ρ(un, um) <
ε

2
+ ρ(ul, ul) < ε
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for all n,m > l. This means that the sequence {un} is a Cauchy sequence. Com-
pleteness of E implies that there exists b ∈ E such that

lim
n→∞

ρ(un, b) = lim
n,m→∞

ρ(un, um) = ρ(b, b) = 0.(2.3)

Now, we need to show that, b is a fixed point of S. For any n ∈ N we get

ρ(b, Sb) ≤ s [ρ(b, un+1) + ρ(un+1, un+2) + . . .+ ρ(un+v−1, un+v)+

ρ(un+v, Sb)]−
v∑
i=1

ρ(un+i, un+i)

≤ s [ρ(b, un+1) + ρ(un+1, un+2) + . . .+ ρ(un+v−1, un+v) + ρ(un+v, Sb)]

≤ s [ρ(b, un+1) + ρ(un+1, un+2) + . . .+ ρ(un+v−1, un+v) + ρ(Sun+v−1, Sb)]

≤ s [ρ(b, un+1) + ρ(un+1, un+2) + . . .+ ρ(un+v−1, un+v) + λρ(un+v−1, b)] .

So, it follows from (2.3) that ρ(b, Sb) = 0. So, b is a fixed point of S.

Now, we show that S has a unique fixed point. Let a, b ∈ E be two distinct fixed
points of S, that is, Sa = a, Sb = b. Then, contractivity of mapping S implies that

ρ(a, b) = ρ(Sa, Sb) ≤ λρ(a, b) < ρ(a, b),

which is a contradiction. So, it folllows that ρ(a, b) = 0, that is, a = b. Moreover,
for a fixed point a, let assume that ρ(a, a) > 0. Then we get ρ(a, a) = ρ(Sa, Sa) ≤
λρ(a, a) < ρ(a, a) which is a contradiction. So, we have ρ(a, a) = 0.

Now, we prove an analogue of Kannan fixed point theorem.

Theorem 2.2. Let (E, ρ) be a complete partial bv (s) metric space and S : E → E
a mapping satisfying the following condition:

ρ(Su, Sy) ≤ λ [ρ(u, Su) + ρ(w, Sw)](2.4)

for all u,w ∈ E, where λ ∈ [0, 1
2 ), λ 6= 1

s . Then S has a unique fixed point b ∈ E
and ρ(b, b) = 0.

Proof. .First we show the existence of fixed points of S. Let define a sequence {un}
by un = Snu0 for all n ∈ N and an arbitrary point u0 ∈ E and σn = ρ(un, un+1).
If σn = 0, then for at least one n, un is a fixed point of S. So, let assume that
σn > 0 for all n ≥ 0. Since S is a Kannan mapping, it follows from (2.4) that

σn = ρ(un, un+1) = ρ(Sun−1, Sun)

≤ λ [ρ(un−1, Sun−1) + ρ(un, Sun)]

= λ [ρ(un−1, un) + ρ(un, un+1)]

= λ [σn−1 + σn] .



628 I. Karahan and I. Isik

Therefore, we get σn ≤ λ
1−λσn−1. On repeating this process we obtain

σn ≤
(

λ

1− λ

)n
σ0.

From hypothesis, since λ ∈ [0, 1
2 ), we have

lim
n→∞

σn = lim
n→∞

ρ(un, un+1) = 0.(2.5)

So, for every ε > 0, there exists a natural number n0 such that σn < ε/2 and
σm < ε/2 for all n,m ≥ n0. From (2.5), we have

ρ(un, um) = ρ(Sun−1, Sum−1)

≤ λ [ρ(un−1, Sun−1) + ρ(um−1, Sum−1)]

= λ [ρ(un−1, un) + ρ(um−1, um)]

= λ [σn−1 + σm−1]

<
ε

2
+
ε

2
= ε

for n,m > n0. Hence, {un} is Cauchy sequence in E and limn,m→∞ ρ(un, um) = 0.
It follows from the completeness of E that there exists b ∈ E such that

lim
n→∞

ρ(un, b) = lim
n,m→∞

ρ(un, um) = ρ(b, b) = 0.

