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A NEW CHARACTERIZATION OF CURVES IN MINKOWSKI
4-SPACE E4

1

Ilim Kisi, Günay Öztürk, and Kadri Arslan

Abstract. In this study, we attend to the curves whose position vectors are written
as a linear combination of their Serret-Frenet vectors in Minkowski 4-space E4

1. We
characterize such curves with regard to their curvatures. Further, we get certain con-
sequences of T -constant and N -constant types of curves in E4

1.
Keywords: Constant ratio curves, T-constant curves, N-constant curves, Minkowski
space.

1. Introduction

The term rectifying curves is presented by B.Y. Chen in [7]. Afterwards, Chen
and Dillen gave the connection between these curves and centrodes that have a place
in mechanics and kinematics as well as in differential geometry [10]. The rectifying
curves in the Minkowski 3-space E3

1 were investigated in [12, 16, 17]. For a regular
curve x : I ⊂ R→ E4

1 given with the arclength parameter, the hyperplanes spanned
by {T,N1, N3} and {T,N2, N3} are known as the first osculating hyperplane and the
second osculating hyperplane, respectively. If x lies on its first (second) osculating
hyperplane, then x(s) is called as an osculating curve of first (second) kind. In
[1], the authors considered the rectifying curves in Minkowski 4-space E4

1. They
characterized the rectifying curves with the equation

x(s) = λ(s)T (s) + µ(s)N2(s) + υ(s)N3(s)

for given differentiable functions λ(s), µ(s) and υ(s). Actually, these curves are
osculating curves of a second kind. The rectifying curves in E4

1 are studied by the
authors in [18, 19].

The notion of constant ratio curves in Minkowski spaces is given by B. Y. Chen
in [9]. In the same paper, the author gave the necessary and sufficient conditions,
xT = 0 or the ratio

∥∥xT∥∥ : ‖x‖ is constant, for curves to become constant ratio.
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Moreover, in [8], the same author introduces T -constant and N -constant types of
curves. If the norm of the tangential component (normal component) is constant,
the curve is called as T -constant (N -constant). Also, if this norm is equal to zero,
then the curve is a T -constant (N -constant) curve of first kind, otherwise second
kind [15]. Recently, the authors have studied the mentioned curves in some spaces
in [2, 3, 4, 5, 6, 15, 20, 21, 22, 28, 29, 30, 31].

In this study, we deal with spacelike curves with spacelike principal normal in
E4
1 with respect to the their Frenet frame {T,N1, N2, N3}. Since {T,N1, N2, N3} is

an orthonormal basis in E4
1, we write the position vector of the curve as

(1.1) x(s) = m0(s)T (s) +m1(s)N1(s) +m2(s)N2(s) +m3(s)N3(s),

for some differentiable functions mi(s), i = 0, 1, 2, 3. We classify osculating curves
of the first and the second kind with regard to their curvature functions κ1(s), κ2(s)
and κ3(s). We give W-curves in E4

1. Furthermore, we get certain consequences of
these types curves to become ccr-curves. We consider T -constant and N -constant
curves in E4

1.

2. Basic Consepts

Minkowski 4-space is 4-dimensional pseudo-Euclidean space defined by the Lorentzian
inner product

〈v, w〉L = −v1w1 + v2w2 + v3w3 + v4w4,

where vi, wi, i=1,2,3,4 are the components of the vectors v and w. Any arbitrary
vector v is called timelike, lightlike or spacelike if the Lorentzian inner product
〈v, v〉L is negative definite, zero or positive definite, respectively. Then, the length
of the vector v ∈ E4

1 is calculated by

‖v‖ =
√
|〈v, v〉L|.

The sets
S31(r2) =

{
v ∈ E4

1 : 〈v, v〉L = r2
}

and
H3

0(−r2) =
{
v ∈ E4

1 : 〈v, v〉L = −r2
}

are called pseudo-Riemannian and pseudo-Hyperbolic spaces in E4
1 for positive

number r, respectively [11].

A curve x = x(s) : I → E4
1 is timelike (lightlike (null), spacelike) if all tangent

vectors x′(s) are timelike (lightlike (null), spacelike). If ‖x′(s)‖ = 1, x is a unit
speed curve [25].

