ARENS REGULARITY AND STRONG IRREGULARITY OF CERTAIN BILINEAR MAPPINGS

Somayeh Mohammadzadeh and Sedigheh Barootkoob

© 2019 by University of Niš, Serbia | Creative Commons Licence: CC BY-NC-ND

Abstract. In this paper, the relations between the topological centers of bounded bilinear mappings and some of their higher rank adjoints are investigated. Particularly, for a Banach algebra A, some results about the Banach A-modules and Arens regularity and strong Arens irregularity of module actions will be obtained.

Keywords: Normed algebra, Arens regular, strongly irregular, bounded bilinear map, Banach module.

1. Introduction

Suppose that $f: X \times Y \longrightarrow Z$ is a bounded bilinear mapping on normed spaces X, Y and Z and let X^* be the topological dual of X. The adjoint of f is the bounded bilinear map $f^*: Z^* \times X \longrightarrow Y^*$ defined by

$$\langle f^*(z^*, x), y \rangle = \langle z^*, f(x, y) \rangle \quad (x \in X, y \in Y, z^* \in Z^*).$$

Using this method, the higher rank adjoints of f can be defined by setting $f^{**} = (f^*)^*$. This notion was first introduced by Arens [1]. The *n*th adjoint of f will be denoted by $f^{(n)}$ for n > 3.

The mapping f^t will be considered as the bounded bilinear map from $Y \times X$ into Z defined by $f^t(y, x) = f(x, y)$. The mapping f has two extensions f^{***} and f^{t***t} on $X^{**} \times Y^{**}$. The topological centers of the map f are defined as follows:

$$Z_{\ell}(f): = \{x^{**} \in X^{**}; f^{***}(x^{**}, y^{**}) = f^{t***t}(x^{**}, y^{**}) \text{ for every } y^{**} \in Y^{**}\} \text{ and } Z_{r}(f): = \{y^{**} \in Y^{**}; f^{***}(x^{**}, y^{**}) = f^{t***t}(x^{**}, y^{**}) \text{ for every } x^{**} \in X^{**}\}.$$

When f is the product π of a normed algebra A, π^{***} and π^{t***t} are really the first and second Arens products of A^{**} which will be denoted by \Box and \Diamond , respectively. In

Received April 08, 2019; accepted August 14, 2019

²⁰¹⁰ Mathematics Subject Classification. Primary 46H20; Secondary 46H25

this case the above topological centers are denoted by $Z_{\ell}(A^{**})$ and $Z_r(A^{**})$, respectively. The mapping f is called (Arens) regular when $f^{***} = f^{t***t}$ and the normed algebra A is said to be (Arens) regular if its product mapping is regular. The bilinear mapping f is said to be left (resp. right) strongly (Arens) irregular if $Z_{\ell}(f) = X$ (resp. $Z_r(f) = Y$). Let A be a normed algebra and let X be a normed A-module ,with module actions π_{ℓ} and π_r , denoted by (π_{ℓ}, X, π_r) . Then $(\pi_r^{t*t}, X^*, \pi_{\ell}^*)$ is a normed A-module. Also, $(\pi_{\ell}^{***}, X^{**}, \pi_r^{***})$ and $(\pi_{\ell}^{t**t}, X^{**}, \pi_r^{t**t})$ are normed A^{**} -modules with first and second Arens products, respectively. For further details about these concepts one can refer to [2, 3, 8].

A bounded linear mapping $D: A \longrightarrow X^*$ is said to be a derivation if $D(ab) = \pi_{\ell}^*(D(a), b) + \pi_r^{t*t}(a, D(b))$ for all $a, b \in A$. The mapping D is said to be an inner derivation if there exists $x^* \in X^*$ such that $D(a) = \pi_{\ell}^*(x^*, a) - \pi_r^{t*t}(a, x^*)$ for each $a \in A$. Impose some conditions on the normed algebra A or the normed A-module (π_{ℓ}, X, π_r) implies that the bounded linear mapping $D^{**}: A^{**} \longrightarrow X^{***}$ is also a derivation. Some of these conditions have been demonstrated in [4] and [8].