Now,we show that b is a fixed point of S. From definition of Kannan mappings and
partial bv (s) metric space, we have

ρ(b, Sb) ≤ s [ρ(b, un+1) + ρ(un+1, un+2) + . . .+ ρ(un+v−1, un+v)+

ρ(un+v, Sb)]−
v∑
i=1

ρ(un+i, un+i)

≤ s [ρ(b, un+1) + ρ(un+1, un+2) + . . .+ ρ(un+v−1, un+v) + ρ(un+v, Sb)]

≤ s [ρ(b, un+1) + ρ(un+1, un+2) + . . .+ ρ(un+v−1, un+v) + ρ(Sun+v−1, Sb)]

≤ s [ρ(b, un+1) + ρ(un+1, un+2) + . . .+ ρ(un+v−1, un+v)+

λ {ρ(un+v−1, Sun+v−1) + ρ(b, Sb)}] .

So, it follows from the last inequality that

ρ(b, Sb) ≤ s

(1− sλ)
[ρ(b, un+1) + ρ(un+1, un+2)

+...+ ρ(un+v−1, un+v) + λρ(un+v−1, Sun+v−1)] .

Since λ 6= 1
s and {un} is a Cauchy and convergent sequence, we have ρ(b, Sb) = 0,

so Sb = b. It means that b is a fixed point of S. Now we show the uniqueness of
fixed point. But first, we need to show that if b ∈ E is a fixed point of S, then
ρ(b, b) = 0. Let assume to the contrary that ρ(b, b) > 0. Then, from (2.4) we have

ρ(b, b) = ρ(Sb, Sb) ≤ λ [ρ(b, Sb) + ρ(b, Sb)] = 2λρ(b, b) < ρ(b, b),
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which is a contradiction. So, assumption is wrong, namely, ρ(b, b) = 0. Now, we
can show that S has a unique fixed point. Suppose a, b ∈ E be two distinct fixed
points of S. Then we have ρ(b, b) = ρ(a, a) = 0, and it follows from (2.4) that

ρ(b, a) = ρ(Sb, Sa) ≤ λ [ρ(b, Sb) + ρ(a, Sa)]

= λ [ρ(b, b) + ρ(a, a)] = 0

Therefore, we have ρ(b, a) = 0 and so b = a. Thus S has a unique fixed point. This
completes the proof.

Theorem 2.3. Let (E, ρ) be a complete partial bv (s) metric space and S : E → E
a mapping satisfying:

ρ(Su, Sw) ≤ λmax {ρ(u,w), ρ(u, Su), ρ(w, Sw)}(2.6)

for all u,w ∈ E and λ ∈
[
0, 1

s

)
. Then, S has a unique fixed point b ∈ E and

ρ(b, b) = 0.

Proof. We begin with the fixed points of S. Let u0 ∈ E be an arbitrary initial point
and let {un} be a sequence defined by un+1 = Sun for all n. If un = un+1 for at
least one natural number n, then it is clear that this point is a fixed point of S. So,
let assume that un+1 6= un for all n. Now, it follows from (2.6) that

ρ(un+1, un) = ρ(Sun, Sun−1)

≤ λmax {ρ(un, un−1), ρ(un, Sun), ρ(un−1, Sun−1)}
= λmax {ρ(un, un−1), ρ(un, un+1), ρ(un−1, un)}
= λmax {ρ(un, un−1), ρ(un, un+1)} .

Set L = max {ρ(un, un−1), ρ(un, un+1)}. There exists two cases. If L = ρ(un, un+1),
then we get ρ(un+1, un) ≤ λρ(un+1, un) < ρ(un+1, un) which is a contradiction. So,
we must have L = ρ(un, un−1) and then we have

ρ(un+1, un) ≤ λρ(un, un−1).

