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Abstract. In this study, we attend to the curves whose position vectors are written
as a linear combination of their Serret-Frenet vectors in Minkowski 4-space Ef. We
characterize such curves with regard to their curvatures. Further, we get certain con-
sequences of T-constant and N-constant types of curves in Ef.
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1. Introduction

The term rectifying curves is presented by B.Y. Chen in [7]. Afterwards, Chen
and Dillen gave the connection between these curves and centrodes that have a place
in mechanics and kinematics as well as in differential geometry [10]. The rectifying
curves in the Minkowski 3-space E? were investigated in [12, 16, 17]. For a regular
curve z : I C R — Ef given with the arclength parameter, the hyperplanes spanned
by {T, N1, N3} and {T', N2, N3} are known as the first osculating hyperplane and the
second osculating hyperplane, respectively. If z lies on its first (second) osculating
hyperplane, then z(s) is called as an osculating curve of first (second) kind. In
[1], the authors considered the rectifying curves in Minkowski 4-space E}. They
characterized the rectifying curves with the equation

z(s) = A(s)T(s) + p(s)Na(s) + v(s)Na(s)

for given differentiable functions A(s), u(s) and v(s). Actually, these curves are
osculating curves of a second kind. The rectifying curves in E} are studied by the
authors in [18, 19].

The notion of constant ratio curves in Minkowski spaces is given by B. Y. Chen
in [9]. In the same paper, the author gave the necessary and sufficient conditions,
2T = 0 or the ratio HxTH : ||z|| is constant, for curves to become constant ratio.
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Moreover, in [8], the same author introduces T-constant and N -constant types of
curves. If the norm of the tangential component (normal component) is constant,
the curve is called as T-constant (N-constant). Also, if this norm is equal to zero,
then the curve is a T-constant (N-constant) curve of first kind, otherwise second
kind [15]. Recently, the authors have studied the mentioned curves in some spaces
in 2, 3, 4, 5, 6, 15, 20, 21, 22, 28, 29, 30, 31].

In this study, we deal with spacelike curves with spacelike principal normal in
E$ with respect to the their Frenet frame {T', N1, N2, N3}. Since {T, N1, N, N3} is
an orthonormal basis in Ef, we write the position vector of the curve as

(1.1) x(s) = mo(s)T(s) + m1(s)N1(s) + ma(s)Na(s) + msz(s)N3(s),

for some differentiable functions m;(s), i = 0,1,2,3. We classify osculating curves
of the first and the second kind with regard to their curvature functions x1(s), k2(s)
and r3(s). We give W-curves in Ef. Furthermore, we get certain consequences of
these types curves to become ccr-curves. We consider T-constant and N-constant
curves in Ef.

2. Basic Consepts

Minkowski 4-space is 4-dimensional pseudo-Euclidean space defined by the Lorentzian
inner product

(v,w), = —viwy + vaws + V3W3 + Vswy,
where v;, w;, i=1,2,3,4 are the components of the vectors v and w. Any arbitrary
vector v is called timelike, lightlike or spacelike if the Lorentzian inner product

(v,v) is negative definite, zero or positive definite, respectively. Then, the length
of the vector v € Ef is calculated by

[oll = \/1{v, v)p -

The sets
S}(r*) = {v € EL : (v,v), =1}

and
H3(—r?) = {ve E} : (v,v); = —r2}

are called pseudo-Riemannian and pseudo-Hyperbolic spaces in E} for positive
number r, respectively [11].

A curve x = z(s) : I — Ef is timelike (lightlike (null), spacelike) if all tangent
vectors z'(s) are timelike (lightlike (null), spacelike). If ||2/(s)|| = 1, z is a unit
speed curve [25].