In this paper, A will be considered as a normed algebra with product π and X, Y, Z are assumed to be the normed spaces. In the first section, some conditions will be discussed under which the range of the third adjoint of the bounded bilinear mapping $f: X \times Y \longrightarrow Z$ lies in the weak closure of Z; see Theorem 2.1. Many of the results of this paper are obtained by this theorem. In section 2, we discuss some conditions under which a Banach algebra A will be a (left or right) ideal in A^{**} and then we improve some results of [5]. In section 3, by using Theorem 2.1, we continue the studies of [8] about the second adjoint of derivations.

2. Topological centers and their relations

Suppose that \bar{X} be the weak closure of normed space X which is equal to its original closure.

Proposition 2.1. Let $f : X \times Y \longrightarrow Z$ be a bounded bilinear map. Then $\overline{X} \subseteq Z_{\ell}(f)$ and $\overline{Y} \subseteq Z_{r}(f)$.

Proof. Let $x^{**} \in \overline{X}$, then there is a net $\{x_{\alpha}\} \subseteq X$ which converges to x^{**} in weak topology of X^{**} . Now for every $y^{**} \in Y^{**}$ and $z^* \in Z^*$ and bounded net $\{y_{\beta}\} \subseteq Y$, which is w^* -convergent to y^{**} , we have:

$$\langle f^{t***t}(x^{**}, y^{**}), z^* \rangle = \langle f^{t****}(z^*, y^{**}), x^{**} \rangle$$

$$= \lim_{\alpha} \langle f^{t****}(z^*, y^{**}), x_{\alpha} \rangle$$

$$= \lim_{\alpha} \langle f^{t***}(y^{**}, x_{\alpha}), z^* \rangle$$

$$= \lim_{\alpha} \langle y^{**}, f^{t**}(x_{\alpha}, z^*) \rangle$$

$$= \lim_{\alpha} \lim_{\beta} \langle f^{t**}(x_{\alpha}, z^*), y_{\beta} \rangle$$

Arens Regularity and Strong Irregularity

$$= \lim_{\alpha} \lim_{\beta} \langle f^{t*}(z^*, y_{\beta}), x_{\alpha} \rangle$$
$$= \lim_{\alpha} \lim_{\beta} \langle z^*, f(x_{\alpha}, y_{\beta}) \rangle$$
$$= \langle f^{***}(x^{**}, y^{**}), z^* \rangle.$$

We thus have $x^{**} \in Z_{\ell}(f)$; that is $\overline{X} \subseteq Z_{\ell}(f)$, as required. A similar proof may apply for the inclusion $\overline{Y} \subseteq Z_r(f)$. \Box

Applying the above proposition for the multiplication of a normed algebra A we have:

Corollary 2.1. For every normed algebra $A, \bar{A} \subseteq Z_{\ell}(A^{**}) \cap Z_{r}(A^{**})$.

[2, Theorem 3.4] indicates some cases for which the inclusion relations in Proposition 2.1 are converted to the equality. In fact, for every approximately unital left and right normed A-modules (π_{ℓ}, X) and (X, π_r),

$$Z_r(\pi_\ell^{t*}) = \bar{X} = Z_r(\pi_r^*),$$

whereas

$$Z_{\ell}(\pi_{\ell}^{t*}) = X^{*} = Z_{\ell}(\pi_{r}^{*}).$$

obviously, if X is a Banach space, then π_{ℓ}^{t*} and π_{r}^{*} are both strongly irregular. In this case the above conclusions will be trivial.

Theorem 2.1. Let X, Y and Z be normed spaces and let $f : X \times Y \longrightarrow Z$ be a bounded bilinear mapping. Then

(i) $f^{***}(x^{**}, y^{**}) \in \overline{Z}$, for every $x^{**} \in Z_r(f^*)$ and $y^{**} \in Z_r(f^{t*})$; (ii) $f^{***}(x, y^{**}) \in \overline{Z}$, for every $x \in X$ and $y^{**} \in Z_r(f^{t*})$; (iii) $f^{***}(x^{**}, y) \in \overline{Z}$, for every $x^{**} \in Z_r(f^*)$ and $y \in Y$.