By repeating this process, we obtain

ρ(un+1, un) ≤ λnρ(u1, u0)(2.7)

for all n. On the other hand, since λn → 0 for n → ∞, there exists a natural
number n0 such that 0 < λn0s < 1. For m,n ∈ N with m > n, by using inequality
(2.7), we obtain

ρ(un, um) ≤ s [ρ(un, un+1) + ρ(un+1, un+2) + . . .+ ρ(un+v−3, un+v−2)

+ρ(un+v−2, un+n0) + ρ(un+n0 , um+n0) + ρ(um+n0 , um)]

−
v−2∑
i=1

ρ(un+i, un+i)− ρ(un+n0
, un+n0

)− ρ(um+n0
, um+n0

)
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≤ s [ρ(un, un+1) + ρ(un+1, un+2) + . . .+ ρ(un+v−3, un+v−2)

+ρ(un+v−2, un+n0
) + ρ(un+n0

, um+n0
) + ρ(um+n0

, um)]

≤ s
(
λn + λn+1 + · · ·+ λn+v−3

)
ρ(u0, u1)

+sλnρ(uv−2, un0
) + sλn0ρ(un, um) + sλmρ(un0

, u0).

So, we get

(1− sλn0) ρ(un, um) ≤ s
(
λn + λn+1 + · · ·+ λn+v−3

)
ρ(u0, u1)

+sλnρ(uv−2, un0) + sλmρ(un0 , u0).

By taking limit from both side, we have

lim
n,m→∞

ρ(un, um) = 0

Therefore, {un} is a Cauchy sequence in E. By completing E, there exists b ∈ E
such that

lim
n→∞

ρ(un, b) = lim
n,m→∞

ρ(un, um) = ρ(b, b) = 0.(2.8)

Now, we show that b is a fixed point of S. From definition of partial bv (s) metric
space and inequality (2.6), we have

ρ(b, Sb) ≤ s [ρ(b, un+1) + ρ(un+1, un+2) + . . .+ ρ(un+v−1, un+v)+

ρ(un+v, Sb)]−
v∑
i=1

ρ(un+i, un+i)

≤ s [ρ(b, un+1) + ρ(un+1, un+2) + . . .+ ρ(un+v−1, un+v) + ρ(un+v, Sb)]

≤ s [ρ(b, un+1) + ρ(un+1, un+2) + . . .+ ρ(un+v−1, un+v) + ρ(Sun+v−1, Sb)]

≤ s [ρ(b, un+1) + ρ(un+1, un+2) + . . .+ ρ(un+v−1, un+v)+

λmax {ρ(un+v−1, b), ρ(un+v−1, un+v), ρ(b, Sb)}] .

Set F = max {ρ(un+v−1, b), ρ(un+v−1, un+v), ρ(b, Sb)}. There exists three cases:

1. If F = ρ(un+v−1, b), then we get

ρ(b, Sb) ≤ s [ρ(b, un+1) + ρ(un+1, un+2) + . . .+ ρ(un+v−1, un+v) + λρ(un+v−1, b)] .

So, it follows from (2.8) that ρ(b, Sb) = 0.

2. If F = ρ(un+v−1, un+v), then we get

ρ(b, Sb) ≤ s [ρ(b, un+1) + ρ(un+1, un+2) + . . .+ (1 + λ) ρ(un+v−1, un+v)] .

Again by using (2.8), we obtain that ρ(b, Sb) = 0.

3. If F = ρ(b, Sb) then we get

(1− sλ) ρ(b, Sb) ≤ s [ρ(b, un+1) + ρ(un+1, un+2) + . . .+ ρ(un+v−1, un+v)] .
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Since λ ∈
[
0, 1

s

)
, we obtain that ρ(b, Sb) = 0, that is, Sb = b. Thus, b is a fixed poit

of S.

Now we show the uniqueness of fixed point of S. Suppose on the contrary that
a and b are two distinct fixed points of S and ρ(a, b) > 0. It follows from (2.6) that

ρ(a, b) = ρ(Sa, Sb) ≤ λmax {ρ(a, b), ρ(a, Sa), ρ(b, Sb)}
= λmax {ρ(a, b), ρ(a, a), ρ(b, b)}
= λρ(a, b) < ρ(a, b),

which is a cotradiction. Therefore, we must have ρ(a, b) = 0 and so a = b. Hence,
S has a unique fixed point.

In definition 2.1, if we take s = 1, then we derive following definition of partial
v-generalized metric space.

Definition 2.3. Let E be a nonempty set and ρ : E × E → [0,∞) be a mapping
and v ∈ N. Then (E, ρ) is said to be a partial v-generalized metric space if following
conditions hold for all u,w, z1, z2, . . . , zv ∈ E:

1. u = w ⇔ ρ(u, u) = ρ(u,w) = ρ(w,w);

2. ρ(u, u) ≤ ρ(u,w);

3. ρ(u,w) = ρ(w, u);

4. ρ(u,w) ≤ ρ(u, z1) + ρ(z1, z2) + . . .+ ρ(zv−1, zv) + ρ(zv, y)−
∑v
i=1 ρ(zi, zi).