The light cone L£C of Ef is defined as

£C = {v ek}, (v,v), =0}.
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Let 2 : I C R — E{ be a unit speed spacelike curve with spacelike principal
normal and {7, N1, No, N3} be the Frenet frame of x in E}. Then, the Frenet
formulas are

T'(s) = ri(s)Ni(s),

(2.1) Ni(s) = —k1(8)T(s)+ era(s)Na(s),
Ny(s) = —ka(s)N1(s) — ek3(s)N3(s),
Ni(s) = —ens(s)Na(s),

where £1(s), k2(s) and k3(s) are the first, the second, and the third curvatures of
the curve z and

£ = (Na(s), Na(s)), = — (N3(s), N3(s)), = £1

[26].
Screw lines or helices, called as W-curves by F. Klein and S. Lie [23], are the
curves with constant curvatures, and they are mentioned in [13, 14]. Moreover, a

regular curve is a ccr-curve, constant curvature ratios, if its curvature’s ratios are
constants [24, 27].

3. Characterization of Spacelike Curves in E{

Now, we shall consider curves given with the equality (1.1) in E}. Let z: I C R —
E$ be a unit speed spacelike curve with spacelike principal normal, and &1 (s) # 0,
k2(s) and k3(s) be the curvatures of x. Differentiating (1.1) according to s and
using (2.1), we get

2'(s) = (mg(s) — ki(s)m(s))T(s)
+(m(s) + w1(s)mo(s) — k2(s)ma(s))Ni(s)
+(mi(s) + era(s)ma(s) — ens(s)ma(s)) Na(s)
+(m3(s) — ers(s)ma(s))Ns,
which follows
my —kimy = 1,
(3.1) my + Kkimo — kamg = 0,

m'2 + EKgM — ERK3M3 =

R R

my — ekgmy =

The following theorem determines the W-curves in Ej.

Theorem 3.1. Let x: I C R — E} be a unit speed spacelike curve with spacelike
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principal normal. If x is a W-curve in E}, then

2K1 { S By Wit 7 /=22 F2pn
mnl(s = —_————— < C1€ 2 MS*C ez HS}
0( ) 72)\+2‘u 1 2
I o VI bV
AT 24 ’

—1 -1 = 1 /~oxToL
ml(s) _ + cre® VvV —2A+2us + coe? 22+2pus
K1

—1 1
=22 +2us V2 +2us
+c3e2 HS + cqe2 ms
_je B VDT s (—/\+u+2f€f)

vV=2X+2pn
1 T oot VTS (ZALut2n]
ma(s) = i e
= —_— 2
Ko —eges VIS (Adpt2 ’
Neye=m
Lvantaps (Atpt2nt
teqez Py

ma(s) = ens [ ma(s)ds.

Here, ¢; (1 <14 < 4) are integral constants and

A

\/ﬁ‘ll + 2r2K3 + 2eKk2K3 + K5 — 2eK3RE + K3,

—KJ% + K% — 5/»4;%

I

are real constants.

Proof. Assume x : I ¢ R — E} is a unit speed spacelike curve with spacelike
principal normal. From (3.1), we get the differential equation

w 2 22y 2.2 2
mg ) 4 (k] +ers — k5)mY — K{ksmMy — K1Kk5 = 0,

which has a solution

-1 -1z 1=
ml(s) _ + e 20+2us + coe? vV —=2X+2us
K1

_’_036%1 V2A+2us + 646%\/2)\+2M5.

Thus, the theorem is proved. [

3.1. Osculating Curve of First Kind in E}

Definition 3.1. Let z: I C R — E} be a unit speed spacelike curve with spacelike
principal normal. If z lies in the hyperplane spanned by {T', N1, N3}, then z is called
an osculating curve of first kind in Ef.
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In [19], authors consider the osculating curves of first kind in E{. It means that
the differentiable function mgq(s) vanishes identically. Thus, from (3.1), the system

/
mgy — K1 1,
/
mi;+rkimg = 0,
KoMy — K3Mmsz = 0,
r_
mg = 0
is obtained. Therefore,
—cH},
mo = )
R1
m1 = cHo,
m3 = C,

where Ha(s) = 12(s), ¢ € R. Thus, one can write z as in the following

x(s)=c { il (s)T'(s) + Ha(s)N1(s) + Ng(S)} .