The light cone LC of E4
1 is defined as

LC =
{
v ∈ E4

1, 〈v, v〉L = 0
}
.
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Let x : I ⊂ R → E4
1 be a unit speed spacelike curve with spacelike principal

normal and {T,N1, N2, N3} be the Frenet frame of x in E4
1. Then, the Frenet

formulas are

T ′(s) = κ1(s)N1(s),

N ′1(s) = −κ1(s)T (s) + εκ2(s)N2(s),(2.1)

N ′2(s) = −κ2(s)N1(s)− εκ3(s)N3(s),

N ′3(s) = −εκ3(s)N2(s),

where κ1(s), κ2(s) and κ3(s) are the first, the second, and the third curvatures of
the curve x and

ε = 〈N2(s), N2(s)〉L = −〈N3(s), N3(s)〉L = ±1

[26].

Screw lines or helices, called as W -curves by F. Klein and S. Lie [23], are the
curves with constant curvatures, and they are mentioned in [13, 14]. Moreover, a
regular curve is a ccr-curve, constant curvature ratios, if its curvature’s ratios are
constants [24, 27].

3. Characterization of Spacelike Curves in E4
1

Now, we shall consider curves given with the equality (1.1) in E4
1. Let x : I ⊂ R→

E4
1 be a unit speed spacelike curve with spacelike principal normal, and κ1(s) 6= 0,

κ2(s) and κ3(s) be the curvatures of x. Differentiating (1.1) according to s and
using (2.1), we get

x′(s) = (m′0(s)− κ1(s)m1(s))T (s)

+(m′1(s) + κ1(s)m0(s)− κ2(s)m2(s))N1(s)

+(m′2(s) + εκ2(s)m1(s)− εκ3(s)m3(s))N2(s)

+(m′3(s)− εκ3(s)m2(s))N3,

which follows

m′0 − κ1m1 = 1,

m′1 + κ1m0 − κ2m2 = 0,(3.1)

m′2 + εκ2m1 − εκ3m3 = 0,

m′3 − εκ3m2 = 0.

The following theorem determines the W -curves in E4
1.

Theorem 3.1. Let x : I ⊂ R → E4
1 be a unit speed spacelike curve with spacelike
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principal normal. If x is a W -curve in E4
1, then

m0(s) = − 2κ1√
−2λ+ 2µ

{
c1e

−1
2

√
−2λ+2µs − c2e

1
2

√
−2λ+2µs

}
− 2κ1√

2λ+ 2µ

{
c3e

−1
2

√
2λ+2µs − c4e

1
2

√
2λ+2µs

}
,

m1(s) =
−1

κ1
+ c1e

−1
2

√
−2λ+2µs + c2e

1
2

√
−2λ+2µs

+c3e
−1
2

√
2λ+2µs + c4e

1
2

√
2λ+2µs,

m2(s) =
1

κ2



−c1e
−1
2

√
−2λ+2µs

(
−λ+µ+2κ2

1√
−2λ+2µ

)
+c2e

1
2

√
−2λ+2µs

(
−λ+µ+2κ2

1√
−2λ+2µ

)
−c3e

−1
2

√
2λ+2µs

(
λ+µ+2κ2

1√
2λ+2µ

)
+c4e

1
2

√
2λ+2µs

(
λ+µ+2κ2

1√
2λ+2µ

) ,

m3(s) = εκ3

∫
m2(s)ds.

Here, ci (1 ≤ i ≤ 4) are integral constants and

λ =
√
κ41 + 2κ21κ

2
3 + 2εκ21κ

2
2 + κ43 − 2εκ22κ

2
3 + κ42,

µ = −κ21 + κ23 − εκ22

are real constants.

Proof. Assume x : I ⊂ R → E4
1 is a unit speed spacelike curve with spacelike

principal normal. From (3.1), we get the differential equation

m
(ıv)
1 + (κ21 + εκ22 − κ23)m′′1 − κ21κ23m1 − κ1κ23 = 0,

which has a solution

m1(s) =
−1

κ1
+ c1e

−1
2

√
−2λ+2µs + c2e

1
2

√
−2λ+2µs

+c3e
−1
2

√
2λ+2µs + c4e

1
2

√
2λ+2µs.

Thus, the theorem is proved.

3.1. Osculating Curve of First Kind in E4
1

Definition 3.1. Let x : I ⊂ R→ E4
1 be a unit speed spacelike curve with spacelike

principal normal. If x lies in the hyperplane spanned by {T,N1, N3}, then x is called
an osculating curve of first kind in E4

1.
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In [19], authors consider the osculating curves of first kind in E4
1. It means that

the differentiable function m2(s) vanishes identically. Thus, from (3.1), the system

m′0 − κ1m1 = 1,

m′1 + κ1m0 = 0,

κ2m1 − κ3m3 = 0,

m′3 = 0

is obtained. Therefore,

m0 =
−cH ′2
κ1

,

m1 = cH2,

m3 = c,

where H2(s) = κ3

κ2
(s), c ∈ R. Thus, one can write x as in the following

x(s) = c

{
−H ′2
κ1

(s)T (s) +H2(s)N1(s) +N3(s)

}
.