In Theorems 2.1,2.2 and 2.3, if take s = 1, then we derive following fixed point
theorems in partial v-generalized metric space.

Corollary 2.1. Let (E, ρ) be a complete partial v-generalized metric space and
S : E → E be a contraction mapping, i.e., S satisfies

ρ(Su, Sw) ≤ λρ(u,w)

for all u,w ∈ E, where λ ∈ [0, 1). Then S has a unique fixed point b ∈ S and
ρ(b, b) = 0.

Corollary 2.2. Let (E, ρ) be a complete partial v-generalized metric space and
S : E → E a mapping satisfying the following condition:

ρ(Su, Sy) ≤ λ [ρ(u, Su) + ρ(w, Sw)]

for all u,w ∈ E, where λ ∈ [0, 1
2 ). Then S has a unique fixed point b ∈ E and

ρ(b, b) = 0.

Corollary 2.3. Let (E, ρ) be a complete partial v-generalized metric space and
S : E → E a mapping satisfying:

ρ(Su, Sw) ≤ λmax {ρ(u,w), ρ(u, Su), ρ(w, Sw)}

for all u,w ∈ E and λ ∈ [0, 1). Then, S has a unique fixed point b ∈ E and
ρ(b, b) = 0.
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2.2. bv (θ) Metric Spaces

In 2017, Kamran et al. introduced following generalized metric space which they
called extended b-metric space.

Definition 2.4. [6] Let E be a nonempty set and let θ : E × E → [1,∞) be a
function. A function ρθ : E × E → [0,∞) is called an extended b-metric if for all
u, v, w ∈ E it satisfies:

1. ρθ(u,w) = 0 iff u = w;

2. ρθ(u,w) = ρ(w, u);

3. ρθ(u,w) ≤ θ (u,w) [ρθ(u, v) + ρθ(v, w)].

The pair (E, ρθ) is called an extended b-metric space.

It is clear that if θ (u,w) = s for all u,w ∈ E, then we obtain b-metric space.

From this point of view, we introduce following generalized metric space called
as bv(θ) (or extended bv(s) ) metric space.

Definition 2.5. Let E be a nonempty set, θ : E×E → [1,∞) a function and v ∈
N. Then ρθ : E × E → [0,∞) is called bv(θ) metric if for all u, z1, z2, ..., zv, w ∈ E,
each of them different from each other, it satisfies

1. ρθ(u,w) = 0 iff u = w;

2. ρθ(u,w) = ρθ(w, u);

3. ρθ(u,w) ≤ θ (u,w) [ρθ(u, z1) + ρθ(z1, z2) + · · ·+ ρθ (zv, w)].

The pair (E, ρθ) is called bv(θ) metric space.

Remark 2.3. It is clear that if for all u,w ∈ E

1. θ (u,w) = s, then we obtain bv(s) metric space,

2. v = 1, then we obtain extended b-metric space,

3. θ (u,w) = s and v = 1, then we obtain b-metric space,

4. θ (u,w) = s and v = 2, then we obtain rectangular b-metric space,

5. θ (u,w) = 1 and v = 2, then we obtain rectangular metric space,

6. θ (u,w) = 1, then we obtain v-generalized metric space,

7. θ (u,w) = 1 and v = 1, then we obtain usual metric space.

Example 2.2. Let E = N. Define mappings θ : N×N→ [1,∞) and ρθ : N×N→ [0,∞)
by θ (u,w) = 3 + u+ w and

ρθ (u,w) =


6, if u,w ∈ {1, 2} and u 6= w
1, if u or w /∈ {1, 2} and u 6= w
0, if u = w

for all u,w ∈ N. Then, it is easy to see that (E, ρθ) is a bv (θ) metric space with v = 5.
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Definitions of Cauchy sequence, convergence and completeness can be easily
extended to the case of bv (θ) metric space by the following way.