Proof. Let $x^{**} \in Z_r(f^*)$, $y^{**} \in Z_r(f^{t*})$ and $z^{***} \in Z^{***}$. If $\{x_\alpha\}$, $\{y_\beta\}$ and $\{z_\gamma^*\}$ be bounded nets which converge to these elements in w^* -topology, respectively, then

$$\begin{aligned} \langle z^{***}, f^{***}(x^{**}, y^{**}) \rangle &= \langle f^{****}(z^{***}, x^{**}), y^{**} \rangle \\ &= \langle f^{*t***t}(z^{***}, x^{**}), y^{**} \rangle \\ &= \lim_{\alpha} \lim_{\gamma} \lim_{\beta} \langle f^{*}(z^{*}_{\gamma}, x_{\alpha}), y_{\beta} \rangle \\ &= \lim_{\alpha} \lim_{\gamma} \lim_{\beta} \langle f^{t*}(z^{*}_{\gamma}, y_{\beta}), x_{\alpha} \rangle \\ &= \lim_{\alpha} \lim_{\beta} \lim_{\gamma} \langle f^{t*}(z^{*}_{\gamma}, y_{\beta}), x_{\alpha} \rangle \\ &= \lim_{\alpha} \lim_{\beta} \lim_{\beta} \langle f^{t*}(x^{*}_{\alpha}, y_{\beta}), z^{*}_{\gamma} \rangle \\ &= \lim_{\alpha} \lim_{\beta} \lim_{\beta} \langle z^{***}, f(x_{\alpha}, y_{\beta}) \rangle. \end{aligned}$$

Therefore $f^{***}(x^{**}, y^{**})$ belongs to the weak closure of Z which equals to its norm closure. Parts (ii) and (iii) are direct results of part (i)

It is easy to show that $f^{***}|_{X \times Y^{**}} = f^{*t*t}$ and $f^{***}|_{X^{**} \times Y} = f^{t*t*}$. Consider the normed algebra A and the normed A-module (π_{ℓ}, X, π_r) . The following theorem reveals a relation between the topological center of such mappings and that of f.

Proposition 2.2. For every bounded bilinear mapping $f : X \times Y \longrightarrow Z$, $Z_{\ell}(f^{***}|_{X \times Y^{**}}) \subseteq Z_{\ell}(f)$ and $Z_{r}(f^{***}|_{X^{**} \times Y}) \subseteq Z_{r}(f)$.

Proof. We only prove the first inclusion. Let $x^{**} \in Z_{\ell}(f^{*t*t})$; then by Theorem 2.1

$$f^{(4)}(z^*, x^{**}) \in Y^* \qquad (\forall z^* \in Z^*)$$

and applying the proof of [8, Theorem 2.1] implies that $x^{**} \in Z_{\ell}(f)$.

As an straightforward consequence of the above theorem, the following corollary is obtained; although the part (iii) is a known result .

Corollary 2.2. Let $f: X \times Y \longrightarrow Z$ be a bounded bilinear mapping.

(i) If f is left strongly irregular, then so does $f^{***}|_{X \times Y^{**}}$.

(ii) If f is right strongly irregular, then so does $f^{***}|_{X^{**}\times Y}$.

(iii) If one of $f^{***}|_{X \times Y^{**}}$ or $f^{***}|_{X^{**} \times Y}$ are Arens regular, then f is Arens regular.

Corollary 2.3. If π is the product of a strongly irregular Banach algebra, then $\pi^{***}|_{A \times A^{**}}$ (resp. $\pi^{***}|_{A^{**} \times A}$) is left (resp. right) strongly irregular.

For example, the above corollary holds for the group algebras $L^1(G)$ and M(G), as the known strongly irregular Banach algebras; see [6] and [7].

3. X and X^* as A^{**} -modules

Suppose that A is an Arens regular Banach algebra and let (π_{ℓ}, X, π_r) be a Banach A-module. It has been shown in [8] that $(\pi_r^{**}, X^*, \pi_{\ell}^{t**t})$ is a Banach A^{**} -module if and only if for every $x \in X$, the bilinear mapping $\theta_x : A \times A \longrightarrow X$ defined by

$$\theta_x(a,b) = \pi_\ell(a,\pi_r(x,b)) = \pi_r(\pi_\ell(a,x),b) \quad (a,b \in A)$$

is regular. Now the following proposition as another application of Theorem 2.1, improves this result.

Proposition 3.1. Let A be an Arens regular Banach algebra and let (π_{ℓ}, X, π_r) be a Banach A-module. If either π_r^{t*t} or π_{ℓ}^* is regular, then $(\pi_r^{**}, X^*, \pi_{\ell}^{t*t})$ is a Banach A^{**} -module.