In [19], authors give the Lemma 3.1.

Lemma 3.1. [19] Let x : I ⊂ R→ E4
1 be a unit speed spacelike curve with spacelike

principal normal. The necessary and sufficient condition for x to correspond an
osculating curve of first kind is

(3.2)

(
cH ′2
κ1

)′
+ cκ1H2 + 1 = 0,

where H2(s) = κ3

κ2
(s), c ∈ R.

Corollary 3.1. Let x : I ⊂ R→ E4
1 be a unit speed spacelike curve with spacelike

principal normal and corresponds to an osculating curve of the first kind in E4
1. If

x is a ccr-curve, then

H2 = − 1

cκ1
,

where c = m3 is a real constant.

We give a classification assuming only one of the curvature functions is non-
constant as follows:

Assume κ1(s) =constant> 0, κ2(s) =constant 6= 0 and κ3(s) is a non-constant
function. From (3.2), we obtain the differential equation

cκ′′3(s) + cκ21κ3(s) + κ1κ2 = 0,



192 İ. Kişi, G. Öztürk, and K. Arslan

which has a solution

κ3(s) = − κ2
cκ1

+ c1 cos(κ1s) + c2 sin(κ1s).

Similarly, assume that κ1(s) = constant > 0, κ3(s) = constant 6= 0 and κ2(s) is a
non-constant function. Then, (3.2) implies the differential equation

(3.3)
cκ3
κ1

(
1

κ2(s)

)′′
+
cκ1κ3
κ2(s)

+ 1 = 0,

with solution
κ2(s) =

cκ1κ3
−c1κ3 cos(κ1s) + c2κ3 sin(κ1s)− 1

.

Summing up these calculations, we give the Theorem 3.2.

Theorem 3.2. Let x : I ⊂ R → E4
1 be a unit speed spacelike curve with spacelike

principal normal in E4
1. Then x corresponds to an osculating curve of first kind if

i) κ1(s) =constant> 0, κ2(s) =constant6= 0 and

κ3(s) = − κ2
cκ1

+ c1 cos(κ1s) + c2 sin(κ1s),

ii) κ1(s) =constant> 0, κ3(s) =constant6= 0 and

κ2(s) =
cκ1κ3

−c1κ3 cos(κ1s) + c2κ3 sin(κ1s)− 1
,

where c, c1 and c2 ∈ R.

3.2. Osculating Curve of the Second Kind in E4
1

Definition 3.2. Let x : I ⊂ R→ E4
1 be a unit speed spacelike curve with spacelike

principal normal in E4
1. If x lies in the hyperplane spanned by {T,N2, N3}, then x

is an osculating curve of the second kind in E4
1.

In [1], the authors consider the spacelike osculating curve of the second kind in
E4
1. Actually, they call them as rectifying curves in E4

1. In this case, the differentiable
function m1(s) vanishes identically. Thus from (3.1), the equalities

m′0 = 1,

κ1m0 − κ2m2 = 0,(3.4)

m′2 − εκ3m3 = 0,

m′3 − εκ3m2 = 0

hold. Therefore

m0 = s+ b,

m2 = (s+ b)H1,(3.5)

m3 =
(s+ b)H ′1 +H1

εκ3
,
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where b ∈ R and H1(s) = κ1

κ2
(s) is the first harmonic curvature of x. Hence, x is

x(s) = (s+ b)T (s) + (s+ b)H1N2(s) +
(s+ b)H ′1 +H1

εκ3
N3(s).

By the use of (3.4) and (3.5), we give the following results.

Theorem 3.3. Let x : I ⊂ R → E4
1 be a unit speed spacelike curve with a space-

like principal normal in E4
1. Then the necessary and sufficient condition for x to

correspond an osculating curve of second kind is

(3.6)

(
(s+ b)H ′1 +H1

εκ3

)′
− εκ3(s+ b)H1 = 0

for H1(s) = κ1

κ2
(s), b ∈ R.

Corollary 3.2. Let x : I ⊂ R→ E4
1 be a unit speed spacelike curve with spacelike

principal normal and corresponds to an osculating curve of the second kind. If x is
a ccr-curve, then

(3.7) κ3(s) = ± 1√
c+ s2 + 2bs

,

where b, c ∈ R.