Definition 2.6. Let (E, ρθ) be a bv (θ) metric space, {un} a sequence in E and
u ∈ E. Then,

a) {un} is said to converge to u in (E, ρθ) if for every ε > 0, there exists n0 ∈ N
such that ρθ (un, u) < ε for all n ≥ n0 and this convergence is denoted by
un → u.

b) {un} is said to be Cauchy sequence in (E, ρθ) if for every ε > 0, there exists
n0 ∈ N such that ρθ (un, un+p) < ε for all n ≥ n0 and p > 0.

c) (E, ρθ) is said to be complete if every Cauchy sequence in E is convergent in
E.

Now, we are in the position to prove fixed point theorems in bv(θ) metric spaces.
But first, we prove following lemmas which we need in the proof of main theorems.

Lemma 2.1. Let (E, ρθ) be a bv(θ) metric space, S : E → E a mapping and {un}
a sequence in E defined by un+1 = Sun = Snu0 such that un 6= un+1. Suppose that
c ∈ [0, 1) such that

ρθ (un+1, un) ≤ cρθ (un, un−1)

for all n ∈ N. Then un 6= um for all distinct n,m ∈ N.

Proof. Since the proof is very similar with the proof of Lemma 1.11 of [10], we omit
it.

Lemma 2.2. Let (E, ρθ) be a bv(θ) metric space with a bounded function θ and
{un} a sequence in E defined by un+1 = Sun = Snu0 such that un 6= um for all
n,m ∈ N. Assume that there exist c ∈ [0, 1) and k1, k2 ∈ R+ ∪ {0} such that

ρθ (um, un) ≤ cρθ (um−1, un−1) + k1c
m + k2c

m(2.9)

for all n,m ∈ N. Then {un} is a Cauchy sequence in E.

Proof. It is easy to see that {un} is Cauchy if c = 0. So, we should assume that
c 6= 0. Since function θ (u,w) is bounded, there exists a number n0 ∈ N such that

0 < cn0θ (u,w) < 1(2.10)

for all u,w ∈ E. From hypothesis of lemma, we can write

ρθ (un+1, un) ≤ cρθ (un, un−1) + k1c
n+1 + k2c

n

≤ c
(
cρθ (un−1, un−2) + k1c

n + k2c
n−1
)

+ k1c
n+1 + k2c

n

= c2ρθ (un−1, un−2) + 2
(
k1c

n+1 + k2c
n
)

...

≤ cnρθ (u1, u0) + n
(
k1c

n+1 + k2c
n
)
.



634 I. Karahan and I. Isik

Similarly, for all k ≥ 1, we can write

ρθ (um+k, un+k) ≤ ckρθ (um, un) + k
(
k1c

m+k + k2c
n+k

)
.

If v ≥ 2, then from the definition of bv(θ) metric space, we get

ρθ (un, um) ≤ θ (un, um) [ρθ (un, un+1) + ρθ (un+1, un+2)

+ · · ·+ ρθ (un+v−3, un+v−2) + ρθ (un+v−2, un+n0
)

+ρθ (un+n0
, um+n0

) + ρθ (um+n0
, um)] .

Then, we have

ρθ (un, um) ≤ θ (un, um)
[(
cn + cn+1 + · · ·+ cn+v−3

)
ρθ (u0, u1)

+ (k1c+ k2)
(
ncn + (n+ 1) cn+1 + · · ·+ (n+ v − 3) cn+v−3

)
+cnρθ (uv−2, un0

) + ncn
(
k1c

v−2 + k2c
n0
)

+cn0ρθ (un, um) + n0c
n0 (k1c

n + k2c
m)

+ cmρθ (un0
, u0) +mcm (k1c

n0 + k2)] .

So, we obtain

ρθ (un, um) (1− cn0θ (un, um)) ≤
≤ θ (un, um)

[(
cn + cn+1 + · · ·+ cn+v−3

)
ρθ (u0, u1)

+ (k1c+ k2)
(
ncn + (n+ 1) cn+1 + · · ·+ (n+ v − 3) cn+v−3

)
+cnρθ (uv−2, un0

) + ncn
(
k1c

v−2 + k2c
n0
)

+ n0c
n0 (k1c

n + k2c
m)

+ cmρθ (un0
, u0) +mcm (k1c

n0 + k2)] .