818

Proof. Suppose that $x \in X$. The natural extensions of θ_x on $A^{**} \times A^{**}$ satisfies

$$\begin{aligned} \theta_x^{***}(a^{**}, b^{**}) &= \pi_\ell^{***}(a^{**}, \pi_r^{***}(x, b^{**})) = \pi_r^{***}(\pi_\ell^{***}(a^{**}, x), b^{**}) \text{ and} \\ \theta_x^{t***t}(a^{**}, b^{**}) &= \pi_\ell^{t***t}(a^{**}, \pi_r^{t***t}(x, b^{**})) = \pi_r^{t***t}(\pi_\ell^{t***t}(a^{**}, x), b^{**}), \end{aligned}$$

for all $a^{**}, b^{**} \in A^{**}$.

In the case that π_r^{t*t} is regular, Theorem 2.1 implies that $\pi_r^{***}(x, b^{**}) \in \overline{X} = X$, for every $b^{**} \in A^{**}$ and so the above equalities demonstrate the regularity of θ_x . A similar argument may applies for the case that π_{ℓ}^* is regular. \Box

Let A be a Banach algebra and let (π_{ℓ}, X, π_r) be a Banach A–module. Theorem 2.1 implies that

$$\pi_{\ell}^{***}(Z_r(\pi_{\ell}^*), X) \subseteq X , \ \pi_r^{***}(X, Z_{\ell}(\pi_r^{t*t})) \subseteq X \text{ and}$$
$$\pi_{\ell}^{t***t}(Z_r(\pi_{\ell}^*), X) \subseteq X , \ \pi_r^{t***t}(X, Z_{\ell}(\pi_r^{t*t})) \subseteq X.$$

Therefore, we obtain the following proposition.

Proposition 3.2. *let* X *be a Banach* A*-module as above.*

(i) If π_r^{t*t} is regular, then X is a right Banach A^{**} -module with either Arens products of A^{**} .

(ii) If π_{ℓ}^* is regular, then X is a left Banach A^{**} -module with either Arens products.

(iii) If both module actions π_r^{t*t} and π_ℓ^* are regular, then X is a Banach A^{**} -module (with either Arens products).

For the special case X = A, this implies the next result.

Corollary 3.1. Suppose that A is a Banach algebra.

- (i) If π^{t*t} is regular, then A is a right ideal of A^{**} .
- (ii) If π^* is regular, then A is a left ideal of A^{**} .
- (iii) If both π^{t*t} and π^* are regular, then A is an ideal of A^{**} .

Let A be a Banach algebra and let X be a Banach A-module. We say that X factors A on the left (resp. right) if $\pi_r(X, A) = X$ (resp. $\pi_\ell(A, X) = X$). Some relationships between the factorization property and Arens regularity are stated in [2] and [5]. Proposition 3.3 and Theorem 3.1 from [5] are of these cases which together with Corollary 3.1 provide conditions for the Arens regularity of A.

Proposition 3.3. [5, Corollary 4.1] Let A be a left ideal in A^{**} .

- (1) If A^* factors A on the right, then A is Arens regular.
- (2) If A^{**} factors A on the right, then $Z_A(A^{***}) = A^{***}$.

As an immediate consequence of Corollary 3.1 and the part (1) of the above proposition we have the following result.

Corollary 3.2. If π^* is regular and A^* factors A on the right, then A is Arens regular.

Theorem 3.1. [5, Theorem 4.2] Let A be a right ideal in A^{**} . In each of the following situations, A is Arens regular.

- (1) A^* factors A on the left.
- (2) A^{**} factors A on the left.

As another application of Corollary 3.1, the next result is obtained by applying the above theorem.

Corollary 3.3. If π^{t*t} is regular and A^* or A^{**} factors A on the left, then A is Arens regular.

4. The second adjoint of a derivation

The following result as a consequence of [4, Proposition 6.2] and Theorem 2.1 indicates some conditions under which the second adjoint of a derivation is a derivation too.

Proposition 4.1. Suppose that A is a Banach algebra. If the mappings π^* and π^{t*} are both regular, then the second adjoint of every inner derivation $D: A \longrightarrow A^*$ is also a derivation.