Proof. Let x be an osculating curve of second kind. If x is a ccr-curve, then the
functions H1(s) = κ1

κ2
(s) and H2(s) = κ3

κ2
(s) are constants. Thus, by the use of

(3.6), one can get
κ′3(s) + (s+ b)κ33(s) = 0,

which has a solution (3.7).

As a consequence of the differential equation (3.6), one can get the following
solutions as in the previous section.

Corollary 3.3. Let x : I ⊂ R→ E4
1 be a unit speed spacelike curve with spacelike

principal normal in E4
1. Then, x is corresponds to an osculating curve of the second

kind if

i) κ1(s) = constant > 0, κ2(s) = constant 6= 0, and κ3(s) = ± 1√
c+s2+2bs

,

ii) κ2(s) = constant 6= 0 , κ3(s) = constant 6= 0, and

κ1(s) =
1

s+ b
(c1 sinh (κ3s) + c2 cosh (κ3s)) ,

iii) κ1(s) = constant > 0, κ3(s) = constant 6= 0, and

κ2(s) =
κ3(s+ b)

c1 sinh(κ3s)− c2 cosh(κ3s)
,

where c1, c2, b ∈ R.
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4. T-Constant Curves in E4
1

Definition 4.1. Let x : I ⊂ R→ Ent be a unit speed spacelike curve with spacelike
principal normal in Ent . If the norm of the tangential component of x, i.e.

∥∥xT∥∥, is
constant, then x is a T -constant curve [8]. Moreover, if this norm is equal to zero,
i.e.

∥∥xT∥∥ = 0, then the curve is a T -constant curve of the first kind, otherwise the
second kind [15].

In view of (3.1), we give the results that determine T -constant curves in E4
1.

Theorem 4.1. Let x : I ⊂ R → E4
1 be a unit speed spacelike curve with spacelike

principal normal in E4
1. The necessary and sufficient condition for x to become a

T -constant curve of the first kind is

εH2R
′ +


(
−R

′

κ2

)′
εκ3

− R

H2


′

= 0,

where H2(s) = κ3

κ2
(s) and −m1(s) = R(s) = 1

κ1(s)
is the radius of the curvature of

the curve x.

Proof. Let x is a T -constant curve of the first kind. From (3.1), we get

m1 = − 1

κ1
,m2 =

m′1
κ2
,m3 =

m′2 + εκ2m1

εκ3
.

Further, substituting these values into m′3 − εκ3m2 = 0, we yield the expected
result.

Theorem 4.2. Let x : I ⊂ R→ E4
1 be a unit speed spacelike curve with a spacelike

principal normal in E4
1. The necessary and sufficient condition for x to become a

T -constant curve of the second kind is
(
−R′
κ2

+H1m0

)′
εκ3

− R

H2


′

− εH2 (−R′ + κ1m0) = 0,

where m0 ∈ R, H1(s) = κ1

κ2
(s), H2(s) = κ3

κ2
(s) and −m1(s) = R(s) = 1

κ1(s)
is the

radius of the curvature of the curve x.

Proof. Let x is a T -constant curve of second kind. From (3.1), we get

m1 = − 1

κ1
,m2 =

m′1 + κ1m0

κ2
,m3 =

m′2 + εκ2m1

εκ3
.

Further, substituting these values into m′3 − εκ3m2 = 0, we get the result.
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Corollary 4.1. Let x : I ⊂ R→ E4
1 be a unit speed T -constant spacelike curve of

second kind with spacelike principal normal in E4
1. If x is a W -curve of E4

1, then x
has the parametrization of

x(s) = λT −RN1 +H1λN2 −
R

H2
N3,

where R = 1
κ1
, H1 = κ1

κ2
, H2 = κ3

κ2
, λ ∈ R and c is an integral constant.

Theorem 4.3 gives a simple characterization of T -constant curves of second kind
of E4

1.

Theorem 4.3. Let x : I ⊂ R → E4
1 be a unit speed T -constant spacelike curve

of second kind with spacelike principal normal in E4
1. Then the distance function

ρ = ‖x‖ satisfies

(4.1) ρ = ±
√

2λs+ c,

for some real constants λ = m0 and c.

Proof. Differentiating the squared distance function ρ2 = 〈x(s), x(s)〉 and using
(1.1), we get ρρ′ = m0. If x is a T -constant curve of second kind, then by definition,
the differentiable function m0(s) of x is constant. It is easy to show that this
differential equation has a non-trivial solution (4.1).