Since limn→∞ ncn = 0 and 1−cn0θ (un, um) > 0, using (2.9), we have ρθ (un, um)→
0 as n,m → ∞. This means that {un} is a Cauchy sequence. Since bv (s) metric
space is a b2v

(
s2
)

metric space, if v = 1, then {un} is Cauchy.

Now we can give Banach fixed point theorem in complete bv (θ) metric space.

Theorem 2.4. Let (E, ρθ) be a complete bv(θ) metric space with a bounded func-
tion θ and S : E → E a contraction mapping, i.e., there exists a constant c ∈ [0, 1)
such that

ρθ (Su, Sw) ≤ cρθ (u,w)(2.11)

for all u,w ∈ E. Then S has a unique fixed point.

Proof. Let u0 ∈ E be an arbitrary initial point and let {un} be a sequence defined
by un+1 = Sun = Sn+1u0 and un 6= un+1 for all n ≥ 0. It follows from Lemma 2.1
that un 6= um for all n,m ∈ N. Since S is a contraction mapping, we can write

ρθ (un, um) = ρθ (Sun−1, Sum−1) ≤ cρθ (un−1, um−1) .
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From Lemma 2.2, we have {un} is a Cauchy sequence. So, it follows from complete-
ness of E that there exists an element u ∈ E such that un → u. Now, we show that
u ∈ FixS, i.e., u = Su.

ρθ (u, Su) ≤ θ (u, Su) [ρθ (u, un+1) + ρθ (un+1, un+2)

+ · · ·+ ρθ (un+v−1, un+v) + ρθ (un+v, Su)]

= θ (u, Su) [ρθ (u, un+1) + ρθ (un+1, un+2)

+ · · ·+ ρθ (un+v−1, un+v) + ρθ (Sun+v−1, Su)]

≤ θ (u, Su) [ρθ (u, un+1) + ρθ (un+1, un+2)

+ · · ·+ ρθ (un+v−1, un+v) + cρθ (un+v−1, u)] .

Since θ is a bounded function and {un} is Cauchy with un → u, we have ρθ (u, Su) =
0. This means that u ∈ FixS. Next, we need to show that u is a unique fixed point.
To the contrary, let assume that there exists another fixed point w. Since

ρθ (u,w) = ρθ (Su, Sw) ≤ cρθ (u,w) < ρθ (u,w) ,

we get u = w that is u is the unique fixed point of S.

Remark 2.4. In Theorem 2.4,

1. if we take the constant v = 1 and the function θ (u,w) = 1 for all u,w ∈ E, then we
derive classical Banach fixed point theorem in usual metric spaces.

2. if we take θ (u,w) = s for all u,w ∈ E where s ≥ 1, then we derive Theorem 2.1 of
[10] in bv (s) metric spaces.

3. if v = 1 and θ (u,w) = s for all u,w ∈ E, then we derive Theorem 2.1 of [13] in
b-metric spaces.

4. if v = 2 and θ (u,w) = s for all u,w ∈ E, then we derive Theorem 2.1 of [14] and so
main theorem of [3] in rectangular b-metric spaces.

5. if θ (u,w) = 1 for all u,w ∈ E, then we derive main result of Branciari [9] in
v-generalized metric spaces.

In literature, there exist various type of contraction mappings. Weakly con-
tractive mapping is one of this type of contractions which generalize usual con-
tractions. A mapping S : E → E is called weakly contractive if there exists a
continuous and nondecreasing function ψ (t) defined from R+ ∪ {0} onto itself such
that ψ (0) = 0, ψ (t)→∞ as t→∞ and for all u,w ∈ E

ρθ (Su, Sw) ≤ ρθ (u,w)− ψ (ρθ (u,w)) .(2.12)

Now, we generalize Banach fixed point theorem for weakly contractive mappings
in bv (θ) metric space.