R1
In [19], authors give the Lemma 3.1.
Lemma 3.1. [19] Letx : I C R — Ef be a unit speed spacelike curve with spacelike

principal normal. The necessary and sufficient condition for x to correspond an
osculating curve of first kind is

H\'
(3.2) <CH 2> ter Hy +1=0,
1

where Ha(s) = 22(s), ¢ € R.

K2

Corollary 3.1. Let x: I C R — E} be a unit speed spacelike curve with spacelike
principal normal and corresponds to an osculating curve of the first kind in Ei. If
x 18 a cer-curve, then

where ¢ = ms 1s a real constant.

We give a classification assuming only one of the curvature functions is non-
constant as follows:

Assume k1 (s) =constant> 0, ka2(s) =constant# 0 and k3(s) is a non-constant
function. From (3.2), we obtain the differential equation

ck5(s) + ckirs(s) + kika =0,
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which has a solution

K .
k3(s) = —i + ¢1 cos(k18) + co sin(kys).

Similarly, assume that k1(s) = constant > 0, k3(s) = constant # 0 and k2(s) is a
non-constant function. Then, (3.2) implies the differential equation

1
CK3 1 CK1K3
3.3 — + +1=0,
(35) = (aw) o
with solution
CR1K3

Ka(s) = .
2(s) —c1k3 co8(K18) + cakgsin(kys) — 1

Summing up these calculations, we give the Theorem 3.2.

Theorem 3.2. Let x: 1 C R — E} be a unit speed spacelike curve with spacelike
principal normal in E$. Then x corresponds to an osculating curve of first kind if

i) K1(s) =constant> 0, k2(s) =constant# 0 and

K .
k3(s) = —ﬁ + ¢1 cos(k18) + casin(kys),

ii) k1(s) =constant> 0, r3(s) =constant# 0 and

CK1K3

ria(s) = —c1k3 cos(k18) + cakizsin(kys) — 17

where ¢,c1 and ¢ € R.

3.2. Osculating Curve of the Second Kind in E{

Definition 3.2. Let z: I C R — E} be a unit speed spacelike curve with spacelike
principal normal in Ej. If z lies in the hyperplane spanned by {T', N2, N3}, then x
is an osculating curve of the second kind in Ef.

In [1], the authors consider the spacelike osculating curve of the second kind in
E$. Actually, they call them as rectifying curves in E{. In this case, the differentiable
function mq(s) vanishes identically. Thus from (3.1), the equalities

my = 1,

(34) K1 — KoMy = 0,
/

my —ekgmg = 0,

my —ekgmg = 0

hold. Therefore
mg = s+b,
(35) mo = (S + b)Hl,
(s+b)H] + Hy
ER3 ’

ms =
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where b € R and H;(s) = £1(s) is the first harmonic curvature of 2. Hence, x is

2

(s +b)H| + Hy

z(s) = (s+b)T(s) + (s +b)H 1 Na(s) + p—

Ng(S)
By the use of (3.4) and (3.5), we give the following results.

Theorem 3.3. Let x: I C R — E} be a unit speed spacelike curve with a space-
like principal normal in E}. Then the necessary and sufficient condition for x to
correspond an osculating curve of second kind is

((erb)H{ + H;

(3.6)
ER3

/
) —EHg(S—Fb)Hl =0
for Hi(s) = #2(s),b € R.

Corollary 3.2. Letx: I CR — E} be a unit speed spacelike curve with spacelike
principal normal and corresponds to an osculating curve of the second kind. If x is
a ccr-curve, then

1

3.7 rals) = b
(87) 3(s) ve+ s2+ 2bs

where b, c € R.