5. N-Constant Curves in E4
1

Definition 5.1. Let x : I ⊂ R→ Ent be a unit speed spacelike curve with spacelike
principal normal in Ent . If the norm of the normal component of x, i.e.

∥∥xN∥∥, is
constant, then x is a N -constant curve [8]. Moreover, if this norm is equal to zero,
i.e.

∥∥xN∥∥ = 0, then the curve is a N -constant curve of the first kind, otherwise
second kind [15].

Hence, for a N -constant curve x in E4
1∥∥xN (s)

∥∥2 = m2
1(s) + εm2

2(s)− εm2
3(s)

becomes a constant function. Therefore, by differentiation

(5.1) m1m
′
1 + εm2m

′
2 − εm3m

′
3 = 0.

The following proposition gives a characterization of N -constant curves of the
first kind.
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Proposition 5.1. Let x : I ⊂ R→ E4
1 be a unit speed N -constant spacelike curve

with spacelike principal normal in E4
1. If x is a N -constant curve of the first kind,

then,

i) x is congruent to a spacelike line which passes through the origin,

ii) x is a planar curve,

iii) x is an osculating curve of second kind,

iv) x lies in the hyperplane which is spanned by {T,N1, N2} .
Conversely, if x : I ⊂ R → E4

1 is a unit speed spacelike curve with spacelike
principal normal in E4

1 with κ1 > 0, and one of (i), (ii), (iii), (iv) holds, then x is
a N -constant curve of the first kind.

Proof. Assume x is a N -constant curve of the first kind in E4
1. There are two pos-

sibilities; either m1 = m2 = m3 = 0 or m2
1 + εm2

2 = εm2
3. In the first case, x (I) is

congruent to a spacelike line which passes through the origin. Let m2
1 +εm2

2 = εm2
3,

then by the use of the equations (3.1), we get κ2m1m3 = 0. If κ2 = 0, x is a planar
curve. If m1 = 0, x is an osculating curve of second kind. Let m3 = 0, then there
are two possibilities; either κ3 = 0 or m2 = 0. If m2 = 0, x is a planar curve. If
κ3 = 0, x lies in the hyperplane which is spanned by {T,N1, N2} .

Further, for the N -constant curves of the second kind, we obtain the following
result.

Theorem 5.1. Let x(s) ∈ E4
1 be a spacelike curve with a spacelike principal normal

given with the arclength function s and fully lies in E4
1. If x is a N -constant curve

of the second kind, then x has a parametrization of

x(s) = (s+ c)T (s) +H1(s+ c)N2(s) +
H ′1(s+ c) +H1

εκ3
N3(s),

where H1(s) = κ1

κ2
(s), c ∈ R.

Proof. Assume x is a N -constant curve of the second kind in E4
1. From the equalities

(3.1) and (5.1), we get m1 = 0, m0(s) = s+c, m2(s) = κ1

κ2
(s)m0 and m3(s) =

m′2(s)
εκ3(s)

for some constant c ∈ R. This completes the proof of the theorem.

Remark 5.1. Every N -constant curve of the second kind is an osculating curve of second
kind in E4

1.

Theorem 5.2 gives a simple characterization of N -constant curve of the second
kind in E4

1.

Theorem 5.2. Let x : I ⊂ R → E4
1 be a N -constant curve of second kind. Then,

the distance function ρ = ‖x‖ satisfies

(5.2) ρ = ±
√
s2 + 2sc+ 2b,

for real constants b and c.
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Example 5.1. Let us consider the W -curve x (s) =
(
sinh s, cosh s,

√
2 sin s,−

√
2 cos s

)
in E4

1. The Frenet frame vectors and the curvatures of x are given as

T (s) =
(

cosh s, sinh s,
√

2 cos s,
√

2 sin s
)
,

N1 (s) =
1√
3

(
sinh s, cosh s,−

√
2 sin s,

√
2 cos s

)
,

N2 (s) =
(√

2 cosh s,
√

2 sinh s, cos s, sin s
)
,

N3 (s) =
1√
3

(√
2 sinh s,

√
2 cosh s, sin s,− cos s

)
and

κ1 =
√

3, κ2 = −2
√

6

3
, κ3 =

√
3

3
,

respectively. We find the curvature functions as m0 = m2 = 0, m1 = −
√
3
3

and m3 = 2
√
6

3
,

which shows that the curve x is a T -constant curve of the first kind and N -constant curve
of the second kind.
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18. K. İlarslan and E. Nesovic: Some characterization of null, peudo-null and
partially null rectifying curves in Minkowski space-time. Taiwanese J. Math., 12
(2008), 1035–1044.
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