Theorem 2.5. Let E be a complete bv (θ) metric space and S a weakly contractive
mapping on E. Then S has a unique fixed point.
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Proof. Let u0 ∈ E be an arbitrary initial point. Define sequence {un} by u1 = Su0,
u2 = Su1 = S2u0, . . . , un+1 = Sun = Snu0. If un = un+1 for all n ∈ N where N
is the set of positive integer, then proof is trivial. So, let assume that un 6= un+1

for all n. Moreover, the case that un 6= um for all different n and m can be easily
proved. From (2.12), we can write

ρθ (un+1, un+p+1) = ρθ (Sun, Sun+p)

≤ ρθ (un, un+p)− ψ (ρθ (un, un+p))

for all n, p ∈ N. Let αn = ρθ (un, un+p). Since ψ is nondecreasing, we have

αn+1 ≤ αn − ψ (αn) ≤ αn.(2.13)

Thus, the sequence {αn} has a limit α ≥ 0. Now we should show that α = 0.
Assume to the contrary that α > 0. Using (2.13), we have

ψ (αn) ≥ ψ (α) > 0.

So, we get
αn+1 ≤ αn − ψ (α) .

Hence, we obtain αN+m ≤ αm −Nψ (α) which is a contradiction for large enough
N . This proves that α = 0. This means that {un} is Cauchy. Completeness of E
implies that there exists a point u ∈ E such that un → u. Now, we show that u is
a fixed point of S. Using (2.12) and definition of ρθ, we get

ρθ (u, Su) ≤ θ (u, Su) [ρθ (u, un+1) + ρθ (un+1, un+2)

+ . . .+ ρθ (un+v−1, un+v) + ρθ (un+v, Su)]

= θ (u, Su) [ρθ (u, un+1) + ρθ (un+1, un+2)

+ . . .+ ρθ (un+v−1, un+v) + ρθ (Sun+v−1, Su)]

≤ θ (u, Su) [ρθ (u, un+1) + ρθ (un+1, un+2) + . . .+

ρθ (un+v−1, un+v) + ρθ (un+v−1, u)− ψ (ρθ (un+v−1, u))] .

Since ρθ (un, un+p)→ 0 and un → u as n→∞ and ψ (0) = 0, we have u is a fixed
point of S.

To prove the uniqueness of fixed point, we can assume that there exist one more
fixed point w. Since S is a weakly contractive mapping, we have

ρθ (u,w) = ρθ (Su, Sw) ≤ ρθ (u,w)− ψ (ρθ (u,w)) < ρθ (u,w) .

So u = w This finishes the proof.

Remark 2.5. In Theorem 2.5,

1. if we take the constant v = 1, the function θ (u,w) = 1 for all u,w ∈ E and ψ(t) = ct,
then we derive classical Banach fixed point theorem.
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2. if we take ψ(t) = ct and θ (u,w) = s where s ∈ [1,∞), then we derive Theorem 2.1
of [10]

3. if v = 1, θ (u,w) = s and ψ(t) = ct, then we derive Theorem 2.1 of [13].

4. if v = 2, θ (u,w) = s and ψ(t) = ct, then we derive Theorem 2.1 of [14] and so main
theorem of [3].

5. if v = 1 and θ (u,w) = s, then we derive main theorem of [12].

Now, we give Reich fixed point theorem.

Theorem 2.6. Let (E, ρθ) be a complete bv(θ) metric space with a bounded func-
tion θ and S : E → E a mapping satisfying:

ρθ (Su, Sw) ≤ αρθ (u,w) + βρθ (u, Su) + γρθ (w, Sw)(2.14)

for all u,w ∈ E where α, β, γ are nonnegative constants with α + β + γ < 1 and
Γ1 <

1
Γ2

where Γ1 = min {β, γ} and Γ2 = max {θ (u, Su) , θ (Su, u)}. Then S has
a unique fixed point. Moreover, sequence {un} defined by un = Sun−1 converges
strongly to the unique fixed point of S.

Proof. Let {un} be a sequence defined by un+1 = Sun = Sn+1u0 where u0 ∈ E
is an arbitrary initial point. If un = un+1 for all n ∈ N, it is easy to see that u0

is a fixed point of S. Now, we assume that un 6= un+1 for all n. From (2.14) and
definition of {un}, we have

ρθ (un+1, un) = ρθ (Sun, Sun−1)

≤ αρθ (un, un−1) + βρθ (un, Sun) + γρθ (un−1, Sun−1)

= αρθ (un, un−1) + βρθ (un, un+1) + γρθ (un−1, un) .