Proof. Let x be an osculating curve of second kind. If z is a ccr-curve, then the
functions Hi(s) = 11(s) and Ha(s) = #3(s) are constants. Thus, by the use of
(3.6), one can get

K3 (s) + (s +b)w3(s) =0,

which has a solution (3.7). O

As a consequence of the differential equation (3.6), one can get the following
solutions as in the previous section.

Corollary 3.3. Letx: I C R — E} be a unit speed spacelike curve with spacelike
principal normal in E}. Then, x is corresponds to an osculating curve of the second
kind if

i) k1(s) = constant > 0, ka(s) = constant # 0, and k3(s) = £ L

Ve+s24+2bs’?
it) Kka(s) = constant # 0 , k3(s) = constant # 0, and

k1(s) = (c1 sinh (k3s) + ¢2 cosh (k3s)),

1
s5+0b
iii) k1(s) = constant > 0, k3(s) = constant # 0, and

k3(s+b)
c1 sinh(k38) — ¢3 cosh(k3s)’

Ka(s) =

where c1,c2,b € R.
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4. T-Constant Curves in E}

Definition 4.1. Let x : I C R — E} be a unit speed spacelike curve with spacelike
principal normal in E}'. If the norm of the tangential component of z, i.e.HxT |, is
constant, then x is a T-constant curve [8]. Moreover, if this norm is equal to zero,
ie. ||xTH = 0, then the curve is a T'-constant curve of the first kind, otherwise the
second kind [15].

In view of (3.1), we give the results that determine T-constant curves in Ej.

Theorem 4.1. Let x : I C R — E} be a unit speed spacelike curve with spacelike
principal normal in E}. The necessary and sufficient condition for x to become a
T-constant curve of the first kind is

(-%£)

HR + | ~—2L 2| =0

i + ER3 H2 ’

where Ha(s) = 12(s) and —ma(s) = R(s) = Kll(s) is the radius of the curvature of

the curve x.

Proof. Let x is a T-constant curve of the first kind. From (3.1), we get

1 _mj My + ekgmy
my=—-——MmMe=——,M3=—""" .
K1 K2 ER3
Further, substituting these values into mf — exsmo = 0, we yield the expected
result. [

Theorem 4.2. Letz:I C R — E} be a unit speed spacelike curve with a spacelike
principal normal in EY. The necessary and sufficient condition for x to become a
T-constant curve of the second kind is

’ ! !
(52 +mmo) g o (R
T_E —¢ 2(— +/<1m0)—0,

where mo € R, Hi(s) = $(s), Ha(s) = $2(s) and —mi(s) = R(s) = —L— s the

K
radius of the curvature of the curve x.

Proof. Let x is a T-constant curve of second kind. From (3.1), we get

1 _my + Kk1mg _ mb + ekomy
m=-—mMmy=—,T"NMN3 = —.
K1 K2 ER3

Further, substituting these values into m% — ekzma = 0, we get the result. [
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Corollary 4.1. Letx: I C R — E{ be a unit speed T-constant spacelike curve of
second kind with spacelike principal normal in B}, If x is a W-curve of Ef, then
has the parametrization of

2(s) = AT — RNy + H{ AN, — HENS,
2

where R = %, Hy =% Hy =25 X eR and c is an integral constant.
1 K2 Ko

Theorem 4.3 gives a simple characterization of T-constant curves of second kind
of Ef.

Theorem 4.3. Let v : I C R — E} be a unit speed T-constant spacelike curve
of second kind with spacelike principal normal in E}. Then the distance function
p = ||z|| satisfies

(4.1) p==EV2As+c,

for some real constants A\ = mg and c.