Proof. As it was shown in [4, Proposition 6.2], the second adjoint of every inner derivation $D: A \longrightarrow A^*$ is a derivation if and only if

$$(b^{**} \square c^{**}) \Diamond a^{**} + (c^{**} \square a^{**}) \Diamond b^{**} - c^{**} \Diamond (a^{**} \square b^{**}) - b^{**} \square (c^{**} \square a^{**}) = 0$$

for every $a^{**}, b^{**}, c^{**} \in A^{**}$. Now if π^* and π^{t*} are regular, then Theorem 2.1 implies that

$$(b^{**} \Box c^{**}) \Diamond a^{**} = (b^{**} \Box c^{**}) \Box a^{**} = b^{**} \Box (c^{**} \Box a^{**});$$

and also

$$(c^{**} \Box a^{**}) \Diamond b^{**} = (c^{**} \Box a^{**}) \Box b^{**} = c^{**} \Box (a^{**} \Box b^{**}) = c^{**} \Diamond (a^{**} \Box b^{**}).$$

These equalities complete the proof. \Box

Let (π_{ℓ}, X, π_r) be a Banach A-module and let $D : A \longrightarrow X^*$ be a derivation. [8, Theorem 4.2] indicates that the second adjoint of D is a derivation on (A^{**}, \Box) (resp. (A^{**}, \Diamond)) iff $\pi_r^{****}(D^{**}(A^{**}), X^{**}) \subseteq A^*$ (resp. $\pi_{\ell}^{t****}(D^{**}(A^{**}), X^{**}) \subseteq A^*$). This theorem together with Theorem 2.1, implies the following corollary.

820

Corollary 4.1. By the above hypothesis,

(i) If π_r^{*t*} is regular and $D^{**}(A^{**}) \subseteq Z_r(\pi_r^{**})$, then D^{**} is a derivation on (A^{**}, \Box) .

(ii) If π_{ℓ}^{t*t*} is regular and $D^{**}(A^{**}) \subseteq Z_{\ell}(\pi_{\ell}^{t**t})$, then D^{**} is a derivation on (A^{**}, \diamond) .

Applying [8, Corollary 4.4] for the case X = A reveals that D^{**} is a derivation on (A^{**}, \Box) (resp. (A^{**}, \Diamond)) if both π and π^{t*} (resp. π^*) are Arens regular. Now by using corollaries 3.2 and 3.3 we obtain the next result.

Corollary 4.2. Suppose that A is a Banach algebra and $D: A \longrightarrow A^*$ is a derivation.

(i) If π^* is regular and A^* factors A on the right, then $D^{**}: (A^{**}, \Diamond) \longrightarrow A^{***}$ is a derivation.

(ii) If π^{t*t} is regular and A^* factors A or A^{**} on the left, then $D^{**}: (A^{**}, \Box) \longrightarrow A^{***}$ is a derivation.

REFERENCES

- A. ARENS: The adjoint of a bilinear operation. Proc. Amer. Math. Soc. 2 (1951), 839–848.
- 2. S. BAROOTKOOB, S. MOHAMMADZADEH and H. R. E. VISHKI: Topological centers of certain Banach module actions. Bull. Iranian Math. Soc. **35** (2009), no. 2, 25–36.
- 3. H. G. DALES: Banach Algebras and Automatic Continuity. London Math. Soc. , Monographs 24, Clarendon Press, Oxford, 2000.
- 4. H. G. DALES, A. RODRIGUES-PALACIOS and M. V. VELASCO: *The second transpose* of a derivation. J. London Math. Soc. **64** (2001), no. 2, 707–721.
- M. ESHAGHI GORDGI and M. FILALI: Arens regularity of module actions. Studia Math. 181 (2007), no. 3, 237–254.
- A. T. LAU and V. LOSERT: On the second conjugate algebra of a locally compact group. J. London Math. Soc. 37 (1988), 464–470.
- V. LOSERT, M. NEUFANG, J. PACHL and J. STEPRĀNS: proof of the Ghahramani- Lau conjecture. Advances in Mathematics 290 (2016), 709 – 738.
- 8. S. MOHAMMADZADEH and H. R. E. VISHKI: Arens regularity of module actions and the second adjoint of a derivation. Bull. Austral. Math. Soc. 77 (2008), 465–476.

Somayeh Mohammadzadeh Mathematics Department Faculty of Science University of Bojnord P. O. Box 1339 Bojnord, Iran smohamad@ub.ac.ir Sedigheh Barootkoob Mathematics Department Faculty of Science University of Bojnord P. O. Box 1339 Bojnord, Iran s.barutkub@ub.ac.ir

822