Then, we get

ρθ (un+1, un) ≤ α+ γ

1− β
ρθ (un, un−1)

≤
(
α+ γ

1− β

)n
ρθ (u1, u0) .

Since α+ β + γ < 1, then it is clear that 0 ≤ α+γ
1−β < 1. So, we obtain

lim
n→∞

ρθ (un+1, un) = 0.(2.15)

Also, since we assume that un 6= un+1 for all n and ρθ (un+1, un) ≤ α+γ
1−β ρθ (un, un−1),

then it follows from Lemma 2.1 that un 6= um for all n,m ∈ N. So, we have

ρθ (un, um) = ρθ (Sun−1, Sum−1)

≤ αρθ (un−1, um−1) + βρθ (un−1, Sun−1) + γβρθ (um−1, Sum−1)

= αρθ (un−1, um−1) + βρθ (un−1, un) + γβρθ (um−1, um)

≤ αρθ (un−1, um−1) +

(
β

(
α+ γ

1− β

)n−1

+ γ

(
α+ γ

1− β

)m−1
)
ρθ (u1, u0) .
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It follows from Lemma 2.2 that {un} is a Cauchy sequence. So, from the complete-
ness of E, we obtain that there exists a point u ∈ E such that un → u. Now, we
show that u is a fixed point of S, i.e., ρθ (u, Su) = 0. Since

ρθ (u, Su) ≤ θ (u, Su) [ρθ (u, un+1) + ρθ (un+1, un+2) + · · ·+
+ρθ (un+v−1, un+v) + ρθ (un+v, Su)]

≤ θ (u, Su) [ρθ (u, un+1) + ρθ (un+1, un+2) + · · ·+
+ρθ (un+v−1, un+v) + ρθ (Sun+v−1, Su)]

≤ θ (u, Su) [ρθ (u, un+1) + ρθ (un+1, un+2) + · · ·+
+ρθ (un+v−1, un+v) +

+αρθ (un+v−1, u) + βρθ (un+v−1, un+v) + γρθ (u, Su)] ,

we have

(1− γθ (u, Su)) ρθ (u, Su) ≤ θ (u, Su) [ρθ (u, un+1) + ρθ (un+1, un+2) + · · ·
+ ρθ (un+v−1, un+v) + αρθ (un+v−1, u) + βρθ (un+v−1, un+v)] .

Since Γ1 < 1
Γ2

, we get (1− γθ (u, Su)) ∈ [0, 1). So, it follows from (2.15) and
convergence of {un} that ρθ (u, Su) = 0. This means that u is a fixed point of S.
Now, we need to show that u is a unique fixed point. Let assume that there exists
another fixed point v. Then, we have

ρθ (u, v) = ρθ (Su, Sv) ≤ αρθ (u, v) + βρθ (u, Su) + δρθ (v, Sv)

= αρθ (u, v) .

Since α < 1, we obtain that ρθ (u, v) = 0, i.e., u is the unique fixed point of S.

Remark 2.6. In Theorem 2.6, if we take θ (u,w) = s for all u,w ∈ E where s ≥ 1, then
we derive Theorem 2.4 of [10].

In Reich fixed point theorem, if we get α = 0, then we obtain following general-
ized Kannan fixed point theorem in bv (θ) metric spaces.

Theorem 2.7. Let E be a complete bv (θ) metric space and S a mapping on E
satisfying:

ρθ (Su, Sw) ≤ βρθ (u, Su) + γρθ (w, Sw)

for all u,w ∈ E where β and γ are nonnegative constants with β + γ < 1 and
Γ1 <

1
Γ2

where Γ1 = min {β, γ} and Γ2 = max {θ (u, Su) , θ (Su, u)}. Then S has a
unique fixed point.
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Remark 2.7. In Theorem 2.7,

1. if v = 1 and θ (u,w) = 1 for all u,w ∈ E where s ≥ 1, then we obtain Kannan fixed
point theorem [7] in complete usual metric spaces.

2. if v = 2 and θ (u,w) = s for all u,w ∈ E where s ≥ 1, then we derive Theorem 2.4
of [3].

3. if v = 2 and θ (u,w) = 1 for all u,w ∈ E where s ≥ 1, then we obtain main theorem
of [15] without the assumption of orbitally completeness of the space and the main
theorem of [11].
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