Proof. Differentiating the squared distance function p? = (z(s),z(s)) and using
(1.1), we get pp’ = myg. If z is a T-constant curve of second kind, then by definition,
the differentiable function mg(s) of x is constant. It is easy to show that this
differential equation has a non-trivial solution (4.1). O

5. N-Constant Curves in E{

Definition 5.1. Let x : I C R — E} be a unit speed spacelike curve with spacelike
principal normal in E}. If the norm of the normal component of z, i.e.||a:NH7 is
constant, then x is a N-constant curve [8]. Moreover, if this norm is equal to zero,
ie. ||xNH = 0, then the curve is a N-constant curve of the first kind, otherwise
second kind [15].

Hence, for a N-constant curve z in E{
2
[2¥ (s)||” = mi(s) +em3(s) — em3(s)
becomes a constant function. Therefore, by differentiation
(5.1) mimy + emamb — emzm’y = 0.

The following proposition gives a characterization of N-constant curves of the
first kind.
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Proposition 5.1. Let z: I C R — E{ be a unit speed N -constant spacelike curve
with spacelike principal normal in E}. If x is a N-constant curve of the first kind,
then,

i) x is congruent to a spacelike line which passes through the origin,

it) x is a planar curve,

iii) x is an osculating curve of second kind,

i) x lies in the hyperplane which is spanned by {T, N1, Na} .

Conversely, if v : I C R — E} is a unit speed spacelike curve with spacelike
principal normal in B} with k1 > 0, and one of (i), (i), (iii), (iv) holds, then x is
a N-constant curve of the first kind.

Proof. Assume x is a N-constant curve of the first kind in E}. There are two pos-
sibilities; either my = ma = m3 = 0 or m3 + em3 = em3. In the first case, x (I) is
congruent to a spacelike line which passes through the origin. Let m?2 +em3 = em3,
then by the use of the equations (3.1), we get komimg = 0. If ko = 0, z is a planar
curve. If m; = 0, x is an osculating curve of second kind. Let ms = 0, then there
are two possibilities; either k3 = 0 or mgy = 0. If my = 0, x is a planar curve. If
k3 = 0, z lies in the hyperplane which is spanned by {T, N1, No}. O

Further, for the N-constant curves of the second kind, we obtain the following
result.

Theorem 5.1. Let x(s) € Ef be a spacelike curve with a spacelike principal normal
given with the arclength function s and fully lies in Ei. If x is a N-constant curve
of the second kind, then x has a parametrization of

Hi(s+c¢)+ Hy

x(s) = (s+¢)T(s) + Hi(s + ¢)Na(s) + chs

Ns(s),

where Hy(s) = %1(s),c € R.

K2

Proof. Assume x is a N-constant curve of the second kind in E. From the equalities
(3.1) and (5.1), we get m1 = 0, mo(s) = s+c, ma(s) = 7L (s)mo and ms(s) = :Zi((z))
for some constant ¢ € R. This completes the proof of the theorem. [

Remark 5.1. Every N-constant curve of the second kind is an osculating curve of second
kind in E{.

Theorem 5.2 gives a simple characterization of N-constant curve of the second
kind in Ef.

Theorem 5.2. Let x: I C R — E} be a N-constant curve of second kind. Then,
the distance function p = ||z|| satisfies

(5.2) p=tvVs2+2sc+2b,

for real constants b and c.
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Example 5.1. Let us consider the W-curve z (s) = (sinh s, cosh s,v/2sin s, —/2 cos s)
in E}. The Frenet frame vectors and the curvatures of x are given as

T(s) = (cosh s, sinh s, V2 cos s,v/2sin s) ,
1
Ni(s) = — (sinh s, cosh s, —v/2sin s,\/§coss) ,
V3
Ny (s) = (\/iCOSh s,V/2sinh s, cos s, sin s) ,
1
N3(s) = — (\@sinh s,vV2cosh s, sin s, — cos s)
V3
and
26 3
K1 = /3, ;-;2:——‘[7 53:£7
3 3
respectively. We find the curvature functions as mo = ma =0, my = 7? and msz = 2—\3/5,

which shows that the curve x is a T-constant curve of the first kind and N-constant curve
of the second kind.
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